
Parallelism in Modern Compilers

Vojtech Nikl

Brno University of Technology, Faculty of Information Technology
Bozetechova 2, 612 66 Brno

Modern Theoretical Computer Science

2014/2015

What is parallelism?

2/24 Parallelism in Modern Compilers - Vojtech Nikl

Instruction Level Parallelism

• Implemented in hardware

3/24 Parallelism in Modern Compilers - Vojtech Nikl

Data Level Parallelism

• Vectorization

4/24 Parallelism in Modern Compilers - Vojtech Nikl

Control Level Parallelism

• Threading (shared memory)

Parallelism in Modern Compilers - Vojtech Nikl 5/24

Task Level Parallelism

• Message passing interface (distributed memory)

Parallelism in Modern Compilers - Vojtech Nikl 6/24

Enhancing Parallelism

Parallelism in Modern Compilers - Vojtech Nikl 7/24

Motivation

• Many compiler optimizations are based on the idea
of either:

• Reordering statements (or smaller units)

• Executing them in parallel

• Goal: do this without changing the semantics of
the program.

• Problem: Data dependencies

Parallelism in Modern Compilers - Vojtech Nikl 8/24

Data Dependence

• Given two program statements a and b,
b depends on a if:

• b follows a

• they share the same memory location

• one of them writes to it

• Written: b d a

• Example:

• a: x = y + 1;

• b: z = x * 3;

Parallelism in Modern Compilers - Vojtech Nikl 9/24

Because b depends on
a, the two statements
cannot be reordered,
nor can they be run in
parallel

Dependence Classification

• A dependence, a d b, is one of the following:

• true of flow dependence:

• a writes a location that b later reads

• (read-after write or RAW)

• anti-dependence

• a reads a location that b later writes

• (write-after-read or WAR)

• output dependence

• a writes a location that b later writes

• (write-after-write or WAW)

Parallelism in Modern Compilers - Vojtech Nikl 10/24

Iteration Space

Parallelism in Modern Compilers - Vojtech Nikl 11/24

• Example
do I = 1, 5

 do J = I, 6

 . . .

 enddo

enddo

• Written out in lexicographic order the iteration
space is:

(1,1), (1,2),…, (1,6),(2,2),(2,3),…

• Equivalent to sequential execution order

J

I

Vector Order

Parallelism in Modern Compilers - Vojtech Nikl 12/24

• Let Rn be the set of all real n-vectors, (n >1)

• A lexicographic order <u on these vectors is a
relation:

 i <u j on vectors i = { i1 … in }

 j = { j1 … jn }

 if

 i1 = j1, j1 = j2 … and iu< ju

• The leading element of a vector is the first
non-zero element

• A negative vector has: leading element < 0

• A positive vector has: leading element > 0

Distance/Direction Vectors

Parallelism in Modern Compilers - Vojtech Nikl 13/24

• Given 2 n-vectors i,j

 i = (i1, … in)

 j = (j1, … jn)

• Their distance vector = (j1 - i1, j2 - i2, …)

– Represents the number of iterations between
accesses to the same location

• Their direction vector

 = (sig (j1 - i1), sig(j2 - i2), …)

– Represents the direction in iteration space

Distance/Direction Vectors

Parallelism in Modern Compilers - Vojtech Nikl 14/24

• It is often convenient to deal with in-completely
specified direction vectors

Example 1:

{(0, 0, 0, 1), (0, -1, 0, 1), (0, 0, 1, 1), (0, -1, 1, 1)}

 ==> {(0, <= 0, >= 0, 1)}

Example 2:

 {(0, -1, 0, -1), (0, 0, 0, -1), (0, 1, 0, -1)}

 ==> {(0, *, 0, -1)}

Distance/Direction Vectors

Parallelism in Modern Compilers - Vojtech Nikl 15/24

• Let i, j denote two vectors in Rn and s their
direction vector. Then i < j if s has one of the
following n forms:

 (1, *, *, …, *)
 (0, 1, *, …, *)
 (0, 0, 1, *, …, *)

 (0, 0, …, 0, 1).

• Notation

 (0, 1, -1)  (=, >, <)

Loop Parallelization

• It is valid to convert a sequential loop into a parallel
loop if the loop carries no dependences.

• Proof

• Iteration reordering is fine if the loop carries no
dependencies

• Dependence violation may occur due to interleaving of
statements from different loop iterations

• dependences at a level inside the parallelized loop cannot
cause a violation since they are executed sequentially

• dependences at a level outside the parallelized loop are
preserved

Parallelism in Modern Compilers - Vojtech Nikl 16/24

Loop Parallelization

• Modern compilers analyse loops in serial code
identification for vectorization

• Intel compiler: -xSSE/-xAVX

 -ftree-vectorize

 -vec-report

Parallelism in Modern Compilers - Vojtech Nikl 17/24

Loop Parallelization

• Formally, a statement in a loop can be directly
vectorized if the statement is not included in any
cycle of dependence.

• This simple algorithm misses opportunities for vect.

for (i=0; i<N; i++)

 for (j=0; j<M; j++)

 A[i+1, j] = A[i,j] + c;

• Direction D = (<,=)

• However, we can vectorize the loop as follows

for (i=0; i<N; i++)

 A[i+1, 0:M-1] = A[i,0:M-1] + c;

Parallelism in Modern Compilers - Vojtech Nikl 18/24

Loop Interchange

• Loop interchange switches the nesting order of two
loops in a perfect loop nest

• Consider a perfect nest of loops 𝐿 = (𝐿1, 𝐿2,…, 𝐿𝑚)

𝐿1: 𝒅𝒐 𝐼1 = 𝑝1, 𝑞1, 𝜃1

𝐿2: 𝒅𝒐 𝐼2 = 𝑝2, 𝑞2, 𝜃2

 ⋮ ⋮
𝐿𝑚: 𝒅𝒐 𝐼𝑚 = 𝑝𝑚, 𝑞𝑚, 𝜃𝑚

 𝐻 𝐼1, 𝐼2, … , 𝐼𝑚

 𝒆𝒏𝒅𝒅𝒐

 ⋮

 𝒆𝒏𝒅𝒅𝒐

 𝒆𝒏𝒅𝒅𝒐

Parallelism in Modern Compilers - Vojtech Nikl 19/24

Loop Interchange

• The direction vector of a dependence after applying
a permutation on the loop order of a perfect loop nest
is obtained by applying the same permutation to the
original direction vector of the dependence

for (i=1; i<=N; i++) for (j=1; j<=M; j++)

 for (j=1; j<=M; j++) => for (i=1; i<=N; i++)

 A[i,j+1] = A[i, j] + c; A[i,j+1] = A[i, j] + c;

 D = (=, <) D = (<,=)

• Intuitively, the direction vector of an interchange

 preventing dependence is D = (<,>)

Parallelism in Modern Compilers - Vojtech Nikl 20/24

Scalar Expansion

• Scalar expansion is the replacement of a scalar by
a temporary array that provides a different storage

 location for the scalar in each iteration

• Scalar expansion is not “free“

• extra memory

• additional memory accesses

• more complex addressing

• Main challenge: determining profitable expansions by
looking at the dependence graph

Parallelism in Modern Compilers - Vojtech Nikl 21/24

Scalar Expansion

1) for (j=1; j<=M; j++) {

 for (i=1; i<=N; i++) {

 t = 0;

 for (k=1; k<=L; k++)

 t += A[i,k] * B[k,j];

 C[i,j] = t; 3) for (j=1; j<=M; j++) {
 }} for (i=1; i<=N; i++)

 _t[i] = 0;

2) for (j=1; j<=M; j++) { for (i=1; i<=N; i++)
 for (i=1; i<=N; i++) { for (k=1; k<=L; k++)

 _t[i] = 0; _t[i] += A[i,k] * B[k,j];

 for (k=1; k<=L; k++) for (i=1; i<=N; i++)

 _t[i] += A[i,k] * B[k,j]; C[i,j] = _t[i];

 C[i,j] = _t[i]; }

 }}

Parallelism in Modern Compilers - Vojtech Nikl 22/24

Scalar Expansion

• In a DG, edges that arise from the reuse of memory locations
can be eliminated by scalar expansion. Such edges are called
detectable.

• The other type of edges arise from the reuse of values; those
must always be preserved.

 for (i=1; i<=N ;i++)

S1: tmp = A[i];

S2: A[i] = B[i];

S3: B[i] = tmp;

 for (i=1; i<=N ;i++)

S1: tmp[i] = A[i];

S2: A[i] = B[i];

S3: B[i] = tmp[i];

Parallelism in Modern Compilers - Vojtech Nikl 23/24

Conclusion

• Parallelism enhances the overall performance

• Compilers focus mainly on data level parallelism

• 3 main techniques explained

• Loop Parallelization (Vectorization)

• Loop Interchange

• Scalar Expansion

Parallelism in Modern Compilers - Vojtech Nikl 24/24

Thank you for your attention!

