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Frequentist vs. Bayesian

• Frequentist point of view: 
– Probability is the frequency of an event occurring in a 

large (infinite) number of trials
– E.g. When flipping a coin many times, what is the 

proportion of heads?
• Bayesian

– Inferring probabilities for events that have never 
occurred or believes which are not directly observed

– Prior believes are specified in terms of prior 
probabilities

– Taking into account uncertainty (posterior distribution) 
of the estimated parameters or hidden variables in 
our probabilistic model.



• Lets  flip the coin N = 1000 times getting H = 750 heads and T = 250 tails. 
• What is ? Intuitive (and also ML) estimate is 750 / 1000 = 0.75.

• Given some , we can calculate probability (likelihood) of X

• Now lets express our ignorant prior belief about as:

Coin flipping example

) = 
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Then using Bayes rule, we obtain probability density function for :



Coin flipping example (cont.)

N = 1000, H = 750, T = 250

• Posterior distribution is our new belief about 
• Flipping the coin once more, what is the probability of head?

 

• Note that we never computed value of
• Rule of succession used by Pierre-Simon Laplace to estimate that the 

probability of sun rising tomorrow is 



Distributions from our example

• Likelihood of observed data given a parametric model of 
probability distribution
– Bernoulli distribution with parameter 

•
Prior on the parameters of the model )
– Uniform prior as a special case of Beta distribution

• Posterior distribution of model parameters given an observed data

• Posterior predictive distribution of a new observation give prior 
(training) observations



Bernoulli and Binomial distributions

• The “coin flipping” distribution is Bernoulli distribution

• Flipping the coin once, what is the probability of x = 1 (head) or x = 0 (tail)

• Related binomial distribution is also described by single probability 
• How many heads do I get if I flip the coin N times?

N = 10

= 0.25



Beta distribution

• Beta distribution has “similar” form as Bern or Bin, but it is now function of 
• Continuous distribution for over the interval (0,1)
• Can be used to express our prior beliefs about the Bernoulli dist. parameter 

Uniform 
distribution over 

as was the 
prior in our coin 
flipping example

Normalizing constant



Beta as a conjugate prior

• Using Beta as a prior for Bernoulli parameter results in Beta posterior 
distribution  Beta is conjugate prior to Bernoulli

• and can be seen as a prior counts of heads and tails.
• Continuous distribution of over the interval (0,1)
• Beta distribution can be used to express our prior beliefs about the Bernoulli 

distributions parameter 

೔ ೔

Sufficient 
statistics
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Categorical and Multinomial 
distribution
One-hot encoding of a discrete event (       on a dice)

Probabilities of  the events

(eg. 
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for fair dice)

• Categorical distribution simply “returns” the probability of a given event x
• Sample from the distribution is the event (or its one-hot encoding)

• Multinomial distribution is also described by single probability vector 
• How many ones, twos, threes, … do I get if I throw the dice N times?
• Sample from the distribution is vector of numbers (e.g. 11x one, 8x two, …)
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 is a point on a simplex೎
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Dirichlet distribution

• Dirichlet distribution is continuous distribution over 
the points on a K dimensional simplex.

• Can be used to express our prior beliefs about the 
categorical distribution parameter 
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Dirichlet as a conjugate prior

• Using Dirichlet as a prior for Categorical parameter results in Dirichlet
posterior distribution  Dirichlet is conjugate prior to Categorical dist.

• ௖ can be seen as a prior count for the individual events.
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Sufficient 
statistics



Gaussian distribution (univariate)

ML estimates of parameters
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Gamma distribution
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Normal distribution can be expressed in terms of precision 
ଵ

ఙమ

Gamma distribution d can be used as a prior over the precision 



NormalGamma distribution

Joint distribution over and . Note that and are not independent.



NormalGamma distribution
• NormalGamma distribution is the conjugate prior for Gaussian dist.
• Given observations ଵ ଶ ଷ ே , the posterior distribution

Defined in terms of sufficient statistics N and
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Gaussian distribution (multivariate)

ML estimates of parameters
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Gaussian distribution (multivariate)
೅ షభ

Conjugate prior is Normal-Wishart

where

is Wishart distribution and



• All the distributions described so far are distributions from the 
exponential family, which can be expressed in the following form

• For example for Gaussian distribution:

Exponential family
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• To evaluate likelihood of set of observations:
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For any distributions from exponential family

• Likelihood of observed data ଵ ଶ ே can be evaluated 
using the sufficient statistics and ௡

ே
௡ୀଵ :

• Conjugate prior distribution over parameter exists in form:

• Posterior distribution takes the same form as the conjugate prior and we 
need only the prior parameters and the sufficient stats to evaluate it:

• can be seen as prior observation and as prior count of observation
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Parameter estimation revisited
• Lets estimate again parameters of a chosen distribution 

given some of observed data ଵ ଶ ே

• Using the Bayes rule, we get the posterior distribution

• We can choose the most likelihood parameters: Maximum 
a-posteriori (MAP) estimate
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• Assuming flat (constant) prior , we obtain Maximum 
likelihood (ML) estimate as a special case:
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Posterior predictive distribution
• We do not need to obtain a point estimate of the parameters 

• It is always good to postpone making hard decisions

• Instead, we can take into account the uncertainty encoded in the 
posterior distribution when evaluating posterior predictive 
probability for a new data point (as we did in our coin flipping 
example)

ᇱ ᇱ ᇱ

• Rather than using one most likely setting of parameters , we 
average over their different setting, which could possibly generate 
the observed data 
 this approach is robust to overfitting



Posterior predictive for Bernoulli
• Beta prior on parameters of Bernoulli distribution leads to Beta posterior
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• The posterior predictive distribution is again Bernoulli
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• In our coin flipping example:
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Posterior predictive for Categorical

• Dirichlet prior on parameters of Categorical distribution leads to 
Dirichlet posterior
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• The posterior predictive distribution is again Categorical
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Student’s t-distribution
• NormalGamma prior on parameters of Gaussian distribution leads to 

NormalGamma posterior
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• The posterior predictive distribution is Student’s t-distribution



Student’s t-distribution

• Gaussian distribution is a special case of Student’s with degree of freedom 

• For the posterior , ே ଴
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