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Abstract

Combination of different speech recognition systems can be powerful technique
to improve recognition performance. The success of these techniques, however, de-
pends on the complementarity of the combined systems. In this paper, measures of
complementarity of different recognition systems are proposed. These measures are
based on analysis of similarity of errors made by individual systems. High correla-
tion between these measures and actual performances of combined systems is shown
in experiments, which indicates that these measures can be used to select systems
suitable for combination. The measures can be computed very efficiently and they
can be used even in situations where exhaustive search looking for the set of systems
optimal for combination would be infeasible.

1 Introduction

In the past, many approaches have been developed to perform speech recognition,
which differ in feature extraction method (MFCC [3], PLP [7], TRAPS [8] [9]),
classification algorithm (HMM [1] [2], Hybrid ANN-HMM [12]), used model (differ-
ent HMM types and topologies), method of model training (Maximum Likelihood
(ML) [1], discriminative training (MMI [15], MCE [16])), and so on. It is not possible
to say, which approach is the right one. For example, in the case of feature extrac-
tion, it is not exactly known which information should be extracted from speech.
Moreover, attempt to preserve one information often leads to loss of another (e.g.
resolution in the time vs. resolution in the frequency). Speech recognition systems
based on these different approaches often show important complementarity of their
outputs. It has been proved that combination of different systems can be power-
ful technique to improve recognition performance. The level of success is however
limited by the complementarity of systems combined. In this work, we propose
a method to measure this complementarity allowing to select such systems whose
combination is the most beneficial.

The combination can be performed at different levels. For example, in our ex-
periments, all systems differ only in feature extraction method and they could be,
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therefore, combined directly on feature level, leaving the rest of the system un-
changed. In this case, individual feature streams could be combined into one stream
using some technique (such as PCA, LDA [6] [11] [10], Tandem [13] [14]) preserving
the important information encoded in the original streams. In our experiments, how-
ever, ”hard” outputs of individual recognizers in the form word (symbol) sequences
are combined using technique known as ROVER (Recognizer Output Voting Error
Reduction) [17]. Measures of complementarity are also based on comparing output
word sequences, which however does not mean, that this measures are not meaning-
ful for other methods of system combination.

Computation of complementarity measures is also based on techniques similar to
those used by ROVER. Therefore, ROVER is briefly described in the next section.
In section 4, measures of error dependency between two recognition systems are
developed. In experiments, it is shown that these measures are useful for selection
of systems good for combination. Measures of complementarity of set of systems
are proposed in section 5 and correlation between these measures and actual perfor-
mances of systems combined using ROVER is shown.

2 Terminology

In following text, term system will be used to denote individual speech recognition
system. Terms system output or output sequence will denote sequence of words
recognized by the system. Term combined system will be used for combination of
individual systems. ROVER is used in our experiments for system combination,
therefore, combined system output is obtained as ROVER combination of output
word sequences of individual recognition systems. Term system set will be used
to denote set of individual systems available for combination. Where only several
systems from currently used system set are combined, term system subset will be
used.

3 ROVER

ROVER (Recognizer Output Voting Error Reduction) [17] is a technique allowing to
combine word (symbol) sequences taken as outputs of different recognition systems.
Philosophy of this method is illustrated in figure 1. First, alignment is performed
to find corresponding words over different output sequences. In this step, outputs
of all recognizers are merged into one sequence of correspondence set, where each
correspondence sets is a multi-set 1 containing corresponding words one from each
recognizer output. In figure 1, correspondence sets are represented by columns of
words on the output of alignment block. As can be seen in figure 1, there can be no
word in a particular sequence corresponding to a correspondence set. In such case,
null word (symbol ’-’ in figure) is added to the correspondence set. In the second step,
final symbol sequence is obtained by selecting one word from each correspondence set
using voting algorithm. In our experiments, simple majority voting is used. Note,
that for correspondence set, where null word is the winning one, no word is output
to the final sequence.

1Set where multiple occurrences of the same element are allowed
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Figure 1: ROVER method block diagram.

3.1 ROVER Alignment

Merging of individual word sequences into one sequence of correspondence sets is
performed iteratively. Initially, first two sequences are aligned to produce correspon-
dence sets each having only two elements. The alignment is performed the same
way that is commonly used for scoring performances of speech recognition systems.
Reference word sequence is aligned with the recognized one, to allow for counting
of insertions, deletions and substitutions. Such alignment, that minimize the total
coast is found using Dynamic Programing. In our implementation, the cost of each
deletion and insertion is 3, the cost of a substitution is 4 and cost of a correct word is
0. Of course, in ROVER alignment we do not have any reference sequence, however,
assuming the first sequence being the reference will allow us to use terms: insertion
and deletion in the following examples.

In the example from figure 1, correspondence set sequence created in the first
iteration is:

1st sequence

2nd sequence

(

A

A

)

,

(

B

E

)

,

(

C

C

)

,

(

D

−

)

and cost for this alignment is: 4 + 3 = 7 corresponding to one substitution of the
word E for B and one deletion of the word D.

In each next iteration, next word sequence is aligned with the correspondence
sets obtained in previous iteration. The alignment is performed the same way as
the alignment of first two sequences, however, sequence of correspondence sets now
serve as the reference and cost must be always computed with respect to all words in
each correspondence set. In the example from figure 1, correspondence set sequence
created in the second (last) iteration is:

1st sequence

2nd sequence

3rd sequence





A

A

−



 ,





B

E

B



 ,





C

C

C



 ,





D

−
−





and cost for this alignment is: 2× 3 + 4 + 3 = 13 corresponding to two deletions of
the word A, one substitution of B for E and one deletion of D.

Note that this iterative method of alignment of multiple sequences is not the
optimal one and the order in which individual sequences are aligned is important.
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In our experiments, output of systems that performs the best 2 are aligned first,
outputs of systems with poorer performance are added later. This has been exper-
imentally shown to be a reasonable suboptimal solution. N-dimensional Dynamic
Programing would have to be used to obtain optimal alignment, where N is the num-
ber of sequences aligned. However, such alignment would be very computationally
expensive for higher N.

4 Measures of complementarity of two recognition
system outputs

It was mentioned in section 1 that the improvement of recognition performance
given by combination of different systems is limited by amount of complementarity
of systems combined. In our experiments, ROVER is used to combine systems at
the level of output word sequences. Therefore, we are interested in complementarity
encoded in these sequences, which is represented by independency of errors that
individual systems make.

We will distinguish two types of error dependency. We will say that two systems
make simultaneous error if both systems make error at the same time. Both systems
can, however, make different errors (e.g. correct word A is recognized by first system
as B and by second system as C). We will say that two systems make dependent error
in the special case where both systems make the same error.

In this section, measures of complementarity of two systems based on counting
simultaneous and dependent errors are proposed. Extension for measuring comple-
mentarity of a whole set of systems will be proposed in section 5. Measures of
complementarity of two systems are estimated on a selected set of utterances in the
following steps:

• For each utterance, output sequences of both systems are obtained.

• Each pair of sequences is aligned with corresponding reference sequence ac-
cording to algorithm described in section 4.1

• For each pair of sequences, simultaneous and dependent errors are counted (see
section 4.2).

• Counts of simultaneous and dependent errors are used to compute complemen-
tarity measures proposed in section 4.3

4.1 Alignment for identification of error dependency

To identify where two systems make dependent errors, for each utterance from a
given set, corresponding output word sequences of both systems are aligned with
reference word sequence. Alignment is performed in similar manner as ROVER
alignment described in section 3.1. Output sequence of one system is aligned with
reference sequence first. However, when the second output sequence is added the
alignment is performed with respect to words only from reference sequence, and
output of first system is taken into account, only if more than one alignment with
reference sequence having the minimal cost is available. This is best illustrated on
following the example:

2In terms of Word Error Rate of individual systems.
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Let the reference sequence be only one word C. Both systems tend to insert words
so that output sequences of the first and the second system are: C,X,X,X,Z and
and X,X,X,C,Z respectively. These two sequences will be referred as sequence 1
and sequence 2. The alignment with minimal cost that would be used by ROVER
for all three sequences is:

reference

sequence 1
sequence 2





C

C

−



 ,





−
X

X



 ,





−
X

X



 ,





−
X

C



 ,





−
Z

Z





In this case, alignment of words from sequence 1 and words from reference is the
same that would be used for scoring system performance (see section 3.1). For
identification of error dependency, we would like to have alignment of sequence 2 and
reference sequence also the same as the one used for scoring. However, sequence 2
is not aligned with reference in such manner in ROVER alignment (word C from
sequence 2 is not aligned with word C from reference). For this reason, in alignment
used for identification of error dependency, sequence 2 is preferably aligned to the
reference sequence. The following alignment is obtained for sequences from our
example:

reference

sequence 1
sequence 2





−
−
X



 ,





−
−
X



 ,





C

C

C



 ,





−
X

−



 ,





−
X

−



 ,





−
X

−



 ,





−
Z

Z





When aligning sequence 2, words form sequence 1 are initially ignored and the word
C is therefore aligned with the word C from the reference sequence. The word Z

can be, however, aligned with the same cost with any null word following C in the
reference sequence. Here, the words from sequence 1 are also taken into account
and the secondary cost minimization leads to the alignment of the words Z from
sequence 1 and sequence 2.

Note that the order in which two output sequences are aligned is again important.
Following example demonstrate the case where different order results in different
alignments. If sequence X is aligned with reference sequence first and then sequence
Y is added, following optimal alignment is obtained:

reference

sequence X

sequence Y





B

B

B



 ,





C

C

−



 ,





A

B

B





Opposite order of processing sequences Y and X can lead to the following wrong
alignment:

reference

sequence Y

sequence X





B

B

B



 ,





C

B

C



 ,





A

−
B





Until we see sequence X we do not know that it is better to align second word B

from sequence Y with word A from reference and alignment with word C that has
the same cost can be chosen. Adding sequence X already does not affect this wrong
decision.

reference

sequence Y

sequence X





B

B

B



 ,





C

B

C



 ,





A

−
B





Note that the optimal alignment can be obtained using 3-dimensional Dynamic
Programing.
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4.2 Counting simultaneous and dependent errors

Once corresponding outputs of two systems are aligned with their references, simul-
taneous and dependent errors can be counted. The following example demonstrates
alignment of sequences with two simultaneous errors where words A and D are in-
correctly recognized by both systems. Moreover, in the case of word D, both systems
make the same error (words deleted) and therefore this error is also dependent error.

reference

output 1
output 2





A

E

F



 ,





B

B

B



 ,





C

G

C



 ,





D

−
−





For measuring error dependency, we are not interested in the cases where only one
system makes error (word C is incorrectly recognized only by first system).

4.3 Measurement of error dependency between two systems

Let Nref be the total number of words in all reference sequences for the set of
utterances used to estimate complementarity measures. Let Nsim(i, j) and Ndep(i, j)
be the total number of simultaneous errors and dependent errors between ith and
jth system respectively. We propose the following measures of error dependency
between two systems:

4.3.1 Lower Bound Word Error Rate (LBWER)

for two systems i and j is defined as ratio between the number of simultaneous errors
and the overall number of words in the set of utterances:

LBWER(i, j) =
Nsim(i, j)

Nref

× 100 (1)

We can also regard this measure as error rate of such system combining outputs of
two recognizer that always select (using an ideal confidence measure) the correct
word for all the cases where only one recognizer makes error (therefore the name
Lower Bound WER).

For a set of systems S and ∀i, j ∈ S, the values of LBWER(i, j) form a matrix.
We will call this matrix LBWER matrix of set S. Note, that each value on the matrix
diagonal LBWER(i, i), which is the ordinary WER for the system i, is the highest
value in the corresponding row and column.

4.3.2 Dependent Word Error Rate (DWER)

for two systems i and j is defined as ratio between the overall number of dependent
errors and the number of words in our set of utterances:

DWER(i, j) =
Ndep(i, j)

Nref

× 100 (2)

DWER matrix of a system set is defined in the same manner as LBWER matrix.
Note, that values on the DWER matrix diagonal are again ordinary WERs of indi-
vidual systems.
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4.4 Properties of error dependency measures

If a set of at least three systems has diagonal LBWER matrix, ROVER combination
of these systems based on majority voting must result in zero WER. Systems make
no simultaneous errors in such case, and therefore a single system making an error is
always outvoted by all others. Note, that this does not have be true for a set of sys-
tems with diagonal DWER matrix. On the other hand, dependent errors measured
by DWER can be seen as the worse variants of simultaneous errors, since any time
systems make dependent error, we need even more correct answers to outvote the
error. We can, therefore, intuitively expect, that system set, in order to be good for
combination, must generally have small values out of LBWER matrix and DWER
matrix diagonals (but perhaps also values on diagonals representing ordinary WERs
should be small, since performance of individual system is also important).

Both LBWER and DWER matrices are, however, not directly related to per-
formance of combined system. It can be proved on the following example showing
two sets of systems with identical LBWER and DWER matrix where combination
of systems from each set leads to different results.

a) b)

System 1

System 2

System 3

Figure 2: Different systems with the same DWER matrix.

Table 1: DWER matrix for both systems from figure 2.
Sys. 1 Sys. 2 Sys. 3

System 1 50 25 25
System 2 25 50 25
System 3 25 25 50

Figure 2a represents a set of three systems, where each row bar corresponding to
one system shows portion of correctly recognized words (white area) and incorrectly
recognized words (black area). Overlapping parts of black areas of two systems
correspond to simultaneous error between the systems. Let us assume that all si-
multaneous errors are also dependent errors in this example. Therefore LBWER
matrix for this system set, which is shown in table 1, will be identical to DWER
matrix. WERs of all individual systems are 50% (values in matrix diagonal), de-
pendent errors for all pairs of systems are 25% (values out of diagonal). Majority
voting based combination of systems from figure 2a would result in WER of 75%,
since all systems vote for correct word only for the portion corresponding to last
quarter of row bars. In all other cases, there are always two systems making error
outvoting the correct one. The combined systems therefore perform even worse than
the individual system. On the other hand, system combination not based only on
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majority voting can, for example, choose the output word using a word confidence
measure that in ideal case always prefers the correct word. Such combination can
still result in WER 0%, since, there is always at least one system producing the
correct word in figure 2a.

Figure 2b represents a set of systems that have LBWER and DWER matrices
identical to those obtained for system set from figure 2a. In this case however,
majority voting based combination would result in better WER of 25% and in oppo-
site, the mentioned word confidence measure based system combination cannot have
WER better then 25% since all systems make error for the portion corresponding
to first quarter of row bars. The difference is caused by the triple error dependency
(three systems make dependent error) that is already not captured in LBWER and
DWER matrices representing only dependences between pairs of systems.

Although it was shown that there is no direct relationship between performance
of combined systems 3 and values from LBWER and DWER matrices, we can still
expect that there is certain correlation between them. In the next section, experi-
mental setup will be described, where recognition systems using different feature sets
are combined by ROVER. LBWER and DWER matrices of these systems will be
analyzed and we will observe that LBWER and DWER measures can be useful for
selection of systems good for combination. In section 5, complementarity measures
for a whole set of systems are proposed, which are based on the values from LB-
WER and DWER matrices. Correlation between these measures and performance
of ROVER combining the system set is shown.

4.5 Experimental setup

Speech data from TI Connected Digits database [4] were used for both training and
testing of all recognition systems. Limited number of clean speech utterances were
selected for training (616 utterances from 4 male and 4 female speakers). Four types
of noise (subway, car, exhibition, babble) from AURORA2 TI Digits database [5]
were artificially added to speech data at SNR level 20dB and 10dB. The same 616
utterances were used to create data for all noisy conditions. Together 616× (1+4×
2) = 5544 utterances were used for training.

Test data were prepared in a similar manner. Here, 912 utterances from 12 male
and 12 female speakers were used, 4 noises used for training and four unseen noises
(train station, airport, restaurant, street) were added to test data. Additionally,
SNR 0dB condition was generated for both seen and unseen noises. Together 912×
(1 + 8× 3) = 22800 utterances were used for testing.

Nine recognition systems were trained, each using different feature extraction
method. The following feature extraction method were used:

• BSL - 15 Mel Frequency Cepstral Coefficients [3] augmented with their first
and second order derivatives (delta and double-delta), filter bank applied on
magnitude spectrum, 23 bands in Mel filter bank, 25 ms window length, 10 ms
frame rate, 5 frames delta and delta-delta window, frame energy is represented
by C0 coefficient

• LPCC 15 LPCC augmented with their derivatives (LPC order 15, other pa-
rameters similar to BSL features)

3At least for the combination techniques mentioned in the example.
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The name BSL stays for “baseline”, since all seven remaining feature extraction
methods are only modifications of BSL methods and always only one of their param-
eters is changed. In the following list, only the changed parameter of BSL features
is described:

• DA1 - delta and delta-delta window is 3 frames instead of 5 frames

• DA4 - delta and delta-delta window is 9 frames instead of 5 frames

• B15 - 15 bands are used in filter bank instead of 23 bands

• B30 - 30 bands are used in filter bank instead of 23 bands

• ENG - frame energy is computed as replacement for C0 coefficient

• POW - filter bank applied on power spectrum instead of magnitude spectrum

• NOE - only coefficients C1 to C14 are used (no C0 or frame energy)

Except the feature extraction part, all recognition systems are the same. Contin-
uous HMMs are used with output probability density function modeled by Gaussian
mixture (3 mixture components). Whole word models with left-to-right topology
(16 states for digits, 3 states for silence) are used.

Names of feature extraction methods will be used also to distinguish individual
systems in following text. For example, system using BSL features will be referred
as BSL system.

Table 2: Word Error Rates of individual recognizers.

Condition Clean Seen noises Unseen noises Seen

SNR level - 20dB 10dB 0dB 20dB 10dB 0dB cond.

System:
POW 1.11 1.70 4.55 48.50 1.50 3.70 37.03 2.90
DA4 1.34 1.58 4.65 48.67 1.45 3.63 36.34 2.91
30B 1.76 1.62 4.68 52.55 1.57 3.77 40.38 2.99
ENG 1.37 1.69 4.72 44.11 1.63 4.12 35.97 3.00
BLS 1.37 1.75 4.74 51.18 1.58 3.77 38.51 3.04
15B 1.63 1.63 5.03 51.66 1.54 4.20 40.94 3.14
LPCC 1.44 1.62 5.59 44.50 1.64 4.41 29.97 3.36
DA1 1.89 2.06 5.39 54.87 1.80 4.30 44.73 3.51
NOE 3.59 1.71 5.47 58.52 1.97 4.80 48.66 3.58

ROVER 9 1.14 1.41 4.14 49.55 1.35 3.38 37.38 2.59

Table 2 shows WER of all individual recognition systems for different levels of
SNR for both seen and unseen conditions. All values in the table for seen and unseen
noises are averaged accuracies for four seen or four unseen types of noise. In the
experiments, we will need single value representing the system performance, with
respect to which we can look for the optimal system combination. For this purpose,
we will use WER evaluated on subset of test data containing: clean data and data
corrupted by seen noises with SNR 20dB and 10dB. This data subset will be referred
as seen conditions test data. WERs for individual recognition systems evaluated on
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this subset can be seen in the last column of table 2. In the last row, there are WERs
for ROVER combination of all nine systems. The overall performance of ROVER
is generally better than performance of any individual system, however, for certain
conditions (clean speech and SNR 0dB) some system are able to even outperform
ROVER.

4.6 Analysis of LBWER and DWER matrices

Seen conditions test data are also used to derive LBWER and DWER matrices.
Here, one could object that test data should not be used for estimation of comple-
mentarity measures based on LBWER and DWER matrices. In our experiments, we
will see the correlation between proposed complementarity measures and the actual
recognition performance of combined system. We will be, however, interested in
the true correlation observed for the ideal case, where measures are estimated and
system is evaluated on the same data. We can also consider seen conditions test
data to be an evaluation set that is only intended to find the best combined system.
Another question is, how error dependency statistics estimated on this data set will
generalize for other test data. For this purpose, we can look at results obtained for
unseen noises, which are not used for estimation of LBWER and DWER matrices

For our set of nine systems, the estimate of LBWER matrix defined by equation 1
is shown in table 3. Values in the matrix diagonal are ordinary WERs of individ-
ual systems from the last column of table 2. Although LBWER matrix should be
symmetric, we can see that corresponding values slightly differ in table 3. In the
section 4.1, suboptimal alignment used in our experiments for estimation of LB-
WER and DWER was described and the importance of the order in which output
sequences of two systems are aligned with reference sequence was noticed. Each two
corresponding values in table 3 correspond to these two different alignment orders.
The differences between the corresponding values are, however, very small, which
proves the proper functionality of the suboptimal alignment method used. DWER
matrix with similar properties defined by equation 2 can be found in table 4.

In both tables 3 and 4, it can be directly observed, that values in the row and
column corresponding to system DA4 are considerably smaller than other values.
These lower values of LBWER and DWER indicate high complementarity of DA4
system with all other systems. More over, among the systems in our set, DA4 system
has second lowest WER. Therefore, it will be the hot candidate for combining.
Second system that seems to be quite complementary to other systems is LPCC.

Complementarity of both systems DA4 and LPCC is probably even more visi-
ble on figure 3, which is graphical representation of LBWER matrix. Bright rows
and and columns corresponding to DA4 and LPCC systems represent low LBWER
values. In opposite, we can see darker block representing LBWERs between sys-
tems POW, 30B, ENG and BSL, indicating higher error dependency between these
systems, which is (as we expect) caused by their lower complementarity. Figure 4
showing similar graphical representation of DWER matrix, is visually almost iden-
tical with figure 3.

Dependent errors were defined as a special case of simultaneous errors. Table 5
shows how many percent of simultaneous errors are also dependent errors for each
pair of systems. All values in the diagonal are 100%, which corresponds to the fact
that if two same systems are compared, all their errors are simultaneous errors and at
the same time also dependent errors. For any pair of systems, most of simultaneous
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Figure 3: LBWER matrix for set of nine systems.
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Figure 4: DWER matrix for set of nine systems.
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Table 3: LBWER matrix for set of nine systems.
System POW DA4 30B ENG BSL 15B LPCC DA1 NOE

POW 2.90 1.75 2.17 2.23 2.36 2.11 1.85 2.01 2.20
DA4 1.75 2.92 1.72 1.76 1.74 1.65 1.60 1.65 1.85
30B 2.18 1.71 3.00 2.17 2.46 2.01 1.77 2.09 2.09
ENG 2.22 1.75 2.16 3.00 2.25 2.03 1.92 2.10 2.17
BSL 2.36 1.74 2.46 2.26 3.04 2.03 1.80 2.14 2.19
15B 2.11 1.64 2.01 2.02 2.02 3.14 1.86 1.94 2.10
LPCC 1.85 1.59 1.77 1.91 1.80 1.86 3.36 1.81 1.86
DA1 2.01 1.65 2.09 2.10 2.14 1.94 1.82 3.52 2.03
NOE 2.19 1.85 2.09 2.17 2.18 2.09 1.87 2.02 3.59

Avg. 1.85 1.52 1.83 1.85 1.88 1.75 1.61 1.75 1.83

Table 4: DWER matrix for set of nine systems.
System POW DA4 30B ENG BSL 15B LPCC DA1 NOE

POW 2.90 1.51 1.97 2.02 2.22 1.89 1.62 1.76 1.88
DA4 1.52 2.92 1.43 1.50 1.50 1.36 1.33 1.43 1.56
30B 1.98 1.43 3.00 1.93 2.30 1.73 1.46 1.85 1.71
ENG 2.03 1.50 1.93 3.00 2.03 1.77 1.62 1.83 1.79
BSL 2.22 1.50 2.30 2.04 3.04 1.78 1.51 1.91 1.84
15B 1.89 1.36 1.73 1.78 1.79 3.14 1.56 1.64 1.79
LPCC 1.61 1.32 1.46 1.61 1.51 1.53 3.36 1.51 1.48
DA1 1.77 1.42 1.84 1.84 1.89 1.63 1.51 3.52 1.75
NOE 1.88 1.55 1.70 1.79 1.84 1.79 1.51 1.75 3.59

Avg. 1.66 1.29 1.59 1.61 1.67 1.50 1.35 1.52 1.53

errors are also dependent errors (between 79.7% and 94.2%). We can, therefore,
expect that measurement of complementarity based on LBWER will not be too
different from that based on DWER. Still there is visible difference in the percentage
of dependent errors for different pairs of systems, which justifies investigating both
kinds of complementarity measurements.

4.7 Redundancy of a system in the system set

As an objective measure of one system complementarity with all other systems in
the set, we propose to simply average values in LBWER or DWER matrix column
(or row) corresponding to the system. Ordinary WERs of the systems (values on
the diagonal) are excluded from averaging 4. These column averages can be seen in

4Including system’s own WERs in averaging can be seen as additional ”bonus” for systems with low

WER. That may be also important while selecting systems for their combination. The effect of including

or excluding WERs from complementarity measure computation will be demonstrated in experiments

described in section 5.
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Table 5: Percentage of dependent errors in simultaneous errors.
System POW DA4 30B ENG BSL 15B LPCC DA1 NOE

POW 100.0 86.7 90.6 90.6 94.2 89.7 87.5 87.6 85.5
DA4 86.7 100.0 83.1 85.3 86.2 82.0 83.0 86.6 84.1
30B 91.0 83.7 100.0 89.3 93.5 85.9 82.6 88.4 81.9
ENG 91.4 85.5 89.3 100.0 90.3 87.5 84.7 87.2 82.4
BSL 94.2 86.0 93.2 90.2 100.0 87.8 83.7 89.0 83.9
15B 89.5 83.0 86.1 88.0 88.2 100.0 84.0 84.5 85.5
LPCC 86.9 82.9 82.5 84.4 83.8 82.2 100.0 83.0 79.7
DA1 87.9 86.3 88.0 87.9 88.6 84.1 83.1 100.0 86.4
NOE 85.8 83.9 81.6 82.7 84.2 85.6 80.7 86.5 100.0

Table 6: ROVERing 8 of 9 systems. Some combinations of eight systems perform even
better than the combination of all nine systems with WER of 2.59%. WERs of such
combined systems are indicated by bold values in the table.
Excluded system POW DA4 30B ENG BSL 15B LPCC DA1 NOE

ROVER WER 2.49 2.66 2.61 2.58 2.54 2.61 2.63 2.62 2.61

the last rows of tables 3 and 4. In both tables, we observe that the lowest values in-
dicating high complementarity with other systems corresponds to systems DA4 and
LPCC, which is in agreement with our previous findings. In opposite, the highest
value indicating low complementarity corresponds to BSL system. This is an inter-
esting and natural finding, because all other systems (except of LPCC) use features
which are derived from BSL features by modifying only one of its parameters.

The proposed measurement of one system complementarity with all other sys-
tems is verified in the experiment, where only eight of nine systems are combined
using ROVER. Here, we are interested in performance degradation when exclud-
ing one particular system from combination. In the table 2, we saw that WER of
ROVER combination of all nine systems is 2.59%. Table 6 shows combined sys-
tem WERs depending on which system is excluded from combination. The highest
degradation is caused by omitting system DA4, followed by systems LPCC, which
were distinguished as two systems most complementary to other systems according
to proposed complementarity measures. In opposite, three least complementary sys-
tems according to the measures are BSL, POW and ENG. As can be seen in the
table 6, performance of ROVER even improves when excluding one of these three
systems from combination.

In the next experiment, ROVER was used to combine all possible subsets of
our system set, where each individual subset consist of three to nine systems. Five
subsets with the lowest combined systemWER are listed in table 7. All listed subsets
contain systems DA4, LPCC, 15B and DA1, which are the four most complementar
systems according to the measure based on LBWER and DWER matrix column
averaging. The subset with the lowest combined system WER, which consists only
of five systems, contains also BSL system, which is the worst system for combination
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Table 7: Five best ROVER combinations.
System set Combined systems WER [%]

best DA4 BSL 15B LPCC DA1 2.44
2nd best POW DA4 15B LPCC DA1 2.45
3rd best DA4 BSL 15B LPCC DA1 NOE 2.45
4th best DA4 30B BSL 15B LPCC DA1 NOE 2.45
5th best DA4 30B 15B LPCC DA1 2.46

according to the measures. We must, however, bring out that proposed measures
are correct only to measure suitability of a system for its combination with all
other systems. The measures handicap BSL system mainly because of its very low
complementarity with systems POW, 30B and ENG as can be seen, for example, in
figure 3 (dark fields in BSL row). None of these systems is, however, included in the
system subset with the lowest combined system WER. In opposite, brighter fields in
BSL row indicates that BSL system is quite complementary to other four systems.

Note that WER of the best ROVER system, which is 2.44%, corresponds to
15.9% relative WER improvement with respect to the best individual system POW
and to 5.8% relative WER improvement with respect to ROVER combining all nine
systems.

Table 8: Five best ROVER combinations - WER for different conditions.

Condition Clean Seen noises Unseen noises Seen

SNR level - 20dB 10dB 00dB 20dB 10dB 00dB cond.

POW 1.11 1.70 4.55 48.50 1.50 3.70 37.03 2.90
ROVER 9 1.14 1.41 4.14 49.55 1.35 3.38 37.38 2.59

System set
best 1.21 1.32 3.85 50.16 1.27 3.27 36.69 2.44

2nd best 1.11 1.27 3.96 49.12 1.26 3.27 36.27 2.45
3rd best 1.21 1.31 3.91 50.66 1.22 3.30 37.54 2.45
4th best 1.14 1.30 3.92 51.20 1.29 3.32 38.50 2.45
5th best 1.18 1.25 3.99 50.34 1.22 3.26 37.44 2.46

Table 8 shows WER of combined systems listed in the table 7 for individual noisy
conditions. This table can be compared with table 2 showing WERs for individual
systems and for ROVER combining all nine systems. For all five listed combined
systems, the highest improvement is observed for seen noises SNR 20dB and 10dB
(8/9 of data with respect to which we were searching for the optimal system com-
bination). We also observe good generalization for unseen noises for the same SNR
levels.
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5 Complementarity measures for set of systems

In the previous section, we have shown some connection between complementarity
of recognition systems, their suitability for system combination and LBWER and
DWER measures corresponding to these systems. Values from LBWER and DWER
matrices were used to make a decision which systems from a given set are comple-
mentary to others and which are redundant for system combination. However, it
would be practical to have a measure assigning a single value to a system set, that
would say how the systems from the set are good for combination. In the ideal
case, this measure would allow to select the subset of a large set of systems whose
combination would lead to lowest WER.

Several complementarity measures for a set of systems are proposed in this section
and the correlation between proposed measures and actual WER of combined system
is shown in experiments.

5.1 Average Lower Bound Word Error Rate (ALBWER)

In the section 4.4, we have expresed the presumption that the smaller values out
of the diagonal (and perhaps also on the diagonal) of LBWER matrix the better a
system set should be for combination. In the previous section, average of LBWER
matrix column was used as a measure of one system complementarity with all other
systems in the given set. As a natural extension, we propose to simply average all
values from LBWER matrix to obtain measure of overall complementarity among
systems in a set. Averaging is given by equation:

ALBWER(S) =

∑

i∈S

∑

j∈S LBWER(i, j)

|S|2
(3)

where S is a set of systems and |S| denotes number of systems in this set. In this
definition, WERs of individual systems (values on the diagonal) are also included in
the average. Alternative definition excluding individual WERs from averaging can
be expressed by following equation:

ALBWER′(S) =

∑

i∈S

∑

j∈S,j 6=i LBWER(i, j)

|S|2 − |S|
(4)

Note that both measures ALBWER and ALBWER’ become similar for higher num-
ber of elements (systems) in the set as the ratio between number of values in matrix
diagonal and values out of diagonal becomes smaller.

5.2 Average Dependent Word Error Rate (ADWER)

This measure is defined in the same manner as ALBWR measure. The only differ-
ence is that values from the DWER matrix are averaged instead of LBWER matrix
according to following equation:

ADWER(S) =

∑

i∈S

∑

j∈S DWER(i, j)

|S|2
(5)

Again, alternative measure ADWER’, where individual WERs are excluded from
averaging, is given by equation:

ADWER′(S) =

∑

i∈S

∑

j∈S,j 6=i DWER(i, j)

|S|2 − |S|
(6)
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5.3 Average Sum of LBWER and DWER (ALBWERDWER)

This measure is a combination of the previous two measures given by equation:

ALBWERDWER(S) =

∑

i∈S

∑

j∈S LBWER(i, j) + DWER(i, j)

|S|2
(7)

Every sum of LBWER and DWER in averaging can be regarded as measure of error
dependency similar to the LBWER where dependent errors are, however, counted
twice. This is in agreement with presumption that dependent errors are the worse
case of simultaneous errors (see section 4.4). Again, alternative measure ALBW-
ERDWER’ excluding individual WERs from averaging can be defined in the same
manner as measure ALBWER’ (equation 4).

5.4 Geometric Average of Lower Bound Word Error Rate
(GLBWER)

This measure is similar to ALBWER, however, geometric average is used instead of
arithmetic average. The measure is defined by following equation:

GLBWER(S) =
∏

i∈S

∏

j∈S

LBWER(i, j)
1

|S|2 (8)

Note that LBWER(i,j)
100 can be interpreted as a probability of simultaneous error made

by systems i and j. Under the assumption that these probabilities are independent
for each different pair of systems i and j, GLBWER measure is related to probability
that all systems make simultaneous error at the same time.

If two particular systems in a system set make no simultaneous error,
GLBWER measure for the set will be equal to zero. This however does not im-
ply zero WER for combined systems (at least for ROVER combination).

Measures GLBWER’, GDWER, GDWER’, etc. can be defined in the obvious
way. In our experiments, we will show that measures based on geometric average do
not differ significantly from those based on arithmetic average for the real data.

5.5 Experimental setup

In the experiments with system set complementarity measures, the same training
and testing data described in section 4.5 are used. Seen conditions test data are
used for estimation of LBWER and DWER matrices. All individual systems again
differ only in feature extraction part. Otherwise each system follows the description
in section 4.5. Two different sets each consisting of eleven individual systems are
used in these experiments to investigate generalization of proposed complementarity
measures.

Systems from the first set will be referred as systems with different features. These
systems are identical to those described in section 4.5, in addition two systems using
following new features, which are again derived from BSL features, were included to
the system set:

• W15 - 15ms window is used to compute spectrum of each frame instead of
25ms window. These features allow for more resolution in time in comparison
with BSL features
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• W35 - 35ms window is used to compute spectrum of each frame instead of
25ms window. Here feature vector of each frame represents longer time period,
however we do not gain more resolution in spectrum (as could be expected),
since the spectrum of each frame is smoothed by the 23 band Mel filter bank
used also for BSL features.
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Figure 5: LBWER matrix for systems with different feature.

Graphical representation of LBWER matrix for set of systems with different fea-
tures is shown in figure 5. Relatively low LBWER values in column corresponding to
system W15 indicates good complementarity of this newly added system with other
systems in the set.

Systems from the second set will be referred as systems with missing bands
MFCC. Features used by these systems are similar to BSL features where, however,
log energies of certain bands of Mel filter bank are ignored (always three consecutive
bands). Instead of DCT transform, PCA derived on training data is used to decor-
relate output of preserved filter bank bands. Features for individual systems differ
only in selection of bands that are ignored. Eleven of such systems are used in our
experiments:

• M1-3 - 1st, 2nd and 3rd band of Mel filter bank is ignored

• M3-5 - 3rd, 4th and 5th band of Mel filter bank is ignored

• M5-7 - 5th, 6th and 7th band of Mel filter bank is ignored

• ...

• M21-23 - 21st, 22nd and 23rd band of Mel filter bank is ignored
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Graphical representation of LBWER matrix for set of systems with missing bands
is shown in figure 6.
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Figure 6: LBWER matrix for systems with missing bands MFCC.

5.6 Correlation between combined system WER and system
set complementarity measures

The following experiments were carried out to investigate correlation between pro-
posed system set complementarity measures and corresponding combined system
WERs. From the systems set with different features, all subsets consisting of three
and eight systems were combined using ROVER and corresponding WERs were eval-
uated. Similarly, all subsets of three and eight systems were combined for the set
of systems with missing bands MFCC. Combination of three and eight systems was
chosen to show how complementarity measures are correlated with combined system
WER for combinations of only few (three) and larger number (eight) of systems.

Figure 7a shows WER of combined systems where subsets of systems with dif-
ferent features are combined. Each dot corresponds to one combination of three
systems and each cross corresponds to one combination of eight systems. Big bold
cross represents combination of all eleven systems. Axis Y represents WER of com-
bined system. Combined systems are ordered by their WER on X axis. As can
be seen in figure 7a, in average, combinations of eight systems perform better then
combinations of three systems, however, the best combinations of three systems (the
dots most on the left) perform much better then the worst combinations of eight
systems (crosses most on the right). There are few combinations of three systems
performing worse than the best individual system POW with WER 2.90% and in
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opposite the best such cobmination performes almost as well as the combination of
all eleven systems. Of course, the most interesting part of the figure is on the left
from the big bold cross, where systems are outperforming the combination of all
eleven systems. The best combined system in the figure with WER 2.38 is one of
the combinations of eight systems.

Similar figure 7b shows WER of combined systems where subsets of systems with
missing bands MFCC are combined. When combiningmissing bands MFCC systems,
the goal is to outperform BSL system with WER 3.04, which uses information from
all the bands. As can be seen in the figure, combination of all eleven systems
with WER 2.67 reaches the goal. Many combinations of three systems perform
worse than BSL system, on the other hand, there are combinations of three systems
outperforming even the combination of all eleven systems. The best combined system
in the figure with WER 2.51 is one of the combinations of eight systems.

Figure 8 shows correlation between WER of combined system (X axis) and av-
erage of WERs of corresponding individual systems (axis Y). Again, each dot, cross
and big cross in the figure corresponds to one combination of three, eight and eleven
systems respectively. Figure 8a shows that for systems with different features no
significant correlation can be observed. Therefore, we can conclude that for this
system set, WERs of individual systems are not important for selection of systems
suitable for combination. In figure 8b, for systems with missing bands MFCC, some
correlation between combined system WER and average WER of individual systems
can be seen. 5 As was shown in figure 6, for this system set, systems with lower
WER were generally more suitable for combination, however, it does not mean that
average WER of individual systems is the good measure of system complementarity.
We will see that the proposed complementarity measures are much more correlated
with corresponding WER of combined system.

In the following experiments, we will see a correlation between proposed system
set complementarity measures and corresponding combined system WER. We will
compare different measures and make conclusions about their performances for com-
binations of small number and larger number of systems. Properties of the measures
are again demonstrated on combinations of three and eight systems from set of sys-
tems with different features and set of systems with missing bands MFCC. Presented
results of these experiments may not seem to be sufficient to make some of the fol-
lowing conclusions, however, trends similar to those presented here were observed
also for different number of combined systems and for different sets of systems.

Figure 9 shows the correlation between combined system WER and correspond-
ing Average Lower Bound Word Error Rate (ALBWER) measure computed accord-
ing to equation 3. For both system sets and for combinations of three and eight
systems, visible correlation is observed between ALBWER measure and combined
system WER. For systems with missing band MFCC, much higher correlation is
observed in comparison to that seen in figure 8b.

Figure 10 shows the correlation between combined system WER and ALBWER’
measure (alternative definition of ALBWER measure excluding WERs of individual
systems from averaging), which is computed according to equation 4. In comparison
to ALBWER, this measure is less correlated with combined system WER for com-
binations of three systems (the dots are more spread around the line on which they
would ideally lay). This could be, however, specific only to ROVER combination

5Note that we must look at combinations of three systems and eight systems separately.
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with majority voting used in our experiments, where voting based on decision of
only few systems can be unreliable and actual WER of individual systems can by
more important. In opposite, comparing figures 9a and 10a, WER of combinations
of eight systems seems to be more correlated with ALBWER’ measure than with
ALBWER measure.

It can be seen in figure 10 that dots representing combinations of three systems
and crosses representing combinations of eight systems are concentrated around two
separate lines. Therefore, values of ALBWER’ measure can not be compared for
two sets with different number of systems. In other words, first, we must know
how many systems we want to combine and then we can use ALBWER’ measure to
choose which systems will be good for combination. The same rule applies for all
other proposed complementarity measure.

Figures 11 and 12 show complementarity measures based on averaging of values
of DWER matrix according to equations 5 and 6 respectively. Again, we observed
that ADWER measure is more correlated with three systems combination WERs
than ADWER’ and, in opposite, eight systems combination is more correlated with
ADWER’ measure. An interesting finding is that for higher number of combined
systems, measures ADWER and ADWER’ show higher correlation with WER of
combined system than measures ALBWER and ALBWER’.

In section 5.3, we proposed measure ALBWERDWER averaging sums of cor-
responding values from LBWER and DWER matrix. However, experiments with
this measure did not show any particular advantage of using this measure. Re-
sults obtained for this measure look simply as a compromise between ALBWER and
ADWER’ measure.

In section 5.4, measures based on geometric average of values from LBWER and
DWER matrix were proposed. Figure 13 demonstrate results obtained in experiment
with GLBWER measure given by equation 8. Again, no particular advantage of
using geometric average was observed. Results obtained for these measures were
almost identical to those obtained for corresponding measures based on arithmetic
average, specially for higher number of combined systems6.

6 Discussion and conclusions

Combination of different systems can be a powerful technique to improve recognition
performance. The success of these techniques is, however, contingent on complemen-
tarity of combined systems. Given a set of N systems, one way to determine the
subset of systems most suitable for combination is to exhaustively evaluate recogni-
tion performance for all possible system combinations. In the case of ROVER-like
combination of system output sequences, training and recognition must be performed
only once for each of N systems. Then, however, ROVER-like technique must be
applied for each combination of N systems, which may be not feasible for large val-
ues of N . From this point of view, combination on the feature level is even worse
case. Here, also the training and recognition must be performed for each combina-
tion of N systems, which increases the whole evaluation time in order of magnitudes.
For this reason, we have proposed measures of recognition systems complementarity,
which are based on measurement of error dependency of individual system outputs.
First, methods for measuring complementarity of two systems were proposed. These

6Comparing figures 13 and 9, relative positions of crosses are almost identical.
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measures can be computed very efficiently even for large set of systems. Training
and recognition must be performed only once for each of N systems, then technique
similar to ROVER is used to measure complementarity only for each pair of systems.
Simple averaging of these measures is used as an extension allowing to measure the
complementarity of a system subset. Correlation between these measures and ac-
tual performances of combined systems was shown in experiments, which indicates
that these measures can be advantageously used to select systems suitable for their
combination.
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Figure 7: ROVER WER for combinations of 4 and 7 ans all 11 systems.

23



2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9

2.95

3

3.05

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

ROVER WER [%]

A
ve

ra
ge

 W
E

R
 [%

]

    3
    8
    11

Number of
combined systems

a) Different features

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
3.2

3.4

3.6

3.8

4

ROVER WER [%]

A
ve

ra
ge

 W
E

R
 [%

]

    3
    8
    11

Number of
combined systems

b) Missing band MFCC
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Figure 9: Correlation between ALBWER and ROVER WER.
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Figure 10: Correlation between ALBWER’ and ROVER WER.
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Figure 11: Correlation between ADWER and ROVER WER.
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Figure 12: Correlation between ADWER’ and ROVER WER.
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Figure 13: Correlation between GLBWER and ROVER WER.
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