Parallelism in Modern Compilers

Vojtech Nikl

Brno University of Technology, Faculty of Information Technology Bozetechova 2, 612 66 Brno

FACULTY OF INFORMATION

TECHNOLOGY

BRNO UNIVERSITY OF TECHNOLOGY

Modern Theoretical Computer Science 2014/2015

What is parallelism?

Task level parallelism (TLP) large grain

Control level parallelism (CLP) medium grain

Data level parallelism (DLP) fine grain

Instruction level parallelism (ILP) very fine grain • Implemented in hardware

• Vectorization

Scalar version works on one element at a time

 $a[i] = b[i] + c[i] \times d[i];$

Vector version carries out the same instructions on many elements at a time

a[i:8] = b[i:8] + c[i:8] * d[i:8];

a[i]	a[i+1]	a[i+2]	a[i+3]	a[i+4]	a[i+5]	a[i+6]	a[i+7]
=	=	=	=	=	=	=	=
b[i]	b[i+1]	b[i+2]	b[i+3]	b[i+4]	b[i+5]	b[i+6]	b[i+7]
+	+	+	+	+	+	+	+
c[i]	c[i+1]	c[i+2]	c[i+3]	c[i+4]	c[i+5]	c[i+6]	c[i+7]
Х	X	X	X	x	x	x	x
d[i]	d[i+1]	d[i+2]	d[i+3]	d[i+4]	d[i+5]	d[i+6]	d[i+7]

Control Level Parallelism

• Threading (shared memory)

Task Level Parallelism

• Message passing interface (distributed memory)

Enhancing Parallelism

Parallelism in Modern Compilers - Vojtech Nikl 7/24

- Many compiler optimizations are based on the idea of either:
 - Reordering statements (or smaller units)
 - Executing them in parallel
- Goal: do this without changing the semantics of the program.
- Problem: Data dependencies

Data Dependence

- Given two program statements **a** and **b**, **b** depends on **a** if:
 - **b** follows **a**
 - they share the same memory location
 - one of them writes to it
- Written: **b** δ **a**
- Example:
 - **a**: x = y + 1;
 - **b**: z = x * 3;

Because **b** depends on **a**, the two statements cannot be reordered, nor can they be run in parallel

- A dependence, **a** δ **b**, is one of the following:
 - true of flow dependence:
 - **a** writes a location that **b** later reads
 - (read-after write or RAW)
 - anti-dependence
 - a reads a location that b later writes
 - (write-after-read or WAR)
 - output dependence
 - **a** writes a location that **b** later writes
 - (write-after-write or WAW)

Written out in lexicographic order the iteration space is:
 (1,1), (1,2),..., (1,6), (2,2), (2,3),...

• Equivalent to sequential execution order

Vector Order

- Let \mathbb{R}^n be the set of all real n-vectors, (n > 1)
- A lexicographic order <_u on these vectors is a relation:

$$i <_{u} j \text{ on vectors } i = \{ i_{1} \dots i_{n} \}$$

 $j = \{ j_{1} \dots j_{n} \}$
if

$$i_1 = j_1, j_1 = j_2 \dots$$
 and $i_u < j_u$

- The leading element of a vector is the first non-zero element
- A negative vector has: leading element < 0
- A positive vector has: leading element > 0

• Given 2 n-vectors i,j

$$i = (i_1, \dots i_n)$$

 $j = (j_1, \dots j_n)$

- Their distance vector = $(j_1 i_1, j_2 i_2, ...)$
 - Represents the number of iterations between accesses to the same location
- Their direction vector

= (sig ($j_1 - i_1$), sig($j_2 - i_2$), ...) - Represents the direction in iteration space

• It is often convenient to deal with *in-completely specified* direction vectors

Example 1: {(0, 0, 0, 1), (0, -1, 0, 1), (0, 0, 1, 1), (0, -1, 1, 1)} $=> \{(0, <= 0, >= 0, 1)\}$

Example 2:

$$\{(0, -1, 0, -1), (0, 0, 0, -1), (0, 1, 0, -1)\}$$

 $==>\{(0, *, 0, -1)\}$

 Let *i*, *j* denote two vectors in Rⁿ and *s* their direction vector. Then i < j if *s* has one of the following n forms:

Notation

$$(0, 1, -1) \Leftrightarrow (=, >, <)$$

• It is valid to convert a sequential loop into a parallel loop if the loop carries no dependences.

• Proof

- Iteration reordering is fine if the loop carries no dependencies
- Dependence violation may occur due to interleaving of statements from different loop iterations
 - dependences at a level inside the parallelized loop cannot cause a violation since they are executed sequentially
 - dependences at a level outside the parallelized loop are preserved

Loop Parallelization

Modern compilers analyse loops in serial code
identification for vectorization

- Intel compiler: -xSSE/-xAVX
 - -ftree-vectorize

-vec-report

Loop Parallelization

- Formally, a statement in a loop can be directly vectorized if the statement is not included in any cycle of dependence.
- This simple algorithm misses opportunities for vect.

for (i=0; i<N; i++)
for (j=0; j<M; j++)
 A[i+1, j] = A[i,j] + c;
• Direction D = (<,=)</pre>

- However, we can vectorize the loop as follows

```
for (i=0; i<N; i++)
A[i+1, 0:M-1] = A[i,0:M-1] + c;
```

Parallelism in Modern Compilers - Vojtech Nikl 19/24

Loop Interchange

- Loop interchange switches the nesting order of two loops in a perfect loop nest
- Consider a perfect nest of loops $L = (L_1, L_2, ..., L_m)$

$$L_{1}: do I_{1} = p_{1}, q_{1}, \theta_{1}$$

$$L_{2}: do I_{2} = p_{2}, q_{2}, \theta_{2}$$

$$\vdots \\L_{m}: do I_{m} = p_{m}, q_{m}, \theta_{m}$$

$$H(I_{1}, I_{2}, ..., I_{m})$$
enddo
$$\vdots$$
enddo
enddo

Loop Interchange

• The direction vector of a dependence after applying a permutation on the loop order of a perfect loop nest is obtained by applying the same permutation to the original direction vector of the dependence

$$D = (=, <)$$
 $D = (<,=)$

 Intuitively, the direction vector of an interchange preventing dependence is D = (<,>)

Scalar Expansion

- Scalar expansion is the replacement of a scalar by a temporary array that provides a different storage location for the scalar in each iteration
- Scalar expansion is not "free"
 - extra memory
 - additional memory accesses
 - more complex addressing
- Main challenge: determining profitable expansions by looking at the dependence graph

Scalar Expansion


```
1) for (j=1; j<=M; j++) {</pre>
     for (i=1; i<=N; i++) {</pre>
       t = 0;
       for (k=1; k<=L; k++)
          t += A[i,k] * B[k,j];
                                    3)
                                         for (j=1; j<=M; j++) {</pre>
       C[i,j] = t;
   } }
                                            for (i=1; i<=N; i++)</pre>
                                              t[i] = 0;
2) for (j=1; j<=M; j++) {</pre>
                                            for (i=1; i<=N; i++)
      for (i=1; i<=N; i++) {</pre>
                                              for (k=1; k<=L; k++)
        t[i] = 0;
                                                t[i] += A[i,k] * B[k,j];
         for (k=1; k<=L; k++)
                                         for (i=1; i<=N; i++)</pre>
          t[i] += A[i,k] * B[k,j]; C[i,j] = t[i];
        C[i,j] = t[i];
                                         }
   } }
```

Scalar Expansion

- In a DG, edges that arise from the reuse of memory locations can be eliminated by scalar expansion. Such edges are called detectable.
- The other type of edges arise from the reuse of values; those must always be preserved.

```
for (i=1; i<=N; i++)
S1: tmp = A[i];
S2: A[i] = B[i];
S3: B[i] = tmp;
for (i=1; i<=N; i++)
S1: tmp[i] = A[i];
S2: A[i] = B[i];
S3: B[i] = tmp[i];</pre>
```


Conclusion

- Parallelism enhances the overall performance
- Compilers focus mainly on *data level parallelism*
- 3 main techniques explained
 - Loop Parallelization (Vectorization)
 - Loop Interchange
 - Scalar Expansion

Thank you for your attention!