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Bayesian Networks

The graph corresponds to a particular
factorization of a joint probability distribution over
a set of random variables

Nodes are random variables, but the graph does
not say what are the distributions of the variables

The graph represents a set of distributions that
conform to the factorization

It is recipe for building more complex models out
of simpler probability distributions

Describes the generative process

Generally no closed form solutions for
inferences in such models
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Conditional independence

« Bayesian Networks allow us to see conditional independence
properties.

« Blue nodes corresponds to observed random variables and empty
nodes to latent (or hidden) random variables
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Gaussian Mixture Model (GMM)
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* We can see the sum above just as a function defining
the shape of the probability density function
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Multivariate GMM

p(x|n) = ZCN (X pe, 2o,
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We can see the sum above just as a function defining
the shape of the probability density function

or...



Gaussian Mixture Model

p() = ) p(l2P(2) = ZCN(’“ e, 02)Cat(z = c|m)

or we can see it as a generative probabilistic model described by
Bayesian network with Categorical latent random variable z identifying
Gaussian distribution generating the observation x
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Observations are assumed to be generated as follows:

— randomly select Gaussian component according probabilities P(z)
— generate observation x form the selected Gaussian distribution
To evaluate p(x), we have to marginalize out z

No close form solution for training

p(x,z) = p(x|z)P(2)



Bayesian Networks for GMM

* Multiple observations:
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Training GMM —Viterbi training
Intuitive and Approximate iterative algorithm for training GMM parameters.

Using current model parameters, let
Gaussians classify data as ifthe
Gaussians were different classes (Even P
though all the data corresponds to only
one class modeled by the GMM)

Re-estimate parameters of
Gaussians using the data assigned
to them in the previous step.

New weights will be proportional to
the number of data points assigned
to the Gaussians.

Repeat the previous two steps until
the algorithm converges.
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Training GMM — EM algorithm

Expectation Maximization is a general tool applicable do different
generative models with latent (hidden) variables.

Here, we only see the result of its application to the problem of re-estimating
GMM parameters.

It guarantees to increase the likelihood of training data in every iteration,
however, it does not guarantee to find the global optimum.

The algorithm is very similar to the Viterbi training presented above.
However, instead of hard alignments of frames to Gaussian components,
the posterlor probabilities P(c|x; ) (calculated given the old model) are used
as soft weights. Parameters u.,02 are then calculated using a weighted
average.
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GMM to be learned
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EM algorithm
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EM algorithm
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EM algorithm
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EM algorithm
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EM algorithm
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Expectation maximization algorithm

p(X.Z|n) q p(X.Z|n)q(Z)
Inp(X|n) = q(Z q(Z 111
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« where q(Z) is any distribution over the latent variable

« Kullback-Leibler divergence Dk;.(q||p) measures “unsimilarity”
between two distributions g, p

* Dgr(qllp) =2 0and D (qllp) =0 q=p

e = Evidence lower bound (ELBO) L(q(Z),n) < p(X|n)
e H(q(Z)) is (non-negative) Entropy of distribution q(Z)
e Q(q(Z),n) is called auxiliary function.



Expectation maximization algorithm

Inp(X|n) = Qe(Z),n) + H(¢(Z)) +Dx 1 (¢(Z)||p(Z|X,n))
L(q(Z).m)

« We aim to find parameters n that maximize In p(X|n)
» E-step: q(Z) = P(Z|X,n°%)

— makes the Dgi.(q||p) term 0

— makes L(q(Z),n) = Inp(X[n)

* M-step: """ = argmax Q(q(Z),n)
n
- Dy (qllp) increases as P(X|Z,n)deviates from q(Z)

- H(q(Z)) does not change for fixed q(Z)

- L(q(Z),n) increases like Q(q(Z),n)
- Inp(X|n) increases more than Q(q(Z),n)



Expectation maximization algorithm

Inp(X|n) = Qq¢(Z).m) + H(q(Z)) +Dx 1 (¢(Z)||p(Z]X, n))

“
L(q(Z).m)
KL(q||p)
L(q,0) Inp(X|0)
KL(q||p
1 E-step: q(Z) := P(Z|X, n°%) (allp) [
KL(q|lp) =0 -.__.___1______ -
M-step: =
N = argmax Q(q(Z),n)
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Expectation maximization algorithm

Q(q(Z),m) and L(q(Z),n) will be easy to optimize (e.g. quadratic function)
compared to In p(X|n)

Inp(X10)
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EM for GMM

Now, we aim to train parameters n = {u,, 62, ,} of Gaussian
Mixture model

- Zp(.z'| ZN (x; pe, 0, )Cat(z = "’77)

Given training observations x = [x4, x5, ..., x;y] We search for ML
estimate of n that maximizes log likelihood of the training data.

In p(x Z Inplan) = Z anN(.rn,: oy rrg) + In 7.
n L c

Direct maximization of this objective function w.r.t. n is intractable.

We will use EM algorithm, where we maximize the auxiliary function
which is (for simplicity) sum of per-observation auxiliary functions

QQ(q(z Z Qn(q(zn), M)

Again, in M-step Zhlp (rn) has to Increase more than Z Qn(q(zn).m)

T n



EM for GMM — E-step

q(zn) = P(zn|x old)

p(n|zn, 7% P(zn
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Ync 1S the so called responsibility of Gaussian component z for
observation n.

It is the probability for an observation n being generated from
component ¢



EM for GMM — M-step

(2((1(Z) T]) = Z (-271,((](:71)' 77)
n
— Z Z q(zn) In p(xy,. 571“77)
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* In M-step, the auxiliary function is maximized w.r.t. all GMM parameters



EM for GMM —update of means

Update for component mean means:
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Update for variances can be derived similarly.



Flashback: ML estimate for Gaussian
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EM for GMM —update of weights

* Weights . need to sum up to one. When updating weights,
Lagrange multiplier A is used to enforce this constraint.

_ Zn, Yne _ Zn Tne
A Zk Zn Ynk




Factorization of the auxiliary
function more formally

Before, we have introduced the per-observation auxiliary functions

Q(q(z).m) =Y _ Qulq(zn).m)

n
— Z Z q(zn) In p(zn, zn|n)
n

~
A~

n

We can show that such factorization comes naturally even if we directly
write the auxiliary function as defined for the EM algorithm:

0(q@.m) = ) q@ Inp(X,Zln)

Z

= | [a@ ) pGnzatir = D) a@pCen,zam)
Z n n c n

See the next slide for proof



Factorization over components

Example with only 3 fames (i.e z = [z4, Z,, Z3])

ZH(](’:”)ZJ“(:'H) =

3> a(z)alz2)a(za) f(z1) + D D> a(z1)a(z2)q(z3) f(z2) + D> > > a(z1)a(z2)q(z3) f(23) =

=y, 29 =3 =1 "3 = =y =g =g

> q(z1)f(z1) D _a(z2) D alz3)+ > _a(z1) D _a(z2)f(22) D _a(z3)+ > _a(z1) D> _q(z2) > _ q(z3)f(23) =

.‘.‘.1 22 z3 ;’1 :2 z3 21 32 z3

L 7 N i N s - > “ 7 o 7
~ ~ -~ ~ ~ ~

1 1 1 1

D a(z1)f(z 1>+Zq( 2)f(z2) + > q(z3)f(z3) =

o | “3

Cv

&
Zq(l—c)f(l—c)+2q(>—t)f z3 = c) Z z3 =c¢)f(z3 = ¢) =

c=1

C
Z Z q(zn = c)f(zn = )
c=1 mn



EM for continuous latent variable

e Same equations, where sums over the latent variable Z
are simply replaced by integrals

Inp(X|n) = /q(Z)lllp(X.Zh})(lZ— /q(Z)hlq(Z)(lZ—/q(Z)hl 1’(Z|()Z(577) dZ
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PLDA model for speaker verification

p(r) = N(r|p, X,.) - distribution of speaker means
|

p(ilr) = N(|r,Zwe) - within class (channel) variability

Same speaker hypothesis likelihood:
p(iy, i,1H5) = [ p(iy I)p(z[D)p(r)dr

Different speaker hyp. Likelihood:
p(iy, iz|Hy) = p(i)p(iz)
p(i) = | p(r)p(r)dr

Verification score based on Bayesian
model comparison:

s = log p(iy, i |H;) ° .
p(iy, iz|Hqg)




