Doc. Ing. Lukáš Burget, Ph.D.
POVEY Daniel, BURGET Lukáš, AGARWAL Mohit, AKYAZI Pinar, FENG Kai, GHOSHAL Arnab, GLEMBEK Ondřej, GOEL Nagendra K., KARAFIÁT Martin, RASTROW Ariya, ROSE Richard, SCHWARZ Petr a THOMAS Samuel. Subspace Gaussian mixture models for speech recognition. In: Proc. International Conference on Acoustics, Speech, and Signal Processing. Dallas: IEEE Signal Processing Society, 2010, s. 4330-4333. ISBN 978-1-4244-4296-6. ISSN 1520-6149. | Jazyk publikace: | angličtina |
---|
Název publikace: | Subspace Gaussian mixture models for speech recognition |
---|
Název (cs): | Sub-space gaussovské modely pro rozpoznávání řeči |
---|
Strany: | 4330-4333 |
---|
Sborník: | Proc. International Conference on Acoustics, Speech, and Signal Processing |
---|
Konference: | International Conference on Acoustics, Speech, and Signal Processing 2010 |
---|
Místo vydání: | Dallas, US |
---|
Rok: | 2010 |
---|
ISBN: | 978-1-4244-4296-6 |
---|
Časopis: | Proc. International Conference on Acoustics, Speech, and Signal Processing, roč. 2010, č. 3, Piscataway, US |
---|
ISSN: | 1520-6149 |
---|
Vydavatel: | IEEE Signal Processing Society |
---|
URL: | http://www.fit.vutbr.cz/research/groups/speech/publi/2010/povey_icassp2010_4330.pdf [PDF] |
---|
Klíčová slova |
---|
Speech Recognition, Hidden Markov Models, Gaussian Mixture Models |
Anotace |
---|
Článek pojednává o sub-space gaussovských modelech pro rozpoznávání řeči. Popisujeme přístup akustického modelování, ve kterém všechny stavy fonetiky sdílejí stejnou gaussovskou strukturu. |
Abstrakt |
---|
We describe an acoustic modeling approach in which all phonetic states share a common Gaussian Mixture Model structure, and the means and mixture weights vary in a subspace of the total parameter space. We call this a Subspace Gaussian Mixture Model (SGMM). Globally shared parameters define the subspace. This style of acoustic model allows for a much more compact representation and gives better results than a conventional modeling approach, particularly with smaller amounts of training data. |
BibTeX: |
---|
@INPROCEEDINGS{
author = {Daniel Povey and Luk{\'{a}}{\v{s}} Burget and
Mohit Agarwal and Pinar Akyazi and Kai Feng and
Arnab Ghoshal and Ond{\v{r}}ej Glembek and K.
Nagendra Goel and Martin Karafi{\'{a}}t and Ariya
Rastrow and Richard Rose and Petr Schwarz and
Samuel Thomas},
title = {Subspace Gaussian mixture models for speech
recognition},
pages = {4330--4333},
booktitle = {Proc. International Conference on Acoustics, Speech, and
Signal Processing},
journal = {Proc. International Conference on Acoustics, Speech, and
Signal Processing},
volume = {2010},
number = {3},
year = {2010},
location = {Dallas, US},
publisher = {IEEE Signal Processing Society},
ISBN = {978-1-4244-4296-6},
ISSN = {1520-6149},
language = {english},
url = {http://www.fit.vutbr.cz/research/view_pub.php.cs?id=9311}
} |
|