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PRIVALOV V - USING DEEP LEARNING FOR OBGECT 

RECOGNITION IN ROBOTICS 

Motivation and aims 

My research project is related to the object recognition task in service robotics. 

Object recognition is the most important ability of robot. The ability to identify 

and differentiate objects is the basis of the intelligence of robots which must move 

in an environment and interact with it. 

Object recognition in robotics is a quite expensive task because it involves 

complex intelligent analysis of images. Image analysis requires much of 

computational resources that are critically limited on robotic platforms. 

Deep learning is a focus of the current artificial intelligence research because of 

the advantage of self-teaching which reduce manual labour. 

We are intended to research if Deep learning is capable to solve the object 

recognition task more effectively than standard methods and it will reduce manual 

labor. 

 

 

Definition of DL 

Deep learning is a new concept in machine learning. It allows representation 

learning, i.e. learning of feature representations automatically instead of having to 

define them manually based on expert knowledge. 

Research in this area attempts to find better representations of data (e.g. image) 

that make it easier to learn tasks of interest (e.g., is this the image of a human 

face?) from examples. One of basic deep learning architectures is deep neural 

networks. 
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History of DL 

Let’s take a look on history of Deep learning in context of neural networks. 

There is represented various phases of development deep learning in the hype 

cycle. The peak activities (“expectations” or “media hype” on the vertical axis) 

occurred in late 1980s and early 1990s. Kunihiko Fukushima in 1980 introduced 

first Deep learning architecture - Neocognitron. In 1989, Yann LeCun was able to 

apply the standard backpropagation algorithm to a deep neural network with the 

purpose of recognizing handwritten ZIP codes on mail. The time to train the 

network on this dataset was approximately 3 days, making it impractical for 

general use. Because of speed issues simpler models such as support vector 

machines (SVMs) became the popular choice of the field in the 1990s and 2000s. 

When new deep neural architectures appeared in 2009, the learning became 

highly effective and this has inspired the subsequent fast growing research 

(“enlightenment” phase shown in the slide). The height of the “plateau of 

productivity” phase, not yet reached, it will grow further. 

The term "deep learning" became commonly used in the mid-2000s after a 

publication by Geoffrey Hinton and Ruslan Salakhutdinov showed how a many-

layered feedforward neural network could be effectively pre-trained one layer at a 

time, using supervised backpropagation for fine-tuning. The deep belief network 

(DBN) and a fast algorithm for training it were invented in 2006. Industry-scale 

application of DBN and DNN for speech recognition started in 2009. 

 

Current results of using DL 

With this greater depth, NN are producing remarkable advances in speech and 

image recognition. June 2012, a Google used deep-learning system for recognition 

objects like cats in images from YouTube videos. 
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Certainly machine intelligence is starting to transform everything from 

communications and computing to medicine, manufacturing, and transportation.  

The IBM’s Watson computer uses some deep-learning techniques and is now 

being trained to help doctors make better decisions. Microsoft has deployed deep 

learning in its Windows Phone and Bing voice search. 

But for now, says Peter Lee, head of Microsoft Research USA, “deep learning 

has reignited some of the grand challenges in artificial intelligence.” 

 

Application of Deep learning in robotics 

Most of the research in the field of deep learning for robotics are concerning the 

recognition of objects. Deep learning was already successfully used in the method 

of detecting robotic grasps for novel objects that allows to avoid hand design of 

features. There Deep learning was applied to find the best grasp pose - a 2D 

oriented rectangle in image space, with two edges corresponding to the gripper 

plates. Also deep learning methods are used in modeling of robot behavior based 

on training demonstrations. 

 

 

Definition of neural network 

Neural networks are nonlinear models motivated by the physiological 

architecture of the nervous system. They involve a set of simple nonlinear 

computations that when aggregated can implement robust and complex nonlinear 

functions. The general idea behind neural networks is pretty straightforward: map 

some input onto a desired target value using a distributed set of nonlinear 

transformations. 
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Neural networks can have any number of layers. Networks with one hidden 

layer is called shallow, with many – deep. 

Since 2006, a set of techniques has been developed that enable learning in deep 

neural nets. These techniques have enabled much deeper (and larger) networks to 

be trained - people now routinely train networks with 5 to 10 hidden layers. And, it 

turns out that these perform far better on many problems than shallow neural 

networks. The reason is the ability of deep nets to build up a complex hierarchy of 

concepts. 

So neural networks can compute any function but deep networks are the 

networks best adapted to learn the functions useful in solving many real-world 

problems. 

 

Perceptrons 

The basic computation of NN is called perceptron. Perceptron calculates 

weighted sum of observed inputs                multiplied by corresponding 

weights                as pre-activation z. Oftentimes the preactivation 

calculation involves a bias b with value +1 that is added to an input. The pre-

activation is transformed then by a nonlinear activation function g(z) to output a 

final activation     . 
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Figure 1: Diagram of neural network with one perceptron. 

There are many types of the activation function     , and the choice generally 

depends on the task we would like the network to perform. The most popular 

activation function is the logistic sigmoid: 

          
 

     
, 

which output values            . When the network outputs use the logistic 

sigmoid activation function, the network implements linear binary classification. 

Third type of activation function - hyperbolic tangent function, tahn(z), which 

outputs values              - can also implement binary classification. 

A key property of these activation functions is that they are all smooth and 

differentiable. Differentiability of activation function is important for training 

neural networks. The derivatives for each of these common activation functions are 

given here: 
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What is interesting about these derivatives is that they are either a constant (i.e. 

1), or can be defined in terms of the original function. This makes them extremely 

convenient for efficiently training neural networks. 

 

Feedforward Neural Networks 

Feedforward neural network consists of more than one layers of perceptrons. 

Let’s introduce a network with one input layer, one output layer and one layer 

between them. Intermediate layer is often referred to as a “hidden” layer, as it 

doesn’t directly observe input or directly compute the output. By using a hidden 

layer, we form a multilayered neural network. For example, the network in the next 

slide (Figure 2) would be considered a 2-layer neural network because it has two 

layers of weights: those connecting the inputs to the hidden layer (   ), and those 

connecting the output of the hidden layer to the output layer (   ). 

 

Figure 2: Diagram of a multi-layer ANN. Each node in the network can be 

considered a single-layered ANN (for simplicity, biases are not visualized in 

graphical model). 
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Let’s denote input layer by l, m – number of nodes in layer l hidden layer is l + 

1, p – number of nodes in layer l + 1. 

Multi-layer neural networks form compositional functions that map the inputs 

nonlinearly to outputs. If we associate index i with the input layer, index j with the 

hidden layer, and index k with the output layer, then an output unit in that network 

computes an output value    given and input    via the following compositional 

function: 

               ∑      ∑  

 

       

 

  

 

Training neural networks and gradient descent 

Training neural networks involves determining the network parameters   

{   } that minimize the errors that the network makes. We will define error 

function as squared difference between the network output and the target value: 

  
 

 
                 

(Note that the squared error is not chosen arbitrarily, but has a number of 

theoretical benefits and considerations.) Having an error function, we then aim to 

find the setting of parameters that minimizes this error function. This concept can 

be interpreted spatially by imagining a “parameter space” (Figure 3) whose 

dimensions are the values of each of the model parameters, and for which the error 

function will form a surface of varying height depending on its value for each 

parameter. Model training is thus equivalent to finding point in parameter space 

that makes the height of the error surface small. 

The task of training the parameters of an neural network generally is solved  

using gradient descent: the gradient descent algorithm first calculates the gradient 
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Figure 3: Graphical interpretation of learning task in “parameter space”. 

       
  

  
 of the error function with respect  to each parameter θ of the model 

parameters . This gradient information will give us the direction in parameter space 

that decreases the height of the error surface. We then take a step in that direction 

and repeat, iteratively calculating the gradient and taking steps in parameter space. 

 

The backpropagation algorithm 

It turns out that the gradient information for the neural network error surface can 

be calculated efficiently using a message passing algorithm known as the 

backpropagation algorithm. 

The main concept underlying the algorithm is that for a given observation we 

want to determine the degree of “responsibility” that each network parameter has 

for mis-predicting a target value associated with the observation. We then change 

that parameter according to this responsibility so that it reduces the network error. 

These are presented main steps of the algorithm. 
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In order to determine the network error, we first propagate the observed input 

forward through the network layers. This is Step I of the backpropagation 

algorithm, and is demonstrated on the slide (Figure 4). Note that in the slide each 

of the network outputs is designated by   . Also note that when implementing this 

forward-propagation step, we should keep track of the feed-forward pre-activations 

   and activations    for all layers l, as these will be used for calculating 

backpropagated errors and error function gradients. 

 

Figure 4: Step 1 of backpropagation – forward propagation of signal. 

Step II of the algorithm is to calculate the network output error and 

backpropagate it toward the input. Let’s again that we are using the sum of squared 

differences error function: 

  
 

 
∑        

 
   , 

where we sum over the values of all k output units (one in this example). We can 

use error from node defined earlier as an “error signal”    at the output node that 

will be backpropagated toward the input. The error signal is calculated as follows: 
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           . 

Thus the error signal essentially weights the gradient of the error function by the 

gradient of the output activation function (notice there is a    term is used in this 

calculation, which is why we keep it around during the forward-propagation step). 

We can continue backpropagating the error signal toward the input by passing     

through the output layer weights     , summing over all output nodes, and passing 

the result through the gradient of the activation function at the hidden layer   
 
(  ) 

(Figure 5). Performing these operations results in the back-propagated error signal 

for the hidden layer,   : 

     
 
(  )∑       . 

 

Figure 5: Step 2 of backpropagation – back propagation of signal. 

For networks that have more than one hidden layer, this error backpropagation 

procedure can continue for layers j – 1, j –2, …, etc. 

Step III of the backpropagation algorithm is to calculate the gradients of the 

error function with respect to the model parameters at each layer l using the 

forward signals     , and the backward error signals   . If one considers the model 

weights        at a layer l as linking the forward signal      to the error signal    

(Figure 6), then the gradient of the error function with respect to those weights is: 
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Note that this result is closely related to the concept of Hebbian learning in 

neuroscience. Thus the gradient of the error function with respect to the model 

weight at each layer can be efficiently calculated by simply keeping track of the 

forward-propagated activations feeding into that layer from below, and weighting 

those activations by the backward-propagated error signals feeding into that layer 

from above. 

 

Figure 6: Step 3 of backpropagation – calculation parameter gradients. 

What about the bias parameters? It turns out that the same gradient rule used for 

the weight weights applies, except that “feed-forward activations” for biases are 

always +1 (see Figure 1). Thus the bias gradients for layer l are simply: 

  

   
           

The fourth and final step of the backpropagation algorithm is to update the 

model parameters based on the gradients calculated in Step III. Note that the 

gradients point in the direction in parameter space that will increase the value of 

the error function. Thus when updating the model parameters we should choose to 

go in the opposite direction. How far do we travel in that direction? That is 

generally determined by a user-defined step size (aka learning rate) parameter,  . 

http://en.wikipedia.org/wiki/Hebbian_theory
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Thus given the parameter gradients and the step size, the weights and biases for a 

given layer are updated accordingly: 

                
  

       
 

        
  

   
. 

To train an ANN, the four steps outlined above and in Figures 4-6 are repeated 

iteratively by observing many input-target pairs and updating the parameters until 

either the network error reaches a tolerably low value or a set number of parameter 

updates has been achieved. 

There is an optimized type of gradient descent - stochastic gradient descent. The 

idea is to estimate the gradient       by computing        for a small sample of 

randomly chosen training inputs. By averaging over this small sample it turns out 

that we can quickly get a good estimate of the true gradient      , and this helps 

speed up gradient descent, and thus learning. 

To make these ideas more precise, stochastic gradient descent works by picking 

out a small number m of randomly chosen training inputs. Then stochastic gradient 

descent works by picking out a randomly chosen mini-batch of training inputs, and 

training with those, 

      
 

 
∑

   

   
 

 

      
 

 
∑

   

   
 , 

where the sums are over all the training examples    in the current mini-batch. 

Then we pick out another randomly chosen mini-batch and train with those. And 

so on, until we've exhausted the training inputs, which is said to complete an epoch 

of training. At that point we start over with a new training epoch. 
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Convolutional neural networks 

A Convolutional Neural Network (CNN) consists of two types of layers: 

convolutional layers and fully connected layers as in a standard multilayer neural 

network. The architecture of a CNN is designed to take advantage of the 2D 

structure of an input (image, speech signal). 

 

Figure 7: Image representation in convolutional neural network for object 

recognition task. 

In this example (Figure 7) convolutional network is used for object recognition 

in an image. First layers – convolutional – are used for retrieving features from 

image. The input to the first fully-connected layer is the set of all features maps at 

the layer below. 

 

Advantageous of DL 

The most important advantageous of Deep learning are follow:  

1. Hierarchical representation of data is effective way of representation because 

world is compositional (images have a lot of local structure, complex images 

are formed by combinations of small parts (edges, gradients) that are 

represented by some random combination of pixels). When attacking 

problems such as image recognition, it helps to use a system that 

understands not just individual pixels, but also increasingly more complex 

concepts: from edges to simple geometric shapes, all the way up through 
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complex, multi-object scenes. Hierarchical representation allows to learn 

things level-by-level from mimimum elements like image pixels. We can 

learn multiple levels of representation. 

2. Deep architectures can represent some classes of functions more compactly, 

and therefore better performance on fewer examples should be expected. 

3. Concept of Deep learning allows to configure and modify architecture of 

network in any desirable way (it’s possible to change all parameters of 

network: weights, biases, nodes, connections between nodes). 

 

Further plans 

Our goal is to investigate abilities of Deep learning relating to the task of object 

recognition. We will apply different types of deep neural architectures to specific 

tasks and estimate their effectiveness. For practical applicability of Deep learning 

in robotics, a particular attention will be paid to efficient implementations of deep 

learning model on limited computing resources like the ones that are available on 

the robot. 

 

Conclusion 

So we made introduction to Deep learning, gave definition of that term, 

reviewed basics of neural networks as the main concept of Deep learning and 

algorithms used by DL, reviewed an example of deep neural networks and defined 

main advantageous of concept of Deep learning. 

Deep learning has already shown itself as a quite effective technology in the 

areas of computer vision and robotics because of hierarchical structure of deep 

neural networks and their ability to represent any complex nonlinear function. This 
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technology was already successfully applied for solving essential tasks in service 

robotics and it could be applied to solving many other complex tasks. 

The ability to customize deep networks is an important property that makes the 

deep networks so popular and usable in many spheres and makes possible 

emergence of new neural networks architectures. 


