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Bayesian Networks
• The graph corresponds to a particular 

factorization of a joint probability distribution over 
a set of random variables

• Nodes are random variables, but the graph does 
not say what are the distributions of the variables

• The graph represents a set of distributions that 
conform to the factorization

• It is recipe for building more complex models out 
of simpler probability distributions

• Describes the generative process

• Generally no closed form solutions for 
inferences in such models



Conditional independence
• Bayesian Networks allow us to see conditional independence 

properties.
• Blue nodes corresponds to observed random variables and empty 

nodes to latent (or hidden) random variables

But the opposite is true for:



Gaussian Mixture Model (GMM)

where

• We can see the sum above just as a function defining 
the shape of the probability density function

• or …
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Multivariate GMM

where

• We can see the sum above just as a function defining 
the shape of the probability density function

• or …



Gaussian Mixture Model

• or we can see it as a generative probabilistic model described by 
Bayesian network with Categorical latent random variable identifying 
Gaussian distribution generating the observation 

• Observations are assumed to be generated as follows:
– randomly select Gaussian component according probabilities
– generate observation form the selected Gaussian distribution

• To evaluate , we have to marginalize out 
• No close form solution for training



Bayesian Networks for GMM

• Multiple observations:

z1 z2 zN-1 zN

x1 x2 xN-1 xN
or

zi

xi



Training GMM –Viterbi training
• Intuitive and Approximate iterative algorithm for training GMM parameters.

• Using current model parameters, let 
Gaussians classify data as if the 
Gaussians were different classes (Even 
though all the data corresponds to only 
one class modeled by the GMM)

• Re-estimate parameters of 
Gaussians using the data assigned 
to them in the previous step.
New weights will be proportional to 
the number of  data points assigned 
to the Gaussians.

• Repeat the previous two steps until 
the algorithm converges.



Training GMM – EM algorithm
• Expectation Maximization is a general tool applicable do different 

generative models with latent (hidden) variables.
• Here, we only see the result of its application to the problem of re-estimating 

GMM parameters.
• It guarantees to increase the likelihood of training data in every iteration, 

however, it does not guarantee to find the global optimum.
• The algorithm is very similar to the Viterbi training presented above. 

However,  instead of hard alignments of frames to Gaussian components, 
the posterior probabilities ௜ (calculated given the old model) are used 
as soft weights. Parameters ௖, ௖

ଶ are then calculated using a weighted 
average.
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GMM to be learned



EM algorithm
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Expectation maximization algorithm

• where is any distribution over the latent variable

• Kullback-Leibler divergence ୏୐ measures “unsimilarity” 
between two distributions 

௄௅ and ୏୐

Evidence lower bound (ELBO) 

is (non-negative) Entropy of distribution 

is called auxiliary function. 



Expectation maximization algorithm

• We aim to find parameters that maximize

• E-step: 

– makes the ୏୐ term 

– makes 

• M-step:

௄௅ increases as deviates from 

does not change for fixed 

increases like 

increases more than 



Expectation maximization algorithm

E-step: ௢௟ௗ

M-step:
௡௘௪

𝜼
𝑞 𝐙 , 𝜼



Expectation maximization algorithm
and will be easy to optimize (e.g. quadratic function) 

compared to 

𝜼௢௟ௗ  𝜼௡௘௪



EM for GMM
• Now, we aim to train parameters ௭ ௭

ଶ
௭ of Gaussian 

Mixture model

• Given training observations ଵ ଶ ே we search for ML 
estimate of that maximizes log likelihood of the training data.

• Direct maximization of this objective function w.r.t. is intractable. 

• We will use EM algorithm, where we maximize the auxiliary function 
which is (for simplicity) sum of per-observation auxiliary functions

• Again, in M-step                    has to increase more than 



EM for GMM – E-step

௡௖ is the so called responsibility of Gaussian component for 
observation .

• It is the probability for an observation being generated from 
component



EM for GMM – M-step

• In M-step, the auxiliary function is maximized w.r.t. all GMM parameters



EM for GMM –update of means

• Update for component mean means:

• Update for variances can be derived similarly.



Flashback: ML estimate for Gaussian
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EM for GMM –update of weights
• Weights ௖ need to sum up to one. When updating weights, 

Lagrange multiplier is used to enforce this constraint.



Factorization of the auxiliary 
function more formally

• Before, we have introduced the per-observation auxiliary functions

• We can show that such factorization comes naturally even if we directly 
write the auxiliary function as defined for the EM algorithm:

𝐙

௡

௡ ௡

௡𝐙

௡ ௡

௡௖

• See the next slide for proof



Factorization over components
Example with only 3 fames (i.e ଵ ଶ ଷ )



EM for continuous latent variable

• Same equations, where sums over the latent variable 
are simply replaced by integrals



Same speaker hypothesis likelihood:

Different speaker hyp. Likelihood:

Verification score based on Bayesian 
model comparison: 

PLDA model for speaker verification

- distribution of speaker means

- within class (channel) variability


