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Frequentist vs. Bayesian

* Frequentist point of view:

— Probability is the frequency of an event occurring in a
large (infinite) number of trials

— E.g. When flipping a coin many times, what is the
proportion of heads?

« Bayesian
— Inferring probabilities for events that have never
occurred or believes which are not directly observed

— Prior believes are specified in terms of prior
probabilities

— Taking into account uncertainty (posterior distribution)
of the estimated parameters or hidden variables in
our probabilistic model.



Simple classification problem — |.

« Simple example of learning a probabilistic model for maximum
a-posteriori classification
— to introduce classification as a basic problem from machine learning field

— to understand frequentist’'s view of “probability” and to show its limitations as
compared to the Bayesian approaches

— to refresh basics from probability theory

« The task is to classify an object (grenade or apple) given an
observation (discrete weight category)
— ltis heavy. Is it grenade or apple?

« Lets have 150 observations as training data
— Table of observation counts for each class and weight category
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Simple classification problem — |l.

» Lets estimate joint probabilities P(class, observation)
— normalizing the counts by the total count gives Maximum likelihood (ML)
estimates (see later): P(grenade, heavy) = %
— We need many observations to obtain robust estimates this way.
— How certain can we be about correctness of these estimates?

« Maximum a-posteriori classification rule:

— given an observation select the most likely class
— i.e. select class with highest posterior probability P(class|observation)

— ML estimate: P(grenade|heavy) = ——
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Basic rules of probability theory — I.

Sum rule:

PC) = ) PC0Y)

Product rule:
P(x,y) = P(x|y)P(y) = P(y|x)P(x)

Bayes rule:
P(x|y)P(y)

P(x)

P(y|x) =



Basic rules of probability theory — |l.

«  Sum rule:
P(heavy) = P(grenade, heavy) + P(apple, heavy) = e + 150 = 180

50
P(grenade) = Z P(grenade, x) = —
x 150

 Product rule:
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P(grenade, heavy) = P(grenade|heavy)P (heavy) = 187150 = 150
12 50 12

P(grenade, heavy) = P(heavy|grenade)P(grenade) = 20150 = 150
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Basic rules of probability theory — IlI.

 Bayes rule:

Posterior probability Likelihood Prior probability

N g N

P(heavy|grenade)P(grenade
P(grenade|heavy) = ( Y19 )P(g )

 The evidence can be evaluated using the sum and product rules in
terms of likelihoods and priors:

P(heavy) = P(heavy|grenade)P(grenade) + P(heavy|apple)P(apple)

 Bayes rule for calculating the class posterior may not seem very useful
now, but it will be useful in case continuous valued observations.



Continuous random variables

* P(x) —probability
* p(x) —probability density function

b
P(x € (a,b)) = J p(x) dx

Sum rule:

p(x) = fp(x,y) dy




Classification with continuous
observations

grenade apple

> p(observation|class)

> observation (e.g.weight)

« Maximum a-posteriori classification rule says: select the more likely class

p(observation|class)P(class)

P(cl b ti =
(class|observation) > (observation)

P(observation) = Z p(observation|class)P(class)

class



Multivariate observations

From now, univariate observations will be denoted as x and
multivariate as X = [xq, X5, ... Xp| = [weight, diameter, ...]

- p(X|class)




Estimation of parameters

» Usually we do not know the true distributions p(x|class)

> p(x|class)




> p(x|class)

Estimation of parameters

... we only see some training examples.

Let’s decide for some parametric model for p(x|class)
(e.g. Gaussian distribution) and estimate its parameters from the
data.

silence unvoiced voiced

> X

* Here, we are using the frequentist approach: Estimated
distributions tell us that observation X will be more likely as we see
more similar observations in the training data.

« From now, lets forget about classes. We will concentrate just on
estimating probability density functions (e.g. one for each class).



Gaussian distribution (univariate)

p(x) = N(x;p,0%) =
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Why Gaussian distribution”?

« Simple and easy to deal with

— Just a quadratic function in Iog domain
log(2ma?) , 1 u u?
—u)? = — —x——+K
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— Likelihood of observed sequence x = [xq, x5, X3, ... Xy] iS

p(x|p, o 2)—1_[N(xn,u, 2)—eXp{zlogN(xn,u, %)

:‘*pr 2022 Z ‘Nsz*NK

Sufficient statistics
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Why Gaussian distribution?

Naturally occurring

Central limit theorem: Summing values of many
independently generated random variables gives
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Maximum likelihood estimation
of parameters

Lets choose a parametric distribution p(x|n) with parameters
— Gaussian distribution with parameters p, o2

... and lets have some observed training data X = [xq, X5, ..., Xy,
which we assume to be i.i.d. generated from this distribution.

We might obtain maximum likelihood estimates of the parameters
7ML by maximizing the likelihood of the observed data

N
Nt = arg maxp(X|n) = arg max 1_[ p(x,|n)
1 T h=1

Later, we will see that, under some assumptions, this estimates gives
us the most likely parameters.



ML estimate for Gaussian

arg max p(x|u, 02) = arg max log p(x|u, 0%) = arg maxz log N (x,,; , 02)
n
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Categorical distribution
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p(x|m) = Cat(x|m) = m,

* Also referred to as Discrete distribution
« Special binary case is Bernoulli distribution

e x € {lightest,lighter, light, middle, heavy, heavier, heaviest}
or x can be simply the index of a category x € {1,2, ..., C}

e m=|m,m,,.., Tc] - probabilities of the categories are the parameters
« Likelihood of an observed training set x = [x4, x5, ..

P(Xln)—l_[Cat(xnln) ann ﬂ me

where m. is number of observations from category C.
— (e.g. the numbers from the table)



ML estimate for Categorical

N
arg max p(x|m) = arg max log p(x|m) = arg max log 1_[ Cat(x,|m)
T (4 [ _
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We need to use Lagrange multiplier A to enforce the constraint ), 7, = 1
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