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Bayesian Networks
• The graph corresponds to a particular 

factorization of a joint probability distribution over 
a set of random variables

• Nodes are random variables, but the graph does 
not say what are the distributions of the variables

• The graph represents a set of distributions that 
conform to the factorization

• It is recipe for building more complex models out 
of simpler probability distributions

• Describes the generative process

• Generally no closed form solutions for 
inferences in such models



Conditional independence
• Bayesian Networks allow us to see conditional independence 

properties.
• Blue nodes corresponds to observed random variables and empty 

nodes to latent (or hidden) random variables

But the opposite is true for:



Gaussian Mixture Model (GMM)

where

• We can see the sum above just as a function defining 
the shape of the probability density function

• or …
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Multivariate GMM

where

• We can see the sum above just as a function defining 
the shape of the probability density function

• or …



Gaussian Mixture Model

• or we can see it as a generative probabilistic model described by 
Bayesian network with Categorical latent random variable identifying 
Gaussian distribution generating the observation 

• Observations are assumed to be generated as follows:
– randomly select Gaussian component according probabilities
– generate observation form the selected Gaussian distribution

• To evaluate , we have to marginalize out 
• No close form solution for training



Bayesian Networks for GMM

• Multiple observations:

z1 z2 zN-1 zN

x1 x2 xN-1 xN
or

zi

xi



Training GMM –Viterbi training
• Intuitive and Approximate iterative algorithm for training GMM parameters.

• Using current model parameters, let 
Gaussians classify data as if the 
Gaussians were different classes (Even 
though all the data corresponds to only 
one class modeled by the GMM)

• Re-estimate parameters of 
Gaussians using the data assigned 
to them in the previous step.
New weights will be proportional to 
the number of  data points assigned 
to the Gaussians.

• Repeat the previous two steps until 
the algorithm converges.



Training GMM – EM algorithm
• Expectation Maximization is a general tool applicable do different 

generative models with latent (hidden) variables.
• Here, we only see the result of its application to the problem of re-estimating 

GMM parameters.
• It guarantees to increase the likelihood of training data in every iteration, 

however, it does not guarantee to find the global optimum.
• The algorithm is very similar to the Viterbi training presented above. 

However,  instead of hard alignments of frames to Gaussian components, 
the posterior probabilities (calculated given the old model) are used 
as soft weights. Parameters , are then calculated using a weighted 
average.
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GMM to be learned



EM algorithm
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Expectation maximization algorithm

• where is any distribution over the latent variable

• Kullback-Leibler divergence measures “unsimilarity” 
between two distributions 

and

Evidence lower bound (ELBO) 

is (non-negative) Entropy of distribution 

is called auxiliary function. 



Expectation maximization algorithm

• We aim to find parameters that maximize

• E-step: 

– makes the term 

– makes 

• M-step:

increases as deviates from 

does not change for fixed 

increases like 

increases more than 



Expectation maximization algorithm

E-step: 

M-step:

𝜼
𝑞 𝐙 , 𝜼



Expectation maximization algorithm
and will be easy to optimize (e.g. quadratic function) 

compared to 

𝜼   𝜼



EM for GMM
• Now, we aim to train parameters of Gaussian 

Mixture model

• Given training observations we search for ML 
estimate of that maximizes log likelihood of the training data.

• Direct maximization of this objective function w.r.t. is intractable. 

• We will use EM algorithm, where we maximize the auxiliary function 
which is (for simplicity) sum of per-observation auxiliary functions

• Again, in M-step                    has to increase more than 



EM for GMM – E-step

is the so called responsibility of Gaussian component for 
observation .

• It is the probability for an observation being generated from 
component



EM for GMM – M-step

• In M-step, the auxiliary function is maximized w.r.t. all GMM parameters



EM for GMM –update of means

• Update for component mean means:

• Update for variances can be derived similarly.



Flashback: ML estimate for Gaussian

, ,

and similarly:



EM for GMM –update of weights
• Weights need to sum up to one. When updating weights, 

Lagrange multiplier is used to enforce this constraint.



Factorization of the auxiliary 
function more formally

• Before, we have introduced the per-observation auxiliary functions

• We can show that such factorization comes naturally even if we directly 
write the auxiliary function as defined for the EM algorithm:

𝐙

𝐙

• See the next slide for proof



Factorization over components
Example with only 3 fames (i.e )



EM for continuous latent variable

• Same equations, where sums over the latent variable 
are simply replaced by integrals



Same speaker hypothesis likelihood:

Different speaker hyp. Likelihood:

Verification score based on Bayesian 
model comparison: 

PLDA model for speaker verification

- distribution of speaker means

- within class (channel) variability


