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| Basic Definitions | m

Alphabet

An alphabet is a nonempty, finite set of symbols.
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Alphabet

An alphabet is a nonempty, finite set of symbols.

is an alphabet.
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| Basic Definitions | m

Alphabet

An alphabet is a nonempty, finite set of symbols.

is not an alphabet.
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| Basic Definitions | m

Let X be an alphabet.
e ¢ is a string over ¥.
e If x is string over Sigma and a € ¥, then xa is a string over ¥.

e ¢ denotes empty string that contains no symbols.

Formal Models of Lindenmayer Systems | 6/1



| Basic Definitions | o

Let X be an alphabet.
e ¢ is a string over ¥.

e If x is string over Sigma and a € ¥, then xa is a string over ¥.

e ¢ denotes empty string that contains no symbols.

Consider X = {0, 1}. Then,

&

re
is a string over X.
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| Basic Definitions | o

String
Let X be an alphabet.
e ¢ is a string over .
e If x is string over Sigma and a € ¥, then xa is a string over ¥.

e ¢ denotes empty string that contains no symbols.

Example
Consider X = {0, 1}. Then,

is a string over X.

Formal Models of Lindenmayer Systems |

8/1



| Basic Definitions

| ill

Let X be an alphabet.
e ¢ is a string over .

e If x is string over Sigma and a € ¥, then xa is a string over ¥.

e ¢ denotes empty string that contains no symbols.

Consider X = {0, 1}. Then,

is a string over X.
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| Basic Definitions

Let ¥ is an alphabet.
e ¢ be a string over x.

o If x is string over Sigma and a € ¥, then xa is a string over &

e ¢ denotes empty string that contains no symbols

Example

| ill

Consider X = {0, 1}. Then,
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is a string over Z.
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| Basic Definitions | m

Length of String

Let x be a string over . The length of x, |x|, is defined as follows:
e if x =¢, then |x| =0,
e if Xx=ay...ap then x| = n.
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| Basic Definitions | m

Length of String

Let x be a string over X. The length of x, |x|, is defined as follows:
e if x =¢, then |x| =0,
o if x=ay...ap then |x| = n.

Consider x = 1100.

Formal Models of Lindenmayer Systems | 12/1



| Basic Definitions | m

Length of String

Let x be a string over X. The length of x, |x|, is defined as follows:
o if x =¢, then |x| =0,
o if x=ay...ap then |x| = n.

Consider x = 1100.
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| Basic Definitions | o

Length of String

Let x be a string over X. The length of x, |x|, is defined as follows:
o if x =¢, then |x| =0,
o if x=ay...ap then |x| = n.

Example
Consider x = 1100.
x =1100 M =A

Formal Models of Lindenmayer Systems | 14/1



| Basic Definitions i

Concatenation

Let x and y be two strings over ¥. The concatenation of x and y is a
string xy.
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| Basic Definitions i

Concatenation

Let x and y be two strings over X. The concatenation of x and y is a
string xy.

Let x =110, y = 11 and z = ¢ be three strings.
e Concatenation of x and y is xy = 11011.
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| Basic Definitions i

Concatenation

Let x and y be two strings over X. The concatenation of x and y is a
string xy.

Let x =110, y = 11 and z = ¢ be three strings.
e Concatenation of x and y is xy = 11011.
e Concatenation of y and x is
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| Basic Definitions i

Concatenation

Let x and y be two strings over X. The concatenation of x and y is a
string xy.

Let x =110, y = 11 and z = ¢ be three strings.
e Concatenation of x and y is xy = 11011.
e Concatenation of y and x is yx = 11110.
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| Basic Definitions i

Concatenation

Let x and y be two strings over X. The concatenation of x and y is a
string xy.

Let x =110, y = 11 and z = ¢ be three strings.
e Concatenation of x and y is xy = 11011.
e Concatenation of y and x is yx = 11110.
e Concatenation of x and z is
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| Basic Definitions i

Concatenation

Let x and y be two strings over X. The concatenation of x and y is a
string xy.

Let x =110, y = 11 and z = ¢ be three strings.
e Concatenation of x and y is xy = 11011.
e Concatenation of y and x is yx = 11110.
e Concatenation of x and z is xz =110 = 110 = x.
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| Basic Definitions i

Concatenation

Let x and y be two strings over X. The concatenation of x and y is a
string xy.

Let x =110, y = 11 and z = ¢ be three strings.
e Concatenation of x and y is xy = 11011.
e Concatenation of y and x is yx = 11110.
e Concatenation of x and z is xz =110 = 110 = x.
e Concatenation of zand x is zx =110 =110 = x.

Formal Models of Lindenmayer Systems | 21/1



| Basic Definitions | m

Let ¥* denote the set of all string over alphabet . Every subset
L C ¥* is a language over ¥.

e ¥ is X* without ¢ (Algebraically, ¥+ = ¥* — {¢})
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| Basic Definitions | o

Let ¥* denote the set of all string over alphabet . Every subset
L C ¥* is a language over ¥.

e ¥ T is Y* without £ (Algebraically, X+ = ¥* — {¢})

Example
Consider X = {0, 1}:

........

E*

L =0 is a language over ¥
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| Basic Definitions | o

Let ¥* denote the set of all string over alphabet ¥. Every subset
L C ¥* is a language over ¥.

e YT is T* without  (Algebraically, ¥+ = ¥* — {¢})

Example
Consider X = {0, 1}:

E*

L = {e} is a language over ¥.
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| Basic Definitions | o

Let ¥* denote the set of all string over alphabet ¥. Every subset
L C ¥* is a language over ¥.

e YT is T* without  (Algebraically, ¥+ = ¥* — {¢})

Example
Consider X = {0, 1}:

--------

E*

L={x: |x| =1} is alanguage over X.
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| Basic Definitions | o

Let ¥* denote the set of all string over alphabet . Every subset
L C ¥* is a language over ¥.

e ¥ T is Y* without £ (Algebraically, X+ = ¥* — {¢})

Example
Consider X = {0, 1}:

E*

L =7X*is alanguage over ¥.
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Part Il

OL Systems
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| OL-Systems |
An OL-System is a triple
G=(T,P,w)

where:
T is an alphabet,
P is a set of the form a — x withae T and x € T*,
w is the start string (w € T™).
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| OL—Systems |

OL-System

An OL-System is a triple
G=(T,P,w)

where:
T is an alphabet,
P is asetofthe forma— xwithae T and x € T*,
w is the start string (w € T™).

DOL-System

Any OL-system is a DOL—system (Deterministic OL—system), if there
is exactly one rule a— x € Pforeachae T.
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| OL—Systems |

An OL-System is a triple
G=(T,P,w)

where:
T is an alphabet,
P is asetofthe forma— xwithae T and x € T*,
w is the start string (w € T™).

DOL-System

Any OL-system is a DOL—system (Deterministic OL—system), if there
is exactly one rule a— x € Pforeachae T.

POL—System

Any OL—system is a POL—system (Propagating OL—system), if for each
a—>xeP, x#e.

Formal Models of Lindenmayer Systems | 30/1



| OL—Systems: Derivation Step | w

Derivation step

Let G= (T, P,w) be a OL-system. Let n be a positive integer,
ap,a,...,anc T, X,X,....,xp € T*and a; — x; € P for each
i=1,...,n. Then, aja. . .. a, directly derives x; X2 ... x, in G, written
as aidp...an = Xy Xo ... Xp.
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| OL—Systems: Derivation Step

Derivation step

| ill

Let G= (T, P,w) be a OL-system. Let n be a positive integer,
ap,a,...,anc T, X,X,....,xp € T*and a; — x; € P for each
i=1,...,n. Then, ajax ... a, directly derives x1x2 ... Xp in G, written

as aqas...an = X1Xo...Xp.

Rules: forevery i =1,2,...,n, ai — X;
aq | a m an
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| OL—Systems: Derivation Step

| fll

Derivation step

Let G= (T, P,w) be a OL-system. Let n be a positive integer,
ai,a,...,ancT, X9,X,...., X, € T*and a; — x; € P for each
i=1,...,n. Then, ajax ... a, directly derives x1x2 ... Xp in G, written

as aqas...an = X1Xo...Xp.

Rules: forevery i =1,2,...,n, ai — X;
aq | a n n

713

| Xn!
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| OL—Systems: Sequence of Derivation Steps |

Let G= (T, P,w) be a OL-system and x € T* be a string. G makes
zero—derivation from x to x; in symbols, x =9 x.
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| OL—Systems: Sequence of Derivation Steps |

Let G= (T, P,w) be a OL-system and x € T* be a string. G makes
zero—derivation from x to x; in symbols, x =9 x.

Sequence of Derivation Steps

Let G= (T, P, w) be a OL-system and xo, X1, X2, ..., X, € T*be n+1
stringsand x;_{ = x;in Gforalli=1,2,...,n. Then, G makes n
defivation steps from xg to x,; in symbols, xo =" x,.
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| OL—Systems: Sequence of Derivation Steps |

Let G= (T, P,w) be a OL-system and x € T* be a string. G makes
zero—derivation from x to x; in symbols, x =9 x.

Sequence of Derivation Steps

Let G= (T, P,w) be a OL-system and xo, Xq, Xo,..., X, € T* be n+ 1
stringsand x;_{ = x;in Gforalli=1,2,...,n. Then, G makes n
defivation steps from xg to x,; in symbols, xo =" x,.

Properly Derivation

Let G= (T, P, w) be a OL-system and xy, x, € T* be two strings,
Xo =" Xp in G for some n > 1. Then, xo properly defives x, in G,
written as xg = x,.
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| OL—Systems: Sequence of Derivation Steps |

Let G= (T, P,w) be a OL-system and x € T* be a string. G makes
zero—derivation from x to x; in symbols, x =9 x.

Sequence of Derivation Steps

Let G= (T, P,w) be a OL-system and xo, Xq, Xo,..., X, € T* be n+ 1
stringsand x;_{ = x;in Gforalli=1,2,...,n. Then, G makes n
defivation steps from xg to x,; in symbols, xo =" x,.

Properly Derivation

Let G= (T, P, w) be a OL-system and xy, x, € T* be two strings,
Xo =" X, in G for some n > 1. Then, xo properly defives x;, in G,
written as xg = x,.

Derivation

Let G = (T, P,w) be a OL—system and xp, X, € T* be two strings,
Xo =" X, in G for some n > 0. Then, xo defives x, in G, written as
Xo =" Xp.
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| Language of OL—Systems il

Generated Language

Let G= (T, P, w) be a OL-system. The language generated by G,
L(G), is defined as

L(G)={x: xe T and w =" x}
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| Language of OL—Systems il

Generated Language

Let G= (T, P, w) be a OL-system. The language generated by G,
L(G), is defined as

L(G)={x: xe T and w =" x}

e G=(T,P,w),
o w,x € T,
celfw=...=>...=>x

e then x € L(G);
o otherwise, x ¢ L(G)
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| Length Set |

Let G = (T, P,w) be a OL—system and L(G) be a language
generated by G. Length set of L(G),|L(G)| is defined as

IL(G) ={lx]: x e L(G)}
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| Length Set | il

Let G = (T, P,w) be a OL—system and L(G) be a language
generated by G. Length set of L(G),|L(G)| is defined as

IL(G)| = {Ix| - x € L(G)}

Let G= ({a,b,c},{a— abcc, b — bcc,c — c}, a).

a

IL(G)| = {i?: iis a natural number}
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| Length Set | il

Let G = (T, P,w) be a OL—system and L(G) be a language
generated by G. Length set of L(G),|L(G)| is defined as

IL(G)| = {Ix| - x € L(G)}

Let G= ({a, b, c},{a — abcc,b — bee, ¢ — ¢}, a).

a

IL(G)| = {i?: iis a natural number}
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| Length Set | il

Let G = (T, P,w) be a OL—system and L(G) be a language
generated by G. Length set of L(G),|L(G)| is defined as

IL(G)| = {Ix| - x € L(G)}

Let G= ({a, b, c},{a — abcc,b — bee, ¢ — ¢}, a).

IL(G)| = {i?: iis a natural number}
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| Length Set | il

Let G = (T, P,w) be a OL—system and L(G) be a language
generated by G. Length set of L(G),|L(G)| is defined as

IL(G)| = {Ix| - x € L(G)}

Let G= ({a, b, c},{a — abcc,b — bee, ¢ — ¢}, a).

abccbcc

IL(G)| = {i?: iis a natural number}
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| Example | | n

Length set of L Let G = ({a},{a — aa, a).

Formal Models of Lindenmayer Systems | 45/1



| Example | | n

Length set of L Let G = ({a},{a — aa, a).

a= aa
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| Example | | n

Length set of L Let G = ({a},{a — aa, a).

a = aa = aaaa
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| Example | | n

Length set of L Let G = ({a},{a — aa, a).

a = ada = aaaa = aaaaaaaa
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| Example | | n

Length set of L Let G = ({a},{a — aa, a).

a = da = aada = adaaaaaaa — aaaaaaaaaaaaaaaa
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| Example | | n

Length set of L Let G = ({a},{a — aa, a).
a= aa = aaaa = aaaaaaaa = a2aaaaaaaaaaaaaa = ...

L(G)={&": n>0)}
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| Example | |

Length set of L Let G = ({a},{a — aa, a).
a= aa = aaaa = aaaaaaaa = a2aaaaaaaaaaaaaa = ...

L(G)={&": n>0)}

Let G= ({a,b},{a— b,b— ab}, a).
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| Example | |

Length set of L Let G = ({a},{a — aa, a).
a= aa = aaaa = aaaaaaaa = a2aaaaaaaaaaaaaa = ...

L(G)={&": n>0)}

Let G= ({a,b},{a— b,b— ab}, a).

a=»>b
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| Example | |

Length set of L Let G = ({a},{a — aa, a).
a= aa = aaaa = aaaaaaaa = a2aaaaaaaaaaaaaa = ...

L(G)={&": n>0)}

Let G= ({a,b},{a— b,b— ab}, a).

a= b= ab
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| Example | |

Length set of L Let G = ({a},{a — aa, a).
a= aa = aaaa = aaaaaaaa = a2aaaaaaaaaaaaaa = ...

L(G)={&": n>0)}

Let G= ({a,b},{a— b,b— ab}, a).

a= b= ab= bab
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| Example | |

Length set of L Let G = ({a},{a — aa, a).
a= aa = aaaa = aaaaaaaa = a2aaaaaaaaaaaaaa = ...

L(G)={&": n>0)}

Let G= ({a,b},{a— b,b— ab}, a).

a= b= ab = bab = abbab
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| Example | |

Length set of L Let G = ({a},{a — aa, a).
a= aa = aaaa = aaaaaaaa = a2aaaaaaaaaaaaaa = ...

L(G)={&": n>0)}

Let G= ({a,b},{a— b,b— ab}, a).
a—= b= ab= bab = abbab = ...

IL(G) =
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| Example | |

Length set of L Let G = ({a},{a — aa, a).
a= aa = aaaa = aaaaaaaa = a2aaaaaaaaaaaaaa = ...
L(G)={a": n>0}
Let G= ({a,b},{a— b,b— ab}, a).
a= b= ab= bab= abbab= ...

|[L(G)| = {i: i>1is a Fibonacci number}
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| Red Alga | n

G= ({1 ) 27 37 4) Sa 6) 7a 87 (a )7 #7 O}a Pa 1) where P contains:

1 |2] 3 | 4 |5]6] 7 [8](])[#]0
2#3 |2 [ 2#4 [ 504 |6 |7 |8(1) 8| (|)|#]0
1
(...) branch

8 branch position
0 oblique wall

# vertical wall
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| Red Alga | n

G= ({1 ) 27 37 4) Sa 6) 7a 87 (a )7 #7 O}a Pa 1) where P contains:

1 |2] 3 | 4 |5]6] 7 [8](])[#]0
2#3 |2 [ 2#4 [ 504 |6 |7 |8(1) 8| (|)|#]0
273
(...) branch

8 branch position
0 oblique wall

# vertical wall
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| Red Alga | n

G= ({1 ) 27 37 4) Sa 6) 7a 87 (a )7 #7 O}a Pa 1) where P contains:

1 |2] 3 | 4 |5]6] 7 [8](])[#]0
2#3 |2 [ 2#4 [ 504 |6 |7 |8(1) 8| (|)|#]0
27274

(...) branch

8 branch position
0 oblique wall

# vertical wall
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| Red Alga | n

G= ({1 ) 27 37 4) Sa 6) 7a 87 (a )7 #7 O}a Pa 1) where P contains:

L [2] 3 | 4[5]6] 7 [8[([)[#]0
2#3 |2 [ 2#4 [ 504 |6 |7 |8(1) 8| (|)|#]0
2H#24504

(...) branch

8 branch position
0 oblique wall

# vertical wall
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| Red Alga | n

G= ({1 ) 27 37 4) Sa 6) 7a 87 (a )7 #7 O}a Pa 1) where P contains:

L [2] 3 | 4[5]6] 7 [8[([)[#]0
2#3 |2 [ 2#4 [ 504 |6 |7 |8(1) 8| (|)|#]0
242460504 [2]2]6/5\4]

(...) branch

8 branch position
0 oblique wall

# vertical wall
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| Red Alga | n

G= ({1 ) 27 37 4) Sa 6) 7a 87 (a )7 #7 O}a Pa 1) where P contains:

1 |2] 3 |4 |5]6] 7 [8[(|)|#]0
2#3 |2 [ 2#4 [ 504 |6 |7 |8(1) 8| (|)|#]0
24247060504 [2]12]7/6\5/4]
(...) branch

8 branch position
0 oblique wall

# vertical wall
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| Red Alga | n

G= ({1 ) 27 37 4) Sa 6) 7a 87 (a )7 #7 O}a Pa 1) where P contains:

1 |2] 3 | 4 |5]6] 7 [8](])[#]0
2#3 |2 [ 2#4 [ 504 |6 |7 |8(1) 8| (|)|#]0
/17
2#+24+8(1)07060504 [2]2]8/7\6/5\4]
(...) branch

8 branch position
0 oblique wall

# vertical wall
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| Red Alga | n

G= ({1 ) 27 37 4) Sa 6) 7a 87 (a )7 #7 O}a Pa 1) where P contains:

1 |2] 3 | 4 |5]6] 7 [8](])[#]0
2#3 |2 [ 2#4 [ 504 |6 |7 |8(1) 8| (|)|#]0
A7
2424+8(24:3)08(1)07060504 [212]8/8\7/6\5/4]
1
(...) branch

8 branch position
0 oblique wall

# vertical wall
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| OL Systems in Chomsky Hierarchy | w

[ 2(cs) N
[ 2(cF) N

(" 2(REG)

{b*" : n>2} |{b"cd":n>1}
U{a, aa} U{a, aa} {bbb}T U{a, aa

{b*" :n>2} {b"d":n>1} {a}*

-
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Part

Alternatives of L-Systems
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| Alternatives of L-Systems |

EOL—System

An EOL-System is a quadruple
G = (V7 T’ P’ W)

where:
V' is an total alphabet,
T is an alphabetand V C T,
P is a set of the form a —+ x withae€ V and x € V*,
w is the start string (w € V).

Derivation

=, =71, =* — by analogy with OL—systems

Generated Language

Let G=(V, T, P,w) be a EOL—system. The language generated by
G, L(G), isdefined as L(G) = {x: x € T*and w =* x}
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| Alternatives of L—Systems |
An TOL-System is a (n + 2)—tuple
G= (T,P1,P2,...,PH,W)

where:
e n>1,
o foralli=1,2,...,n, Gi= (T, P;,w) is an OL-system.

Derivation

Forx,y € T*,
e x=yinGifx=yin G =(T,P;,w)forsomei=1,2,....n
e =T =*_Dby analogy with OL—systems

Generated Language

Let G= (T, Py, Ps,..., P, w)be a TOL-system. The language
generated by G, L(G), is defined as L(G) = {x: x € T* and w =* x}
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| Alternatives of L-Systems |

ETOL-System

An ETOL-System is a (n+ 3)—-tuple
G=(V,T,P1,Ps,...,Pnw)

where:
e n>1,
o foralli=1,2,...,n, Gi=(V, T, P;,w)is an EOL-system.

Derivation

Forx,y € T*,
e x=yinGifx=yinG =(V,T,P,w)forsomei=1,2....n
e =T =*_Dby analogy with OL—systems

Generated Language

LetG=(V,T,Ps,Ps,...,P, w)beaETOL-system. The language
generated by G, L(G), is defined as L(G) = {x: x € T* and w =* x}
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Part IV

Conclusion
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| Conclusion i

OL—system is natural rewriting system with geometrical property.
Family of OL—system languages are relatively small.

There are some modifications of original OL—systems, such that
EQL, TOL and ETOL systems.

Z(CF) c Z(EOL) c Z(ETOL) C .Z(CS).
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