Parallelism in Modern Compilers

Vojtech Nik

Brno University of Technology, Faculty of Information Technology
Bozetechova 2, 612 66 Brno

Modern Theoretical Computer Science
2014/2015

L] oiersiry
Ey @y OF TECHNOLOGY
——

FACULTY
OF INFORMATION
TECHNOLOGY

NG

| What is parallelism? | |

Messages Messages . Task level
"""""""" @ parallelism (TLP)
large grain
funci() func2() func3()
{ { { Control level
parallelism (CLP)
medium grain
} } }

et e

‘ * 1. Data level
a[0]=... | a[1]=... al2]=... :
L b[0]=... J b[1]=... J Lb[2]=... J Eﬁ;agf;';m (DLP)

Instruction level
parallelism (ILP)
very fine grain

Parallelism in Modern Compilers - Vojtech Nikl I 2/24

| Instruction Level Parallelism

e Implemented in hardware

Time [Cycles]

Instructions !

IF | ID | EX |WB
IF | ID | EX |WB
IF | ID | EX |WB
IF | ID | EX |WB
IF | ID | EX |WB
IF | ID | EX |WB
IF | ID | EX |WB
IF | ID | EX |WB

Fully utilized pipeline

NG

HTE=

Parallelism in Modern Compilers - Vojtech Nikl I 3/24

| Data Level Parallelism | fie

e \/ectorization

Vector version carries out the same instructions
on many elements at a time

Scalar version works on
one element at a time

a[i] = b[i] + c[i] x d[i]; a[i:8] = b[i:8] + c[i:8] * d[i:8];

a[i] _afi] | a[i+1] a[i+2] a[i+3] a[i+4] a[i+5] a[i+6] a[i+7]
bli] b[i] b[i+1]! b[i+2] b[i+3] b[i+4] b[i+5] b[i+6] b[i+7]
+ + + + + + + + +
cli] _cli] | c[i+1] | c[i+2] | c[i+3] | c[i+4] c[i+5] c[i+6] c[i+7]
X X X X X X X X X
d[i] dli] |d[i+1]|d[i+2]|d[i+3]]|d[i+4]]|d[i+5]|d[i+6] |d[i+7]

Parallelism in Modern Compilers - Vojtech Nikl I 4/24

| Control Level Parallelism | fi=

e Threading (shared memory)

Parallel Task | Parallel Task Il Parallel Task Il

e

Master Thread
Parallel Task | Parallel Task Il Parallel Task Il
Master Thread /- -_ - SPTTTIT |
\ /// \\\ /.’ ,’;__ B | _;\\ \\\ //5 - %\\
e EEEE - < o —_—

Parallelism in Modern Compilers - Vojtech Nikl I 5/24

| Task Level Parallelism | fi=

e Message passing interface (distributed memory)

Parallelism in Modern Compilers - Vojtech Nikl I 6/24

Enhancing Parallelism

| Motivation | }Jf@

e Many compiler optimizations are based on the idea
of either:
e Reordering statements (or smaller units)
e Executing them in parallel

e Goal: do this without changing the semantics of
the program.

e Problem: Data dependencies

Parallelism in Modern Compilers - Vojtech Nikl I 8/24

| Data Dependence | fi=

e Given two program statements a and b,
b depends on a if:

e b follows a
e they share the same memory location
e one of them writes to it

e Written: bd a
e Example: Because b depends on
sa:x=y+ 1; a, the two statements

cannot be reordered,
nor can they be run in
parallel

eb:z=x*3;

Parallelism in Modern Compilers - Vojtech Nikl I 9/24

| Dependence Classification | fi=

e A dependence, a 3 b, is one of the following:
e true of flow dependence:
e a writes a location that b later reads
o (read-after write or RAW)
e anti-dependence
* a reads a location that b later writes
o (write-after-read or WAR)
e output dependence
e a writes a location that b later writes
o (write-after-write or WAW)

Parallelism in Modern Compilers - Vojtech Nikl I 10/24

| Iteration Space | fi=

e Example R
dol = 1’ > I ° ° ° ° ° °
dol=16 I
enddo ‘ o o o o o o
enddo ° ° ° ° ° °
— J
e Written out in lexicographic order the iteration
space is:

(1,1), (1,2),..., (1,6),(2,2),(2,3),...

e Equivalent to sequential execution order

Parallelism in Modern Compilers - Vojtech Nikl I 11/24

| Vector Order | }Jf@

e Let R be the set of all real n-vectors, (n7>1)

e A lexicographic order <, on these vectors is a
relation

/<, jonvectors/={/;... [}
j = { j] Jn}
Iif
iy = Jy Ji = Jp ... and [,< J,
e The leading element of a vector is the first
non-zero element
e A negative vector has: leading element < 0
e A positive vector has: leading element > 0

Parallelism in Modern Compilers - Vojtech Nikl I 12/24

| Distance/Direction Vectors | b

e Given 2 n-vectors i,]
[=(,..1)
J=0y - J)
e Their distance vector = (j, -/, j, - 15, ...)

— Represents the number of iterations between
accesses to the same location

e Their direction vector

= (slg (j; - 1), sig(j> - 15), ...)
— Represents the direction in iteration space

Parallelism in Modern Compilers - Vojtech Nikl I 13/24

| Distance/Direction Vectors | b

e It is often convenient to deal with /n-completely
specified direction vectors

Example 1:
{(OI OI OI 1)/ (OI _11 OI 1)/ (OI OI 1/ 1)/ (OI _11 1/ 1)}
==>{(0,<=0, >=0,1)}

Example 2:
{(OI _11 OI _1)1 (OI OI 0/ _1)1 (OI 1/ OI _1)}
==> {(OI *I OI _1)}

Parallelism in Modern Compilers - Vojtech Nikl I 14/24

| Distance/Direction Vectors | [T

e Let / jdenote two vectors in R" and s their
direction vector. Then i < j if s has one of the
following n forms:

(1I *I >|<I i 4 *)
(Ol 1[>|<l i 4 *)
(OI OI 1[>|<I i 4 *)
0,0, ..0,1).

e Notation
(OI 1/ _1) & (=I >, <)

Parallelism in Modern Compilers - Vojtech Nikl I 15/24

| Loop Parallelization | ﬂu

e Itis valid to convert a sequential loop into a parallel
loop if the loop carries no dependences.

e Proof

e Iteration reordering is fine if the loop carries no
dependencies

e Dependence violation may occur due to interleaving of
statements from different loop iterations

e dependences at a level inside the parallelized loop cannot
cause a violation since they are executed sequentially

e dependences at a level outside the parallelized loop are
preserved

Parallelism in Modern Compilers - Vojtech Nikl I 16/24

| Loop Parallelization | fi=

e Modern compilers analyse loops in serial code :>
identification for vectorization

for (i=0;i<MAX;i++)
c[il=a[i]l+b[i];

+

o+
+

+

C[3] Cl2]

e Intel compiler: -xSSE/-xAVX
—ftree-vectorize

—-vec—report

Parallelism in Modern Compilers - Vojtech Nikl I 17/24

| Loop Parallelization e

e Formally, a statement in a loop can be directly
vectorized if the statement is not included in any

cycle of dependence.
e This simple algorithm misses opportunities for vect.

for (i=0; i<N; i++)
for (j=0; j<M; J++)
A[i+l, j] = A[i,3j] + c;
e Direction D = (<,=)

e However, we can vectorize the loop as follows

for (i=0; i<N; i++)
A[i+1l, O:M-1] = A[1,0:M-1] + c;

Parallelism in Modern Compilers - Vojtech Nikl I 18/24

| Loop Interchange | fi=

e Loop interchange switches the nesting order of two
loops in a perfect loop nest

e Consider a perfect nest of loops L = (L4, Lo,..., L)

Li: doly =py,q4,604
Ly: do I, = p;,q,,0,

Lpy: do I, = Pm, Qm, Om
H(I, L, ...,1,)
enddo

enddo
enddo

Parallelism in Modern Compilers - Vojtech Nikl I 19/24

| Loop Interchange | fi=

e The direction vector of a dependence after applying
a permutation on the loop order of a perfect loop nest

is obtained by applying the same permutation to the
original direction vector of the dependence

for (i=1l; i<=N; i++) for (j=1; j<=M; j++)

for (j=1; j<=M; J++) => for (i=1; i<=N; i++)
A[i,j+1l] = A[i, J] + c; A[i,j+1] = A[i, J] + c;
D = (=, <) D = (<,=)

o Intuitively, the direction vector of an interchange
preventing dependence is D = (<,>)

Parallelism in Modern Compilers - Vojtech Nikl I 20/24

| Scalar Expansion | fi=

e Scalar expansion is the replacement of a scalar by
a temporary array that provides a different storage

location for the scalar in each iteration

e Scalar expansion is not “free"
e extra memory
e additional memory accesses
e more complex addressing

e Main challenge: determining profitable expansions by
looking at the dependence graph

Parallelism in Modern Compilers - Vojtech Nikl I 21/24

| Scalar Expansion | PY

lilISS
1) for (3=1; j<=M; j++) {
for (i=1l; i<=N; i++) {
t=20;
for (k=1; k<=L; k++)
t += A[i,k] * B[k,]Jl:
Cl[i,j] = t; 3) for (j=1; j<=M; j++) {
}} for (i=1l; i<=N; i++)
_t[i] = 0;
2) for (j=1; j<=M; j++) { for (i=1; i<=N; i++)
for (i=1l; i<=N; i++) { for (k=1; k<=L; k++)
_t[i] = 0; _t[i] += A[i,k] * B[k,3];
for (k=1; k<=L; k++) for (i=1l; i<=N; i++)
_t[i] += A[1i,k] * B[k,]]; C[i,3J] = _t[i];

Cl[i,j] = t[i]; }
}}

Parallelism in Modern Compilers - Vojtech Nikl I 22/24

| Scalar Expansion | fi=

e In a DG, edges that arise from the reuse of memory locations
can be eliminated by scalar expansion. Such edges are called
detectable.

o The other type of edges arise from the reuse of values; those
must always be preserved.

for (i=1; i<=N ;i++)
S1: tmp = A[i];
S2: A[i] = B[1i];
S3: B[i] = tmp;

for (i=1; i<=N ;i++)
S1: tmp[i] = A[i];
s2: A[i] = B[i];
S3: B[i] = tmp[i];

Parallelism in Modern Compilers - Vojtech Nikl I 23/24

| Conclusion | fi=

o Parallelism enhances the overall performance

e Compilers focus mainly on data level parallelism

e 3 main techniques explained

e Loop Parallelization (Vectorization)
e Loop Interchange
e Scalar Expansion

Parallelism in Modern Compilers - Vojtech Nikl I 24/24

Thank you for your attention!

