Bayesian Models in Machine Learning

Lukáš Burget

Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017

Frequentist vs. Bayesian

- Frequentist point of view:
 - Probability is the frequency of an event occurring in a large (infinite) number of trials
 - E.g. When flipping a coin many times, what is the proportion of heads?
- Bayesian
 - Inferring probabilities for events that have never occurred or believes which are not directly observed
 - Prior believes are specified in terms of prior probabilities
 - Taking into account uncertainty (posterior distribution) of the estimated parameters or hidden variables in our probabilistic model.

Simple classification problem – I.

- Simple example of learning a probabilistic model for maximum a-posteriori classification
 - to introduce classification as a basic problem from machine learning field
 - to understand frequentist's view of "probability" and to show its limitations as compared to the Bayesian approaches
 - to refresh basics from probability theory
- The task is to classify an object (*grenade* or *apple*) given an observation (discrete weight category)
 - It is heavy. Is it grenade or apple?
- Lets have 150 observations as training data
 - Table of observation counts for each class and weight category

A
-

1	6	12	15	12	2	2	50
4	22	50	14	6	3	1	100
<i>lightest</i> 0.0 - 0.1	<i>lighter</i> 0.1 - 0.2	<i>light</i> 0.2 - 0.3	<i>middle</i> 0.3 – 0.4	heavy 0.4 – 0.5	<i>heavier</i> 0.5 – 0.6	heaviest 0.6 – 0.7	[kg]

Simple classification problem – II.

- Lets estimate joint probabilities *P*(*class*, *observation*)
 - normalizing the counts by the total count gives Maximum likelihood (ML) estimates (see later): $P(grenade, heavy) = \frac{12}{150}$
 - We need many observations to obtain robust estimates this way.
 - How certain can we be about correctness of these estimates?
- Maximum a-posteriori classification rule:
 - given an observation select the most likely class
 - i.e. select class with highest posterior probability *P*(*class*|*observation*)
 - ML estimate: $P(grenade | heavy) = \frac{12}{12+6}$

$\frac{1}{150}$	$\frac{6}{150}$	$\frac{12}{150}$	$\frac{15}{150}$	$\frac{12}{150}$	$\frac{2}{150}$	$\frac{2}{150}$	$\frac{50}{150}$
$\frac{4}{150}$	$\frac{22}{150}$	$\frac{50}{150}$	$\frac{14}{150}$	$\frac{6}{150}$	$\frac{3}{150}$	$\frac{1}{150}$	$\frac{100}{150}$
<i>lightest</i> 0.0 - 0.1	<i>lighter</i> 0.1 - 0.2	<i>light</i> 0.2 - 0.3	<i>middle</i> 0.3 – 0.4	<i>heavy</i> 0.4 – 0.5	<i>heavier</i> 0.5 – 0.6	heaviest 0.6 – 0.7	[kg]

Basic rules of probability theory – I.

Sum rule:

$$P(x) = \sum_{y} P(x, y)$$

Product rule:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Bayes rule:

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Basic rules of probability theory – II.

• Sum rule:

 $P(heavy) = P(grenade, heavy) + P(apple, heavy) = \frac{12}{150} + \frac{6}{150} = \frac{18}{150}$

$$P(grenade) = \sum_{x} P(grenade, x) = \frac{50}{150}$$

• Product rule:

 $P(grenade, heavy) = P(grenade|heavy)P(heavy) = \frac{12}{18}\frac{18}{150} = \frac{12}{150}$ 12 50 12

 $P(grenade, heavy) = P(heavy|grenade)P(grenade) = \frac{12}{50}\frac{50}{150} = \frac{12}{150}$

$\frac{1}{150}$	$\frac{6}{150}$	$\frac{12}{150}$	$\frac{15}{150}$	$\frac{12}{150}$	$\frac{2}{150}$	$\frac{2}{150}$	$\frac{50}{150}$
$\frac{4}{150}$	$\frac{22}{150}$	$\frac{50}{150}$	$\frac{14}{150}$	$\frac{6}{150}$	$\frac{3}{150}$	$\frac{1}{150}$	$\frac{100}{150}$
<i>lightest</i> 0.0 - 0.1	<i>lighter</i> 0.1 - 0.2	<i>light</i> 0.2 - 0.3	<i>middle</i> 0.3 – 0.4	<i>heavy</i> 0.4 – 0.5	<i>heavier</i> 0.5 – 0.6	heaviest 0.6 – 0.7	[kg]

Basic rules of probability theory – III.

• Bayes rule:

• The evidence can be evaluated using the sum and product rules in terms of likelihoods and priors:

P(heavy) = P(heavy|grenade)P(grenade) + P(heavy|apple)P(apple)

• Bayes rule for calculating the class posterior may not seem very useful now, but it will be useful in case continuous valued observations.

Continuous random variables

- P(x) –probability
- p(x) –probability density function

$$P(x \in (a, b)) = \int_{a}^{b} p(x) dx$$
Sum rule:

$$p(x) = \int p(x, y) dy$$

10

• Maximum a-posteriori classification rule says: select the more likely class

 $P(class|observation) = \frac{p(observation|class)P(class)}{p(observation)}$

$$P(observation) = \sum_{class} p(observation|class)P(class)$$

Multivariate observations

From now, univariate observations will be denoted as x and multivariate as $\mathbf{x} = [x_1, x_2, \dots x_D] = [weight, diameter, \dots]$

Estimation of parameters

• Usually we do not know the true distributions p(x|class)

Estimation of parameters

- ... we only see some training examples.
- Let's decide for some parametric model for p(x|class)
 (e.g. Gaussian distribution) and estimate its parameters from the data.

- Here, we are using the **frequentist approach**: Estimated distributions tell us that observation *x* will be more likely as we see more similar observations in the training data.
- From now, lets forget about classes. We will concentrate just on estimating probability density functions (e.g. one for each class).

Gaussian distribution (univariate)

$$p(x) = \mathcal{N}(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Why Gaussian distribution?

- Simple and easy to deal with
 - Just a quadratic function in log domain

$$\log \mathcal{N}(\mathbf{x};\mu,\sigma^2) = -\frac{\log(2\pi\sigma^2)}{2} - \frac{1}{2\sigma^2}(\mathbf{x}-\mu)^2 = -\frac{1}{2\sigma^2}\mathbf{x}^2 + \frac{\mu}{\sigma^2}\mathbf{x} - \frac{\mu^2}{2\sigma^2} + K$$

- Likelihood of observed sequence $\mathbf{x} = [x_1, x_2, x_3, \dots x_N]$ is

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_n \mathcal{N}(x_n;\mu,\sigma^2) = \exp\left\{\sum_n \log \mathcal{N}(x_n;\mu,\sigma^2)\right\}$$
$$= \exp\left\{-\frac{1}{2\sigma^2}\sum_n x_n^2 + \frac{\mu}{\sigma^2}\sum_n x_n - N\frac{\mu^2}{2\sigma^2} + NK\right\}$$
Sufficient statistics

(second, first and zero order)

Why Gaussian distribution?

- Naturally occurring
- Central limit theorem: Summing values of many independently generated random variables gives Gaussian distributed observations
- Examples:
 - Summing outcome of N dices
 - Galton's board https://www.youtube.com/watch?v=03tx4v0i7MA

Maximum likelihood estimation of parameters

• Lets choose a parametric distribution $p(\mathbf{x}|\boldsymbol{\eta})$ with parameters $\boldsymbol{\eta}$

- Gaussian distribution with parameters μ, σ^2

- ... and lets have some observed training data $\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N]$, which we assume to be i.i.d. generated from this distribution.
- We might obtain maximum likelihood estimates of the parameters $\widehat{\eta}^{ML}$ by maximizing the likelihood of the observed data

$$\widehat{\boldsymbol{\eta}}^{ML} = \arg \max_{\boldsymbol{\eta}} p(\mathbf{X}|\boldsymbol{\eta}) = \arg \max_{\boldsymbol{\eta}} \prod_{n=1}^{N} p(\mathbf{x}_n|\boldsymbol{\eta})$$

• Later, we will see that, under some assumptions, this estimates gives us the most likely parameters.

ML estimate for Gaussian

$$\arg\max_{\mu,\sigma^2} p(\mathbf{x}|\mu,\sigma^2) = \arg\max_{\mu,\sigma^2} \log p(\mathbf{x}|\mu,\sigma^2) = \arg\max_{\mu,\sigma^2} \sum_n \log \mathcal{N}(x_n;\mu,\sigma^2)$$
$$= \arg\max_{\mu,\sigma^2} \left(-\frac{1}{2\sigma^2} \sum_n x_n^2 + \frac{\mu}{\sigma^2} \sum_n x_n - N \frac{\mu^2}{2\sigma^2} - \frac{\log(2\pi)}{2} \right)$$

$$\frac{\partial}{\partial \mu} \log p(\mathbf{x}|\mu, \sigma^2) = \frac{\partial}{\partial \mu} \left(-\frac{1}{2\sigma^2} \sum_n x_n^2 + \frac{\mu}{\sigma^2} \sum_n x_n - N \frac{\mu^2}{2\sigma^2} - \frac{\log(2\pi)}{2} \right)$$
$$= \frac{1}{\sigma^2} \left(\sum_n x_n - N \mu \right) = 0 \quad \Rightarrow \quad \hat{\mu}^{ML} = \frac{1}{N} \sum_n x_n$$

and similarly:
$$\widehat{\sigma^2}^{ML} = \frac{1}{N} \sum_n (x_n - \mu)^2$$

Categorical distribution

4	22	50	14	6	3	1	100
<i>lightest</i> 0.0 - 0.1	<i>lighter</i> 0.1 - 0.2	<i>light</i> 0.2 - 0.3	<i>middle</i> 0.3 – 0.4	<i>heavy</i> 0.4 – 0.5	heavier 0.5 – 0.6	heaviest 0.6 – 0.7	[kg]

$$p(x|\boldsymbol{\pi}) = \operatorname{Cat}(x|\boldsymbol{\pi}) = \pi_x$$

- Also referred to as Discrete distribution
- Special binary case is Bernoulli distribution
- $x \in \{lightest, lighter, light, middle, heavy, heavier, heaviest\}$ or x can be simply the index of a category $\mathbf{x} \in \{1, 2, ..., C\}$
- $\boldsymbol{\pi} = [\pi_1, \pi_2, ..., \pi_C]$ probabilities of the categories are the parameters
- Likelihood of an observed training set $\mathbf{x} = [x_1, x_2, ..., x_N]$

$$P(\mathbf{x}|\boldsymbol{\pi}) = \prod_{n} \operatorname{Cat}(\mathbf{x}_{n}|\boldsymbol{\pi}) = \prod_{n} \pi_{x_{n}} = \prod_{c} \pi_{c}^{m_{c}}$$

where m_c is number of observations from category c.

- (e.g. the numbers from the table)

ML estimate for Categorical

$$\arg \max_{\pi} p(\mathbf{x}|\boldsymbol{\pi}) = \arg \max_{\pi} \log p(\mathbf{x}|\boldsymbol{\pi}) = \arg \max_{\pi} \log \prod_{n=1}^{N} \operatorname{Cat}(x_n|\boldsymbol{\pi})$$
$$= \arg \max_{\pi} \log \prod_{c} \pi_c^{m_c} = \arg \max_{\pi} \sum_{c} m_c \log \pi_c$$

We need to use Lagrange multiplier λ to enforce the constraint $\sum_k \pi_k = 1$

$$\frac{\partial}{\partial \pi_c} \log p(\mathbf{x}|\boldsymbol{\pi}) = \frac{\partial}{\partial \pi_c} \left(\sum_k m_k \log \pi_k - \lambda \left(\sum_k \pi_k - 1 \right) \right) = m_c - \lambda = 0$$
$$\Rightarrow \pi_c = \frac{m_c}{\lambda} = \frac{m_c}{N}$$