
Dependent Types In Lambda Cube

Ondřej Peterka
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, 612 66 Brno, Czech Republic
ipeterka@fit.vutbr.cz

Abstract. This paper describes some backgrounds for author’s further study of
dependent types. It covers to certain extent Curry-Howard correspondence, lambda
cube and also tries to explain some basics of the intuitionistic logic - especially from
type theory point of view and differences to classic logic.

Key words: dependent types, Curry-Howard isomorphism, intuitionistic logic,
lambda cube, pure type systems

1. Introduction

This work covers to a certain extent some backgrounds for author’s further
study of dependent types. Chapter 2 contains basic information about two
different special dependent types - Pi-type and Sigma-type. The chapter
also discuss the problem of confusing terminology for these types and tries
to explain why there is so many names for the same types. Also a mention
of dependent record types can be found in this chapter. The chapter 3 gives
explanation of Curry-Howard isomorphism. It starts with some basics of the
intuitionistic logic - especially from type theory point of view and differences,
when compared to classic logic. The text in chapter then covers the main
point of the chapter: Curry-Howard isomorphism as a close relationship
between mathematical proofs on one side and computer programs on the
other side. The last chapter 4 has as the subject matter the Barendregt’s
lambda cube. The chapter gives some explanation on all eight calculus-es
found in the lambda cube and describes how they can be defined using one
set of generic rules.

2. Dependent types

2.1 Motivation

In a Hindley-Milner-typed functional language (e.g. Haskell) we can easily
define dot product 1 of two one-dimensional vectors represented as lists:

dp [] [] = 0
dp (x:s) (y:t) = x * y + dp s t

1 sometimes called inner product

December 14, 2007.

2

The weak point of this definition is apparent: an attempt to multiply two
vectors of different lengths fails, but the failure occurs as late as in runtime.
We would like to have such incorrect application detected sooner, preferably
during the type-checking phase. Thus we want the compatibility of the
lengths of the vectors be encoded in the type of function dp.

This can be achieved in a language with dependent types (e.g. Cayenne):

dp :: (n::Nat) -> Vec n -> Vec n -> Float
dp 0 [] [] = 0.0
dp n (x:s) (y:t) = x * y + dp (n-1) s t

Now Vec is a type constructor dependent on a natural number n and repre-
senting the type of one-dimensional vectors of length n The type of function
dp enforces the desired constraint: both arguments have to have the same
length.

More closely to type theory we could write the type of the dot product
function as follows (for more info about Π notation see the chapter 2.2):

Nat : �, F loat : �, V ec : Nat → � � dp : Πn : Nat.V ec n → V ecn → Float

Similarly we can take advantage of dependent types in matrix multiplica-
tion:

mmul :: (m::Nat) -> (n::Nat) -> (p::Nat)
-> Mat (m,n) -> Mat (n,p) -> Mat (m,p)

Other examples could be found in Pierce [2005], Augustsson [1998] or
Skarvada [2007].

2.2 Standard Types

The notions of standard types stands here for Pi-type (Πx : A.B) and
Sigma-type (Σx : A.B). There is different terminology in use, and it would
be useful to unify it. So called ”Pi-types” and ”Sigma-types” offer us the
power corresponding to the power of quantifiers in the first order and higher
order logic. Particularly, Pi-type is an image of the universal quantifier (∀)
and Sigma-type stands for the existential quantifier (∃). Why and how they
correspond is described for example in Sorensen [1998]. Some explanation
on this (along with explanation of confusing terminology) is given also in
the paragraphs below.

2.2.1 Pi and Sigma types - different terminology

The reason of the fact, that there is different terminology in use for Sigma-
and Pi-types is somewhat unclear. However, the most probable reason of
using different names is the difference between the intuitionistic logic and
the classic logic. The older terms used were ”Dependent function type” and
”Dependent product type” for Pi-type and Sigma-type respectively. These

3

older names are rather more clear and they have their origin in intuitionist
logic.

If we have
∀x :Nat.P (x),

we can read it (intuitionistic way) as ”I have a method for constructing
an object of the type P (x) using any given object x of the type Nat”. So
here, it is more like a generalization of the ordinary function type. And
that is the reason, why the term ”Dependent function type” is used. On
the other hand, if we think in terms of the classic logic, we will read the
formula differently. It is more like saying ”We have an infinite conjunction
P (x1) ∧ P (x2) ∧ P (x3) . . . ”. The conjuction corresponds to the product,
and that is why Pi-type is also called ”dependent product”.

Now, why is Sigma-type named by some authors ”dependent product
type” and by other authors ”dependent sum”. The answer lies again in the
difference between the intuitionist logic and the classic logic. Lets consider
Sigma-type of the form

Σx :Nat.P (x)

Intuitionistic meaning could be described as ”I have an object x of the type
Nat (but unspecified any further) and I know that it has a property P(x)” .
It is given by the nature of the intuitionism, that we need to record both of
these, i.e. the object x and the property P (x). We can do this by creating a
pair. And the pair is nothing else than binary product. So, the Sigma type is
sometimes called ”dependent product type”. On the other hand, considering
the classic logic point of view, we will read the formula of a sigma type as
”we have an infinite disjunction P (x1)∨P (x2)∨P (x3) . . .”. The disjunction
corresponds to the sum types (or variant for Pascal or C++ programmers).
Here we can find the reason for naming Sigma-type ”Dependent sum”.

As the terminology on the dependent stuff is really confusing it could be
a good idea to use just names ”Pi-type” and ”Sigma-type”.

2.3 Record Types

Dependent record types are formalized by Betarte [1998]. Basic info could
be found in Larrson [1998] and Rysavy [2005] Before introducing dependent
record type let us review what is a record type. A record type could be viewed
as a sequence of fields and each field is uniquely denoted using a label. Each
label (field) is also associated with a certain type. The record type could
looks like:

〈L1 : α1, L2 : α2, . . . Ln : αn〉
A dependent record type adds one more property. It is a dependency be-
tween the type of each label Li and types of all preceding labels L1 till
Li−1. In other words the dependent type of a label (field) Li in dependent

4

record type could be seen as a function, which takes all preceding labels as
arguments and creates a type αi. The dependent record type could looks like:

⎛
⎜⎜⎝

L1 : α1()
L2 : α2(L1)
.
Ln : αn(L1, L2, . . . , Ln−1)

⎞
⎟⎟⎠

For example of using a dependent types for forming algebraic structures
(magma, semigroup, . . .) see Skarvada [2007].

3. Curry-Howard correspondence

3.1 Intuitionistic logic

The intuitionism was formerly founded by Luitzen Egbertus Jan Brouwer
as an opponent to the then-prevailing formalism of David Hilbert. The
intuitionism is an approach to mathematics as the constructive mental ac-
tivity of humans and as its name could suggest it gives strong emphasis on
mathematician’s intuition. The intuitionism is sometimes mistaken for con-
structivism, but the intuitionism is just one kind of constructivism. On the
other hand, it could be useful for our purposes not to distuinguish between
these two philosophies. The main reason is that the true of a statement in
the intuitionism philosophy is somewhat ill-defined.

In Brouwer’s original intuitionism, the truth of a statement is taken to
be equivalent to the mathematician being able to intuit the statement. As
one can probably see, this is not very sufficient definition of the truth for
our further study and understanding of the intuitionistic logic. Construc-
tivism, more clearly, asserts that it is necessary to find (or ”construct”) a
mathematical object to prove that it exists. The well known approach of
absurdum proof would not be used in constructivism philosophy: when one
assumes that an object does not exist and derives a contradiction from that
assumption, one still has not found the object and therefore not proved its
existence.

The intuitionistic logic was introduced by Arend Heyting to provide for-
mal basis for the intuitionism and as was partially suggested above, the
name ”constructivist logic” is used interchangebly. In order to understand
the intuitionistic logic (and also the intuitionism as the philosophy) one
has to forget the classical notion of ”true”. The true could be defined as
a possibility of construction of the statement. In other words, ”true” can
be identified with the existence of a proof or ”construction” of the statement.

First good step to begin to understand the intuitionistic logic is to try
to understand the following explanation of propositional connectives in the

5

domain of the intuitionistic logic:

◦ A construction of ϕ1 ∧ ϕ2 consist of a construction of ϕ1 and a con-
struction of ϕ2. (In other words, you need both proofs (constructions),
of ϕ1 statement and ϕ2 statement.)

◦ A construction of ϕ1 ∨ ϕ1 consist of a number i ∈ {1, 2} and ϕi. (In
other words, you need one of proofs (constructions), either of ϕ1 state-
ment or of ϕ2 statement, but you have to know which construction it
is.)

◦ A construction of ϕ1 → ϕ2 could be undesrtand as a function trans-
forming every construction of ϕ1 into a construction of ϕ2. Transform-
ing means a process here, where new proof of ϕ2 is created on the basis
of ϕ2.

◦ There is no construction of False.

If we want to consider first-order logic we will have to add more explana-
tion:

◦ A construction of ∀x.ϕ(x) is a method, which transforms every object
x into a construction ϕ(x). As one can see it is very similar to what
is done in the case of implication connective.

◦ A construction of ∃x.ϕ(x) is a pair consisting of an object x and a
construction ϕ(x). Again somewhat similar to what we have seen in
the case of the conjunction connective. Both similarities are used in
designing and understanding of so called Pure type systems (see Chap-
ter 4)

Another important issue to understand is the meaning of negation. As is
known already from classical logic the negation ¬ϕ could be viewed as an
implication ϕ → False. This means, that if the assumption of ϕ leads to
absurd, we can assert and write ¬ϕ. In the similar way as was described
connective for implication (→) above, here is the meaning of ¬ϕ in the in-
tuitionistic logic:

◦ A construction of ¬ϕ is a method that turns every construction of ϕ
into an non-existent object.

Consider for example classical tautology

¬¬A → A

This tautology is not valid in the intuitionistic logic. The reason is, that we
can not assert A only on the basis of the fact, that we are able to show it is
not true, that A is true. Also the double negation theorem itself is not valid

6

in the intuitionistic logic. Consider a statement ”It is not the case that it’s
not snowing.” The statement is weaker (by intuition), than statement ”It
is snowing”. The latter requires directly a proof (construction) for the fact,
that it is snowing, whereas the former not.

3.1.1 Tertium Non Datur rejection

One of the most interesting as well as the worst understandable difference
between the classic and the intuitionistic logic is the rejection of the law
of Aristotelian law of excluded middle (ϕ1 ∨ ¬ϕ2) in the intuitionistic logic.
In the intiutionistic point of view there is not so much information in the
statement ϕ1 ∨ ¬ϕ2 so it could be acceptable as a theorem. The problem is
that, there are situations, where we can not say exactly which of ϕ1 and ϕ2

is true. Let us see some examples from Sorensen [1998], which could help
us to understand this issue better.

EXAMPLE 1. Lets consider the following statement A:
There is seven 7’s in a row somewhere in the decimal representation of the
number π.

Currently nobody can tell whether the statement is false or true. And it
could happen that nobody ever will. So statement A ∨ ¬A is not tautology
from our point of view, even if we have to admit that one of the options
must hold. However, we do not have a proof of any of them.

EXAMPLE 2. For the next example let us consider a statement B:
There are two irrational numbers x and y, such that xy is rational.

Once again, we know there must be solution and we do even know the

two possibilities. It is either x = y =
√

2 in the case, that
√

2
√

2
is rational

number, or we put x =
√

2
√

2
and y =

√
2. However, the problem is, that

we do not know, which option to choose. So, yet again B∨¬B will not work
as expected.

One may object that these two mentioned examples are based on problems,
which can be solved as early as today or tommorow. However, there will
always be such problems and therefore intuitionstic logic has its part of
meaning.

3.2 Curry-Howard isomorphism

Curry-Howard isomorphism describes the close relationship between math-
ematical proofs on one side and computer programs on the other side.
Curry-Howard isomorphism is just one of the names, which are used for
the description of the mentioned relationship. One can see in the literature

7

(Sorensen [1998], Pierce [2005] or Thompson [1991]) also the name Curry-
Howard correspondence, which reflects the fact, that some mathematicians
are not completely sure, that there the real isomorphism in mathematical
sense of the word exists. Other names are also propositions as types, for-
mulas as types or proofs as programs. Each of these names already gives
advice on what is the correspondence about. The discovery of the isomor-
phism is thanks to the American mathematician Haskell Curry and logician
William Alvin Howard. The isomorphism in mathematical sense of word
could be seen between natural deduction in intuitionistic logic and simply
typed lambda calculus (for fine description of both of these terms see e.g.
Thompson [1991]), where exist bijections between elements of logic and el-
ements of simply typed lambda calculus.

The following described correspondence follows description in Sorensen
[1998] and is only valid when considering intuitionistic logic. However, in
recent days there are more or less successful attempt to find isomorphism
using clasicall logic (some description of this could be found also in Sorensen
[1998]).

◦ logical formulas and types: Logical formulas can be viewed as types
known from the simply typed lambda calculus. Formula A ∧ B can
be seen as a product type, which consists of types A and B, which
themselves are again formulas on the side of logic, and types on the
side of type theory.

◦ connective and type constructor: We could see already one exam-
ple above, namely for conjunction connective. In the similar manner
we can create new type using connective for disjunction. The resulting
type will be a sum (variant) type. The sum type is a type with two
unary constructors. The implication connective has its counterpart in
the arrow type. Any formula A → B, where A and B are also formulas
can be seen in simply typed lambda calculus domain as a function of
type A → B, where A and B are types. The argument of such function
is in this way of type A and the result of the function is of type B.

◦ assumption and term variable: When we write the right side f :
A → B,x : A of the judgement f : A → B,x : A � fx : B we introduce
two assumption - f : A → B and x : A. These are seen in lambda
calculus as variables and in logic as assumptions.

◦ proof and term: Every term could be viewed as a construction
(proof). Term represents an inline form of the natural deduction tree
needed to construct the proof (term). This analogy is the reason why
the Curry-Howard isomorphism is denoted as proofs as programs.

◦ propositional variable and type variable: Briefly it means that
there is correspondence between propositional variables as A, B, etc.
with types A, B, etc. This analogy is the reason why the Curry-Howard
isomorphism is denoted as propositions as types.

8

◦ provability and inhabitation: It basically means, that one can proof
the formula A if there exist a type A, which is inhabited. And vice
versa - asking whether there exists a term of a given type (inhabita-
tion) corresponds to asking if there exists a construction for the given
proposition. One can refer to section 3.3 to find out more about the
inhabitation problem.

◦ construction representing proof tree with redundancy and re-
dex: A redex consists of a constructor immediately surrounded by the
corresponding destructor and in the proof tree it is reflected as appli-
cation of introduction rule immediately followed by the corresponding
elimination rule. On the other hand a term in the normal form corre-
sponds to a proof tree in the normal form.

◦ normalization and reduction: This two names could be used in-
terchangeably. Reduction (or normalization) of a redex corresponds to
normalization (or reduction) of a proof tree.

Defining the correspondence also for first-order predicate logic leads to
using Pi- and Sigma-types (see section 2).

◦ universal quantification and Pi-type: Formula ∀x : A.B(x) cor-
responds under Curry-Howard isomorphism to Pi-type (also called de-
pendent product type) Πx : A.B(x), which is in turn just generalized
arrow type A → B. The only difference is that in a Pi-type we record
dependency between the object of type A and the result object of the
type B (x is not free in B). In the case of the plain arrow type, there
is no need to record dependency - it is just a plain function.

◦ existent quantification and dependent Sigma-type : Formula
with existential quantifier ∃x : A.B(x) corresponds to Sigma-type (also
called dependent sum types) which is written as Σx : A.B(x) and is in
turn generalized form of ordinary product type A × B (if x is not free
in B it is the exact case of an ordinary product type).

3.3 The type inhabitation problem

The inhabitation problem is a problem of finding a λ − expression with a
given type. The answer to this problem is quite interesting and was partially
mentioned in a previous section - there is a λ−expression of particular type
(i.e. the type is inhabited) only if there is a proof for the type corresponding
(by Curry-Howard correspondance) theorem in logic. For inuitionistic logic
the correspondence is actually bijection.

As was already mentioned earlier there are some theorems of the classic
logic, which are not theorems in the inuitionistic logic. What it means from
point of view of the inhabitation problem? Well, for example A∨¬A (the law
of excluded middle) has no corresponding inhabited type - it is not possible

9

to construct λ−expression, which has that type. Certainly, there are many
more theorems from the classic logic, which has no corresponding inhabited
types. Some of them (such as the law of excluded middle or Pierce’s law)
are actually even tautologies in classic logic sense.

Let’s explain on few examples now why formulas which are not theorems
can not correspond to an inhabited type.

EXAMPLE 1a. Consider α → β, which is clearly no theorem. If there
was an λ− expression with such type, it would had to be a function having
argument of type α and producing as a result an object of a type β, which
is not known. β is not known because the function does not receive any
description or proof of it.

EXAMPLE 1b. On the other hand consider identity function α → alpha.
The identity function is valid, because the type α is well known to the func-
tion, so it can be reproduced.

EXAMPLE 2a. Now, it will be more easier to understand, why function
of a type β → (α → α) is inhabited. One can explain it as follows: the
β argument is known and is ignored and an identity function which is a
theorem is produced.

EXAMPLE 2b. On the other hand if we switch sides of the first implica-
tion, we get the non-inhabited type (α → α) → β. The reason is the same
as in the case of α → β.

EXAMPLE 3. In the last example we have a well known tautology A →
¬¬A from classical logic. It is explained why A → ¬¬A is not an inhabited
type:

A → ¬¬A

which is:
A → ((A → False) → False)

and term would be
λa.λx : (A → False).(xa)

but
A ∨ ¬A

can be rewritten to
A ∨ (A → False)

and one has to show that A or (A → False) is true in the empty context
(i.e. without hypotheses).

10

4. Barendregt’s lambda cube

The idea of the lambda cube was firstly introduced by the mathematician
Henk Barendregt (1991). The invention of the lambda cube was partly
motivated by an attempt to explain the structure of the rather complicated
calculus of construction. It is a fine tool for investigation of eight forms of
lambda calculus-es and their generic (typed) unification in the form of pure
type systems (PTS).

4.1 Sorts - terms, types, kinds

To be able to understand the lambda cube, we must first understand the
relationship among terms, types, kinds and sorts. Very nice explanation for
understandning part of the lambda cube could be found in Jones and Meijer
[1997]. Also the book Sorensen [1998] gives comprehensive explanation of the
lambda cube and PTS. Note please, that it is quite difficult to understand
any explanation of the following issues, because of shortage of synonyms for
words as ”type”. In the description of the lambda cube we can identify three
levels: Terms, Types and Kinds. All these three levels are called sorts. So
if we say that an expression is a term, we mean that the expression is of
the sort Term. We will use a similar abbreviation for types and kinds. In
general pure type systems we can have more than just three levels, but in
the lambda cube there are just three used, which can vary and one constant
on the fourth level, �. Similar is the situation in some related programming
languages as Haskell. The fourth level denotes, what we could called the
type of kind, but it is quite confusing because the name of type is already
used for one of our three levels.

So what these levels and their names exactly means? We assert that each
well-formed term has its (belongs to) a type. So this is the first relation
between the levels and is probably easy to understand. For notation of
variables of the sort for Types we use Greek lower case alphabet. So, if we
have expression x : α, we claim x is of the sort Term and is of the type
alpha. The α must be then of the sort Type.

The next relation says, that each well-formed type has its kind. For the
notation of sorts for Types and Kinds we will use marks as is shown in the
table I. So if we have a type variable α : �, we assert that the type α is of
the concrete kind � (regular type). So, if we consider Int : �, we assert that
the concrete type Int is of the kind regular type (�). However, if we have
type constructor Tree : � → �, we say that Tree is of the kind � → � (and
it is not of the kind regular type). It is something, what we could call, let’s
say, kind type constructor , so we could then say, that � → � reflects the
concrete kind type constructors. On the other hand, both Int and Tree is
of the sort Type.

And finally the last relation, if we have � : �, we assert that the � is of
valid kind, which is of the type of �. � is the only possible type of kinds.
Note please, that the word type does not stand here for a sort level.

11

constant description
� constant for sort Type
� constant for sort Kind

Table I: Table of used constants - types, kinds

Concerning the last two relations, � means that the symbol on the left
side represents a type, � says that the symbol on the left of it is some kind
of types (we considered so far only kinds of regular types and binary type
constructors).

Other explanation could be found in Sorensen [1998], Jones and Meijer
[1997] and Pierce [2005].

4.2 λ-cube

Fig. 1: Caption text.

Lambda cube consists of eight λ-calculus-es formation as one can see on
the figure 1. However only four of them are necessary to study to be able
to understand all of them. Moreover, it is enough to have only one set of
generic inference rules to characterize all eight of them (as we will see). The
generic property of the rules is given by using variables s1 and s2. The
variables could range over a set {�,�}, where � and � has meaning of the
sort Type and the sort Kind respectively. Using simple combinatoric we
receive four possible combination as is depicted in the table II. In the table
one can see also the meaning of using such combination for generating a set
of rules.

By incorporating the variables s1 and s2 to the rules, we can generate
appropriate rules for each of the four base calculus-es. By combination of
the resulting four sets of rules we can receive rules for the rest four calcu-

12

s1 � s2 dependency resulting base system enabled feature
� � � terms on terms λ→ typebility
� � � terms on types λ2 polymorphism
� � � types on terms λP dependent types
� � � types on types λω ≡ λ2ω type constructors

Table II: Table of dependencies

denotation used for generating rules name (lang)
λ→ � � � Simply typed
λ2 � � � � � � System F2

λω � � � � � � Unnamed (Haskell)
λω ≡ λ2ω � � � � � � � � � System Fω

λP � � � � � � Dependent types
λP2 � � � � � � � � � Unnamed (Cayenne)
λPω � � � � � � � � � No name

λC ≡ λPω � � � � � � � � � � � � CC (Coq)

Table III: Table of dependencies

luses. The table III contains all calculus-es and their corresponding used
combinations of generated rules.

We will show here as an example only one rule, namely the rule for forming
Pi-type - the one which ensures that the Π type is well formed. The rest of
the rules could be found in Jones and Meijer [1997] or Sorensen [1998].

Now we will go through all four combinations:
◦ � � �(s1 = �, s2 = �): This is the case, when we get the simple typed

lambda calculus (if � � � is the only combination used). This case
means that A and B both must be types. So terms of the Pi-type are
terms, which depends on other terms. Here we can claim that term of
Πx : A.B has laso type A → B. In other words Πx : A.B is equal to
A → B.

◦ � � �(s1 = �, s2 = �): This combination can lead us to the system
F2 and grant us the polymorphism feature of our type system. So A
is a kind and B is a type and a Πx : A.B Pi-type depends on a type x
of the kind A.

Γ � λA : s1 Γ, x : A � B : s2 Γ � s1 � s2

Γ � (Πx : A.B) : s2

Fig. 2: One of the rules - product rule

13

◦ � � �(s1 = �, s2 = �): Here we enter the domain of the value depen-
dent types. We have now A as a type and B as a kind. What does it
mean is, that the checked Pi-type Πx : A.B is a kind (it reflects the
sort of the B). It gives us the power to construct types which depends
on terms.

◦ � � �(s1 = �, s2 = �): Both, A and B, are some kinds (� for example).
Again, the checked product type is a kind, as it again reflects B. The
difference to dependent types is, that the type of the kind Πx : A.B is
now dependent on a type instead of a term. Here we get nothing else
then the possibility of having type constructors.

4.3 Examples for all eight systems of λ-cube

Examples of all eigth systems follow. For each system there is only one
example. If you want more examples see e.g. Sorensen [1998].

◦ Example for λ→: α :�, β,:�, y : β � λx : α.y : Πx : α.β
Here, we have a demonstration of using Pi-type as a generalization of
the plain arrow (function type). As the α and β are well-formed types
and we are on the domain of the simple typed calculus (therefore there
could be no free occurrence of x in β), we could write A → B instead of
using Pi type. One can see it is really just an expression of the simply
typed calculus.

◦ Example for λ2: β : � � (λα : �.λx : α.x)β : β → β
In this example we can see how the polymorphism is possible. We
applied the expression (λα : ∗.λx : α.x) to a type variable β, so the
expression is of the type β → β. Note, that we could also use a Pi-type
instead of the arrow type β → β.

◦ Example for λω: α : � � (λβ : �.β → β)α
In this case, we observe the mechanism, which is known in functional
programming as a type constructor. The expression λβ : �.β → β is a
parametrized type, which could be applied on other type. The expres-
sion has kind � → �. We could use a Pi type instead of the arrow type
again.

◦ Example for λP : α : ∗, p : α → �, x : α � px
Here we have an example on value dependent types. The dependent
part of the example is p : α → �. It maps terms to types. The whole
example shows the construction of a resulting type (which is of the
kind regular type �). One can also see here how important it is to
understand the context as sequence and not as a set - to claim, that p
is well-formed we have to show that α is well-formed type.

14

◦ Example for λω: λα : �.λβ : �.Πγ : �.α → β → γ.
This is rather complicated example, but it is necessary as the λPω is
composition of two already mentioned systems (λω and λ2). We will
start with description from the rear. So, expression Πγ : �.α → β → γ
represents a polymorphic type (notice the γ : �) and is the one, which
could be created using plain λ2 system. As the next we can see, that
we abstract over this expression (λα : �.λβ : � part) and to be able to
do that we need to have properties of the λω.

◦ Example for λP2 : λα : �.λp : α → �.λx : α.λy : (px).y : Πα : �.Πp :
α → �.Πx : α.px → Πx : α.px
In this example one can see a combination of dependent types and
polymorphism. The polymorphism is given by introducing type vari-
able α in the very beginning of the expression. The second abstraction,
p : α → � could be created and used only when value dependent types
(λP system) is employed. As one can see the expression is an identity
function for a variable, which has a polymorphic dependent type as its
type.

◦ Example for λPω: α : � � λp : α → � : (α → �) → (α → �) Stars (�)
on both sides of the type of the expression leads to the fact, that this
expression is creatable only in a system, which is at least as powerful
as λω. However, the expression also contains dependent types (p is a
dependent type).

◦ Example for λC : λα : �.λp : α → �.p : Πα : �.(α → �) → (α → �)
We can see here an easy example of Calculus of constructions. The
lambda expression is an type identity function employing all systems,
which are covered by the lambda cube. In the beginning of the expres-
sion one can see a type variable, which grants us polymorphism (λ2).
As the next, there is a variable p for a dependent type (λP). And as
the last, note the type of the expression (or kind better to say) - on
both sides of the arrow, there is a star �, which gives us a hint, that
also λω system part is employed.

References

Augustsson, Lennart. 1998. Cayenne – a Language with Dependent Types. In Inter-
national Conference on Functional Programming, 239–250.

Betarte, Gustavo. 1998. Dependent Record Types and Formal Abstract Reasoning.
PhD thesis, Chalmers University of Technology.

Jones, Simon Peyton and Meijer, Erik. 1997. Henk: a typed intermediate language.
In Henk: a typed intermediate language.

Larrson, Staffan. 1998. A prolog typechecker for dependent record types. In Workshop
on Types in Compilation.

Pierce, Benjamin C., Editor. 2005. Advanced Topics in Types and Programming
Languages. MIT Press.

15

Rysavy, Ondrej. 2005. Specifying and reasoning in the calculus of objects. PhD thesis,
Brno University of Technology.

Skarvada, Libor. 2007. Can objects have dependent types? In MEMICS 2007.
Sorensen, Morten Heine B. 1998. Lectures on the Curry-Howard isomorphism. un-

known.
Thompson, Simon. 1991. Type Theory and Functional Programming. Addison-Wesley.

