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Abstract
This poster discusses effect of different frequency and time context of

input critical band spectrogram block in two stage TRAP-TANDEM feature
extraction. Best performance was observed when splitting input spectro-
gram into rather narrow frequency slices with long time context.

1 Probabilistic features
•Probabilistic features are class probabilities trans-

formed to the form suitable for the GMM/HMM rec-
ognizer.

•Class probabilities are estimated by a nonlinear clas-
sifier – feed-forward multi layer perceptron (MLP).

TANDEM – estimates class probabilities from several
consecutive frames of standard features.
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TRAP – estimates class probabilities from critical band
spectrogram. This is two stage process:

1. Class probabilities are estimated for each critical
band.

2. Critical band conditioned class probabilities are
combined into a final one.
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•Optimal size of critical band spectrogram block for
TRAP-TANDEM feature extraction – ?
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2 Computation of probabilistic
features
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3 Experimental setup
•Recognition of eleven concatenated digits.

•Test on the testing part of OGI Numbers database.

•HTK based GMM-HMM recognition system.

•Context independent phoneme models used.

•HMMs are trained on a training part of OGI Numbers
database

•A training part of OGI Numbers database was also
used for training the merger probability estimator.

•A subset of OGI Stories database was used for train-
ing the band conditioned probability estimators.

•29 phoneme targets (phonemes in numbers).

4 Changing frequency context
•Frequency context (K) vary from 1 to 15 bands

•Frequency shift between two neighboring critical
band spectrogram blocks is 1 band.

•Number of band conditioned MLPs is 15 − K + 1

•TRAP-TANDEM reduced to TANDEM when fre-
quency context of critical band spectrogram block
was 15 bands (no band conditioned estimators).

•Temporal context fixed at 101 frames.
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5 Changing time context
•Frequency context is fixed at 3 bands.

•Frequency shift between two neighboring critical
band spectrogram blocks is 1 band.

•Temporal context 31 to 101 frames → PCA returns
72 elements.

•Temporal context 13 to 31 frames → PCA returns 36
elements.
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6 Changing time and frequency
context

•PCA was not used in probabilistic features computa-
tion.

•Critical band spectrogram blocks do not overlap.
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7 Conclusion
•Word error rate has a wide and flat minimum for both

time and frequency contexts.

•Best performance was observed when splitting the
critical band spectrogram into blocks with narrow fre-
quency context around 4 bands.

•Beneficial to use temporal context between 50 and
90 frames (∼ 0.5 − 1 second).
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