Bayesian Models in Machine Learning

Lukáš Burget

BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Escuela de Ciencias Informáticas 2017
Buenos Aires, July 24-29 2017

Frequentist vs. Bayesian

- Frequentist point of view:
- Probability is the frequency of an event occurring in a large (infinite) number of trials
- E.g. When flipping a coin many times, what is the proportion of heads?
- Bayesian
- Inferring probabilities for events that have never occurred or believes which are not directly observed
- Prior believes are specified in terms of prior probabilities
- Taking into account uncertainty (posterior distribution) of the estimated parameters or hidden variables in our probabilistic model.

Coin flipping example

$$
\begin{aligned}
& P(\text { head } \mid \mu)=\mu \quad P(\text { tail } \mid \mu)=1-\mu \\
& \mathbf{x}=\left[x_{1}, x_{2}, x_{3}, \ldots x_{N}\right]=[\text { taill, head, head, ...tail }]
\end{aligned}
$$

- Lets flip the coin $\mathrm{N}=1000$ times getting $\mathrm{H}=750$ heads and $\mathrm{T}=250$ tails.
- What is μ ? Intuitive (and also ML) estimate is $750 / 1000=0.75$.
- Given some μ, we can calculate probability (likelihood) of X

$$
P(\mathbf{x} \mid \mu)=\prod_{i} P\left(x_{i} \mid \mu\right)=\mu^{H}(1-\mu)^{T}
$$

- Now lets express our ignorant prior belief about μ as:

$$
p(\mu)=\mathcal{U}(0,1)
$$

Then using Bayes rule, we obtain probability density function for μ :

$$
p(\mu \mid \mathbf{x})=\frac{P(\mathbf{x} \mid \mu) p(\mu)}{P(\mathbf{x})}=\frac{\prod_{i} P\left(x_{i} \mid \mu\right) \cdot 1}{P(\mathbf{x})} \propto \mu^{H}(1-\mu)^{T}
$$

Coin flipping example (cont.)

$$
\begin{aligned}
& \mathrm{N}=1000, \mathrm{H}=750, \mathrm{~T}=250 \\
& p(\mu \mid \mathbf{x}) \propto \mu^{H}(1-\mu)^{T}
\end{aligned}
$$

- Posterior distribution is our new belief about μ
- Flipping the coin once more, what is the probability of head?

$$
\begin{aligned}
p(\text { head } \mid \mathbf{x}) & =\int p(\text { head, } \mu \mid \mathbf{x}) \mathrm{d} \mu=\int P(\text { head } \mid \mu, \mathrm{x}) p(\mu \mid \mathbf{x}) \mathrm{d} \mu \\
& =(H+1) /(N+2)=751 / 1002=0.7495
\end{aligned}
$$

- Note that we never computed value of μ
- Rule of succession used by Pierre-Simon Laplace to estimate that the probability of sun rising tomorrow is $(5000 * 365.25+1) /(5000 * 365.25+2)$

Distributions from our example

- Likelihood of observed data $P(X \mid \mu)$ given a parametric model of probability distribution
- Bernoulli distribution with parameter μ
-

Prior on the parameters of the model $p(\mu)$

- Uniform prior as a special case of Beta distribution
- Posterior distribution of model parameters given an observed data

$$
p(\mu \mid X)=\frac{P(X \mid \mu) p(\mu)}{P(X)}
$$

- Posterior predictive distribution of a new observation give prior (training) observations

$$
p(h e a d \mid X)=\int P(h e a d \mid \mu) p(\mu \mid X) \mathrm{d} \mu
$$

Bernoulli and Binomial distributions

$\operatorname{Bern}(x \mid \mu)=\mu^{x}(1-\mu)^{1-x}$

- The "coin flipping" distribution is Bernoulli distribution
- Flipping the coin once, what is the probability of $x=1$ (head) or $x=0$ (tail)
$\operatorname{Bin}(m \mid N, \mu)=\binom{N}{m} \mu^{m}(1-\mu)^{N-m}$
- Related binomial distribution is also described by single probability μ
- How many heads do I get if I flip the coin N times?

Beta distribution

$$
\operatorname{Beta}(\mu \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1}
$$

- Beta distribution has "similar" form as Bern or Bin, but it is now function of μ
- Continuous distribution for μ over the interval $(0,1)$
- Can be used to express our prior beliefs about the Bernoulli dist. parameter μ

Beta as a conjugate prior

$\mathbf{x}=\left[x_{1}, x_{2}, x_{3}, \ldots x_{N}\right]=[1,0,0,1, \ldots, 0]$

$$
P(\mathbf{x} \mid \mu)=\prod_{i} \operatorname{Bern}\left(x_{i} \mid \mu\right)=\prod_{i} \mu^{x_{i}}(1-\mu)^{1-x_{i}}=\mu^{H}(1-\mu)^{T}
$$

$$
\operatorname{Beta}(\mu \mid a, b)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \mu^{a-1}(1-\mu)^{b-1}
$$

$$
p(\mu \mid \mathbf{x})=\frac{P(\mathbf{x} \mid \mu) p(\mu)}{P(\mathbf{x})} \propto \mu^{H}(1-\mu)^{T} \mu^{a-1}(1-\mu)^{b-1}
$$

$$
=\mu^{H+a-1}(1-\mu)^{T+b-1} \propto \operatorname{Beta}(\mu \mid H+a, T+b)
$$

- Using Beta as a prior for Bernoulli parameter μ results in Beta posterior distribution \rightarrow Beta is conjugate prior to Bernoulli
- $a-1$ and $b-1$ can be seen as a prior counts of heads and tails.
- Continuous distribution of μ over the interval $(0,1)$
- Beta distribution can be used to express our prior beliefs about the Bernoulli distributions parameter μ

Categorical and Multinomial distribution

$$
\begin{aligned}
& \mathbf{x}=[0,0,1,0,0,0] \\
& \boldsymbol{\pi}=\left[\pi_{1}, \pi_{2}, \ldots, \pi_{C}\right]
\end{aligned}
$$

$$
\text { One-hot encoding of a discrete event }\left({ }^{\bullet} \bullet \text { 。 on a dice }\right)
$$

Probabilities of the events

$$
\text { (eg. }\left[\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right] \text { for fair dice) }
$$

$$
\operatorname{Cat}(\mathbf{x} \mid \boldsymbol{\pi})=\prod_{c} \pi_{c}^{x_{c}} \quad \sum_{c} \pi_{c}=1 \boldsymbol{\rightarrow} \pi \text { is a point on a simplex }
$$

- Categorical distribution simply "returns" the probability of a given event \mathbf{x}
- Sample from the distribution is the event (or its one-hot encoding)

$$
\operatorname{Mult}\left(m_{1}, m_{2}, \ldots, m_{C} \mid \boldsymbol{\pi}, N\right)=\binom{N}{m_{1} m_{2} \ldots m_{C}} \prod_{c} \pi_{c}^{m_{c}}
$$

- Multinomial distribution is also described by single probability vector $\boldsymbol{\pi}$
- How many ones, twos, threes, ... do I get if I throw the dice N times?
- Sample from the distribution is vector of numbers (e.g. 11x one, $8 x$ two, ...)

Dirichlet distribution

$$
\operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{\mathrm{c}} \alpha_{c}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{C}\right)} \prod_{c=1} \pi_{c}^{\alpha_{c}-1}
$$

- Dirichlet distribution is continuous distribution over the points π on a K dimensional simplex.
- Can be used to express our prior beliefs about the categorical distribution parameter π

Dirichlet as a conjugate prior

$$
\begin{aligned}
P(\mathbf{X} \mid \boldsymbol{\pi}) & =\prod_{n} \operatorname{Cat}\left(\mathbf{x}_{n} \mid \boldsymbol{\pi}\right)=\prod_{n} \prod_{c} \pi_{c}^{x_{c n}}=\prod_{c} \pi_{c}^{m_{c}} \\
\operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) & =\frac{\Gamma\left(\sum_{c} \alpha_{c}\right)}{\Gamma\left(\alpha_{1}\right) \ldots \Gamma\left(\alpha_{C}\right)} \prod_{c=1} \pi_{c}^{\alpha_{c}-1} \\
p(\boldsymbol{\pi} \mid \mathbf{X}) & =\frac{P(\mathbf{X} \mid \boldsymbol{\pi}) p(\boldsymbol{\pi})}{P(\mathbf{X})} \propto \prod_{c} \pi_{c}^{m_{c}} \prod_{c} \pi_{c}^{\alpha_{c}-1} \begin{array}{l}
\text { Sufficient } \\
\text { statistics }
\end{array} \\
& =\prod_{c=1} \pi_{c}^{m_{c}+\alpha_{c}-1} \propto \operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha}+\mathbf{m})
\end{aligned}
$$

- Using Dirichlet as a prior for Categorical parameter π results in Dirichlet posterior distribution \rightarrow Dirichlet is conjugate prior to Categorical dist.
- $\alpha_{c}-1$ can be seen as a prior count for the individual events.

Gaussian distribution (univariate)

$$
p(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

ML estimates of parameters

$$
\begin{aligned}
\mu & =\frac{1}{N} \sum_{n} x_{n} \\
\sigma^{2} & =\frac{1}{N} \sum_{n}\left(x_{n}-\mu\right)^{2}
\end{aligned}
$$

Gamma distribution

Normal distribution can be expressed in terms of precision $\lambda=\frac{1}{\sigma^{2}}$
$\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}=\sqrt{\frac{\lambda}{2 \pi}} e^{-\frac{\lambda}{2}(x-\mu)^{2}}$
$\operatorname{Gam}(\lambda \mid a, b)=\frac{1}{\Gamma(a)} b^{a} \lambda^{a-1} e^{-b \lambda}$
Gamma distribution defined for $\lambda>0$ can be used as a prior over the precision

NormalGamma distribution

$\operatorname{NormalGama}(\mu, \lambda \mid m, \kappa, a, b)=\mathcal{N}\left(\mu \mid m,(\kappa \lambda)^{-1}\right) \operatorname{Gam}(\lambda \mid a, b)$ Joint distribution over μ and λ. Note that μ and λ are not independent.

NormalGamma distribution

- NormalGamma distribution is the conjugate prior for Gaussian dist.
- Given observations $\mathbf{x}=\left[x_{1}, x_{2}, x_{3}, \ldots x_{N}\right]$, the posterior distribution

$$
\begin{aligned}
& p(\mu, \lambda \mid \mathbf{x})=\frac{p(\mathbf{x} \mid \mu, \lambda) p(\mu, \lambda)}{p(\mathbf{x})} \\
& \propto \prod_{i} \mathcal{N}\left(x_{i} ; \mu, \sigma^{2}\right) \operatorname{NormalGamma}(\mu, \lambda \mid m, \kappa, a, b) \\
& \propto \text { NormalGamma }\left(\mu, \lambda \left\lvert\, \frac{\kappa m+N \bar{x}}{\kappa+N}\right., \kappa+N, a+\frac{N}{2}, b+\frac{N}{2}\left(s+\frac{\kappa(\bar{x}-m)^{2}}{\kappa+N}\right)\right)
\end{aligned}
$$

Defined in terms of sufficient statistics N and

$$
\bar{x}=\frac{1}{N} \sum_{n=1}^{N} x_{n} \quad s=\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}-\bar{x}\right)^{2}
$$

Gaussian distribution (multivariate)

$$
\begin{aligned}
p\left(x_{1}, \ldots, x_{D}\right) & = \\
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) & =\frac{1}{\sqrt{(2 \pi)^{D}|\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
\end{aligned}
$$

Gaussian distribution (multivariate)

$$
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})=\frac{1}{\sqrt{(2 \pi)^{D}|\boldsymbol{\Sigma}|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})}
$$

Conjugate prior is Normal-Wishart

$$
p\left(\boldsymbol{\mu}, \boldsymbol{\Lambda} \mid \boldsymbol{\mu}_{0}, \beta, \mathbf{W}, \nu\right)=\mathcal{N}\left(\boldsymbol{\mu} \mid \boldsymbol{\mu}_{0},(\beta \boldsymbol{\Lambda})^{-1}\right) \mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)
$$

where
$\mathcal{W}(\boldsymbol{\Lambda} \mid \mathbf{W}, \nu)=B|\boldsymbol{\Lambda}|^{(\nu-D-1) / 2} \exp \left(-\frac{1}{2} \operatorname{Tr}\left(\mathbf{W}^{-1} \boldsymbol{\Lambda}\right)\right)$
is Wishart distribution and
$\boldsymbol{\Lambda}=\mathbf{\Sigma}^{-1}$

Exponential family

- All the distributions described so far are distributions from the exponential family, which can be expressed in the following form $p(\mathbf{x} \mid \boldsymbol{\eta})=\mathrm{h}(\mathbf{x}) g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\}$
- For example for Gaussian distribution:

$$
\begin{aligned}
& \mathcal{N}\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}} x^{2}+\frac{\mu}{\sigma^{2}} x-\frac{\mu^{2}}{2 \sigma^{2}}\right\} \\
& \boldsymbol{\eta}=\binom{\mu / \sigma^{2}}{-1 / 2 \sigma^{2}} \quad \mathbf{u}(x)=\binom{x}{x^{2}} \quad g(\boldsymbol{\eta})=\sqrt{-\frac{2 \eta_{2}}{2 \pi}} \exp \left(\frac{\eta_{1}^{2}}{4 \eta_{2}}\right) \quad \mathrm{h}(x)=1
\end{aligned}
$$

- To evaluate likelihood of set of observations:

$$
\begin{aligned}
\prod_{n} \mathcal{N}\left(x_{n} ; \mu, \sigma^{2}\right) & =\exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{n} x_{n}^{2}+\frac{\mu}{\sigma^{2}} \sum_{n} x_{n}-N\left(\frac{\mu^{2}}{2 \sigma^{2}}+\frac{\log \left(2 \pi \sigma^{2}\right)}{2}\right)\right\} \\
& =g(\boldsymbol{\eta})^{\mathrm{N}} \exp \left\{\boldsymbol{\eta}^{T} \sum_{n=1}^{N} \mathbf{u}\left(x_{n}\right)\right\} \prod_{n} \mathrm{~h}\left(x_{n}\right)
\end{aligned}
$$

Exponential family

For any distributions from exponential family

$$
p(\mathbf{x} \mid \boldsymbol{\eta})=\mathrm{h}(\mathbf{x}) g(\boldsymbol{\eta}) \exp \left\{\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x})\right\}
$$

- Likelihood $p(\mathbf{X} \mid \boldsymbol{\eta})$ of observed data $\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right]$ can be evaluated using the sufficient statistics N and $\sum_{n=1}^{N} \mathbf{u}\left(\mathbf{x}_{n}\right)$:

$$
p(\mathbf{X} \mid \boldsymbol{\eta})=g(\boldsymbol{\eta})^{\mathrm{N}} \exp \left\{\boldsymbol{\eta}^{T} \sum_{n=1}^{N} \mathbf{u}\left(x_{n}\right)\right\} \prod_{n} \mathrm{~h}\left(x_{n}\right)
$$

- Conjugate prior distribution over parameter $\boldsymbol{\eta}$ exists in form:

$$
p(\boldsymbol{\eta} \mid \boldsymbol{\theta}, v)=\mathrm{f}(\boldsymbol{\theta}, v) g(\boldsymbol{\eta})^{v} \exp \left\{\boldsymbol{\eta}^{T} \boldsymbol{\theta}\right\}
$$

- Posterior distribution takes the same form as the conjugate prior and we need only the prior parameters and the sufficient stats to evaluate it:

$$
p(\boldsymbol{\eta} \mid \mathbf{X})=p\left(\boldsymbol{\eta} \mid \boldsymbol{\theta}+\sum_{n=1}^{N} \mathbf{u}\left(x_{n}\right), v+N\right) \propto g(\boldsymbol{\eta})^{N+v} \exp \left\{\boldsymbol{\eta}^{T}\left(\boldsymbol{\theta}+\sum_{n=1}^{N} \mathbf{u}\left(x_{n}\right)\right)\right\}
$$

- $\frac{\boldsymbol{\theta}}{v}$ can be seen as prior observation and v as prior count of observation

Parameter estimation revisited

- Lets estimate again parameters $\boldsymbol{\eta}$ of a chosen $p(\mathbf{x} \mid \boldsymbol{\eta})$ distribution given some of observed data $\mathbf{X}=\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right]$
- Using the Bayes rule, we get the posterior distribution

$$
p(\boldsymbol{\eta} \mid \mathbf{X})=\frac{P(\mathbf{X} \mid \boldsymbol{\eta}) p(\boldsymbol{\eta})}{P(\mathbf{X})}
$$

- We can choose the most likelihood parameters: Maximum a-posteriori (MAP) estimate

$$
\widehat{\boldsymbol{\eta}}^{M A P}=\underset{\boldsymbol{\eta}}{\arg \max } p(\boldsymbol{\eta} \mid \mathbf{X})=\underset{\boldsymbol{\eta}}{\arg \max } p(\mathbf{X} \mid \boldsymbol{\eta}) p(\boldsymbol{\eta})
$$

- Assuming flat (constant) prior $p(\boldsymbol{\eta})=$ const, we obtain Maximum likelihood (ML) estimate as a special case:

$$
\widehat{\boldsymbol{\eta}}^{M L}=\underset{\boldsymbol{\eta}}{\arg \max } P(\mathbf{X} \mid \boldsymbol{\eta})
$$

Posterior predictive distribution

- We do not need to obtain a point estimate of the parameters $\widehat{\boldsymbol{\eta}}$
- It is always good to postpone making hard decisions
- Instead, we can take into account the uncertainty encoded in the posterior distribution $p(\boldsymbol{\eta} \mid \mathbf{X})$ when evaluating posterior predictive probability for a new data point \boldsymbol{x}^{\prime} (as we did in our coin flipping example)

$$
p\left(x^{\prime} \mid \mathbf{X}\right)=\int p\left(x^{\prime}, \boldsymbol{\eta} \mid \mathbf{X}\right) \mathrm{d} \boldsymbol{\eta}=\int p\left(x^{\prime} \mid \boldsymbol{\eta}\right) p(\boldsymbol{\eta} \mid \mathbf{X}) \mathrm{d} \boldsymbol{\eta}
$$

- Rather than using one most likely setting of parameters $\hat{\boldsymbol{\eta}}$, we average over their different setting, which could possibly generate the observed data \mathbf{X}
\rightarrow this approach is robust to overfitting

Posterior predictive for Bernoulli

- Beta prior on parameters of Bernoulli distribution leads to Beta posterior

$$
\begin{aligned}
p(\mu \mid \mathbf{x}) & \propto \prod_{n} \operatorname{Bern}\left(x_{n} \mid \mu\right) \operatorname{Beta}\left(\mu \mid a_{0}, b_{0}\right) \propto \operatorname{Bern}\left(\mu \mid a_{0}+H, b_{0}+T\right) \\
& =\operatorname{Bern}\left(\mu \mid a_{N}, b_{N}\right)
\end{aligned}
$$

- The posterior predictive distribution is again Bernoulli

$$
\begin{aligned}
p\left(x^{\prime} \mid \mathbf{x}\right) & =\int p\left(x^{\prime} \mid \mu\right) p(\mu \mid \mathbf{x}) \mathrm{d} \mu=\int \operatorname{Bern}\left(x^{\prime} \mid \mu\right) \operatorname{Beta}\left(\mu \mid a_{N}, b_{N}\right) \mathrm{d} \mu \\
& =\operatorname{Bern}\left(x^{\prime} \left\lvert\, \frac{a_{N}}{a_{N}+b_{N}}\right.\right)=\operatorname{Bern}\left(x^{\prime} \left\lvert\, \frac{a_{0}+H}{a_{0}+b_{0}+N}\right.\right)
\end{aligned}
$$

- In our coin flipping example:

$$
\begin{aligned}
& p(\mu)=U(0,1)=\operatorname{Beta}\left(\mu \mid a_{0}, b_{0}\right)=\operatorname{Beta}(\mu \mid 1,1) \\
& p(\mu \mid \mathbf{x})=\operatorname{Beta}\left(\mu \mid a_{N}, b_{N}\right)=\operatorname{Beta}\left(\mu \mid a_{0}+H, b_{0}+T\right)=\operatorname{Beta}(\mu \mid 1+750,1+250) \\
& p\left(x^{\prime} \mid \mathbf{x}\right)=\operatorname{Bern}\left(x^{\prime} \left\lvert\, \frac{a_{N}}{a_{N}+b_{N}}\right.\right)=751 / 1002=0.7495
\end{aligned}
$$

Posterior predictive for Categorical

- Dirichlet prior on parameters of Categorical distribution leads to Dirichlet posterior

$$
p(\boldsymbol{\pi} \mid \mathbf{X}) \propto \prod_{n} \operatorname{Cat}\left(\mathbf{x}_{n} \mid \boldsymbol{\pi}\right) \operatorname{Dir}\left(\boldsymbol{\pi} \mid \boldsymbol{\alpha}_{0}\right) \propto \operatorname{Dir}\left(\boldsymbol{\pi} \mid \boldsymbol{\alpha}_{0}+\mathbf{m}\right)=\operatorname{Dir}\left(\boldsymbol{\pi} \mid \boldsymbol{\alpha}_{N}\right)
$$

- The posterior predictive distribution is again Categorical

$$
\begin{aligned}
p\left(\mathbf{x}^{\prime} \mid \mathbf{X}\right) & =\int p\left(\mathbf{x}^{\prime} \mid \boldsymbol{\pi}\right) p(\boldsymbol{\pi} \mid \mathbf{X}) \mathrm{d} \boldsymbol{\pi}=\int \operatorname{Cat}\left(\mathbf{x}^{\prime} \mid \boldsymbol{\pi}\right) \operatorname{Dir}\left(\boldsymbol{\pi} \mid \boldsymbol{\alpha}_{N}\right) \mathrm{d} \boldsymbol{\pi} \\
& =\operatorname{Cat}\left(\mathbf{x}^{\prime} \left\lvert\, \frac{\boldsymbol{\alpha}_{N}}{\sum_{c} \alpha_{N c}}\right.\right)=\operatorname{Cat}\left(\mathbf{x}^{\prime} \left\lvert\, \frac{\boldsymbol{\alpha}_{0}+\mathbf{m}}{\sum_{c} \alpha_{0 c}+m_{c}}\right.\right)
\end{aligned}
$$

Student's t-distribution

- NormalGamma prior on parameters of Gaussian distribution leads to NormalGamma posterior
$p(\mu, \lambda \mid \mathbf{x}) \propto \prod_{i} \mathcal{N}\left(x_{i} ; \mu, \sigma^{2}\right)$ NormalGamma $\left(\mu, \lambda \mid m_{0}, \kappa_{0}, a_{0}, b_{0}\right)$
$\propto \operatorname{NormalGamma}\left(\mu, \lambda \left\lvert\, \frac{\kappa_{0} m_{0}+N \bar{x}}{\kappa_{0}+N}\right., \kappa_{0}+N, a_{0}+\frac{N}{2}, b_{0}+\frac{N}{2}\left(s+\frac{\kappa_{0}\left(\bar{x}-m_{0}\right)^{2}}{\kappa_{0}+N}\right)\right)$
$=\operatorname{NormalGamma}\left(\mu, \lambda \mid m_{N}, \kappa_{N}, a_{N}, b_{N}\right)$
- The posterior predictive distribution is Student's t-distribution

$$
\begin{aligned}
p\left(x^{\prime} \mid \mathbf{x}\right) & =\iint p\left(x^{\prime} \mid \mu, \lambda\right) p(\mu, \lambda \mid \mathbf{x}) \mathrm{d} \mu \mathrm{~d} \lambda \\
& =\iint \mathcal{N}\left(x^{\prime} \mid \mu, \lambda\right) \operatorname{NormalGamma}\left(\mu, \lambda \mid m_{N}, \kappa_{N}, a_{N}, b_{N}\right) \mathrm{d} \mu \mathrm{~d} \lambda \\
& =\operatorname{St}\left(x^{\prime} \mid m_{N}, 2 a_{N}, \frac{a_{N} \kappa_{N}}{b_{N}\left(\kappa_{N}+1\right)}\right)
\end{aligned}
$$

Student's t-distribution

$$
\operatorname{St}(x \mid \mu, v, \gamma)=\frac{\Gamma\left(\frac{v}{2}+\frac{1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)}\left(\frac{\gamma}{\pi v}\right)^{\frac{1}{2}}\left[1+\frac{\gamma(x-\mu)^{2}}{v}\right]^{-\frac{v}{2}-\frac{1}{2}}
$$

- Gaussian distribution is a special case of Student's with degree of freedom $v \rightarrow \infty$
- For the posterior $p(\mu, \lambda \mid \mathbf{x}), v=2 a_{N}=2 a_{0}+N$

