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Frequentist vs. Bayesian

• Frequentist point of view: 
– Probability is the frequency of an event occurring in a 

large (infinite) number of trials
– E.g. When flipping a coin many times, what is the 

proportion of heads?
• Bayesian

– Inferring probabilities for events that have never 
occurred or believes which are not directly observed

– Prior believes are specified in terms of prior 
probabilities

– Taking into account uncertainty (posterior distribution) 
of the estimated parameters or hidden variables in 
our probabilistic model.



Simple classification problem – I.
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• Simple example of learning a probabilistic model for maximum
a-posteriori classification

– to introduce classification as a basic problem from machine learning field
– to understand frequentist’s view of “probability” and to show its limitations as 

compared to the Bayesian approaches
– to refresh basics from probability theory

• The task is to classify an object (grenade or apple) given an 
observation (discrete weight category)

– It is heavy. Is it grenade or apple?

• Lets have 150 observations as training data
– Table of observation counts for each class and weight category



Simple classification problem – II.
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• Lets estimate joint probabilities 
– normalizing the counts by the total count gives Maximum likelihood (ML) 

estimates (see later):
ଵଶ

ଵହ଴
– We need many observations to obtain robust estimates this way.
– How certain can we be about correctness of  these estimates?

• Maximum a-posteriori classification rule:
– given an observation select the most likely class
– i.e. select class with highest posterior probability 

– ML estimate: 
ଵଶ

ଵଶା଺



Sum rule:

Product rule:

Bayes rule:

y

Basic rules of probability theory – I.



Basic rules of probability theory – II.
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• Sum rule:

௫

• Product rule:
heavy



Basic rules of probability theory – III.
• Bayes rule:

• The evidence can be evaluated using the sum and product rules in 
terms of likelihoods and priors:

+ 

• Bayes rule for calculating  the class posterior may not seem very useful 
now, but it will be useful in case continuous valued observations.

Posterior probability Likelihood Prior probability

Evidence



Continuous random variables
• P(x) –probability

• p(x) –probability density function

Sum rule:

p(x)

 x



Classification with continuous 
observations

• Maximum a-posteriori classification rule says: select the more likely class

௖௟௔௦௦
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Multivariate observations

From now, univariate observations will be denoted as and 
multivariate as 


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Estimation of parameters
• Usually we do not know the true distributions 
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Estimation of parameters

unvoiced voicedsilence

… we only see some training examples.

• Let’s decide for some parametric model for 
(e.g. Gaussian distribution) and estimate its parameters from the 
data.

• Here, we are using the frequentist approach: Estimated 

distributions tell us that observation x will be more likely as we see 
more similar observations in the training data.

• From now, lets forget about classes. We will concentrate just on 
estimating probability density functions (e.g. one for each class).
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Gaussian distribution (univariate)

ML estimates of parameters
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Why Gaussian distribution?

• Simple and easy to deal with
– Just a quadratic function in log domain

– Likelihood of observed sequence ଵ ଶ ଷ ே is
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Why Gaussian distribution?
• Naturally occurring

• Central limit theorem: Summing values of many 
independently generated random variables gives 
Gaussian distributed observations

• Examples: 
– Summing outcome of N dices

– Galton’s board
https://www.youtube.com/watch?v=03tx4v0i7MA



Gaussian distribution (multivariate)

ML estimates of parameters
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Maximum likelihood estimation 
of parameters

• Lets choose a parametric distribution with parameters 
– Gaussian distribution with parameters ଶ

• … and lets have some observed training data ଵ ଶ ே , 
which we assume to be i.i.d. generated from this distribution.

• We might obtain maximum likelihood estimates of the parameters 
ெ௅ by maximizing the likelihood of the observed data

• Later, we will see that, under some assumptions, this estimates gives 
us the most likely parameters.



ML estimate for Gaussian
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Categorical distribution

௫

• Also referred to as Discrete distribution

• Special binary case is Bernoulli distribution

or can be simply the index of a category 

ଵ ଶ ஼ - probabilities of the categories are the parameters

• Likelihood of an observed training set ଵ ଶ ே
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where ௖ is number of observations from category . 
– (e.g. the numbers from the table)
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ML estimate for Categorical
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We need to use Lagrange multiplier to enforce the constraint ௞௞


