Lattice structures for bisimilar Probabilistic Automata

Johann Schuster, Markus Siegle

Institut für Technische Informatik
Universität der Bundeswehr München
October 14, Infinity 2013

Outline

- Probabilistic Automata
- Bisimulations, quotients, isomorphisms, rescaledness
- Intersections in the finite case
- Infinite case: counterexample and results
- Conclusion

Probabilistic Automata（PA）

Definition

A probabilistic automaton（PA）P consists of
－a countable set of states S
－a countable set of actions Act $=\{\tau\} \dot{\cup} E$
－a nossibly uncountable set of transitions $T \subseteq S \times \operatorname{Act} \times \operatorname{Dist}(S)$
－an initial state s_{0}

Probabilistic Automata（PA）

Example

（B）

Definition

A probabilistic automaton（PA）P consists of
－a countable set of states S
－a countable set of actions $A c t=\{\tau\} \dot{U} E$
－a possibly uncountable set of transitions $T \subseteq S \times \operatorname{Act} \times \operatorname{Dist}(S)$
－an initial state s_{0}

Probabilistic Automata (PA)

Example

Definition

A probabilistic automaton (PA) P consists of

- a countable set of states S
- a countable set of actions $A c t=\{\tau\} \dot{\cup} E$
- a possibly uncountable set of transitions $T \subseteq S \times \operatorname{Act} \times \operatorname{Dist}(S)$
- an initial state s_{0}

Probabilistic Automata (PA)

Example

Definition

A probabilistic automaton (PA) P consists of

- a countable set of states S
- a countable set of actions $A c t=\{\tau\} \dot{\cup} E$
- a possibly uncountable set of transitions

$$
T \subseteq S \times \operatorname{Act} \times \operatorname{Dist}(S)
$$

- an initial state s_{0}

Probabilistic Automata (PA)

Example

Definition

A probabilistic automaton (PA) P consists of

- a countable set of states S
- a countable set of actions $A c t=\{\tau\} \dot{\cup} E$
- a possibly uncountable set of transitions $T \subseteq S \times$ Act $\times \operatorname{Dist}(S)$
- an initial state s_{0}

transitions

For $(s, a, \mu) \in T$ we also write $s \xrightarrow{a} \mu$

transitions

For $(s, a, \mu) \in T$ we also write $s \xrightarrow{a} \mu$

different types

	strong	weak
non-combined		$\underbrace{(\text { deterministic schedulers) }}$

Outline

- Probabilistic Automata
- Bisimulations, quotients, isomorphisms, rescaledness
- Intersections in the finite case
- Infinite case: counterexample and results
- Conclusion

Bisimulations

Definition (Strong bisimulation)
An equivalence relation R is called strong (probabilistic) bisimulation if for all actions $a \in$ Act it holds that sRt implies that for every $s \xrightarrow{a} \mu$ we find $t \xrightarrow{q} c \mu^{\prime}$, such that μ and μ^{\prime} coincide on equivalence classes. We write $P \sim P^{\prime}$ if the initial states are strongly probabilistic bisimilar.

Definition (Weak bisimulation)
An equivalence relation R is cal ed weak (probabilistic) bisimulation if for all actions $a \in$ Act it holds that sRt implies that for every $s \xrightarrow{a} \mu$ we find $t \stackrel{a}{\Rightarrow} \mu^{\prime}$, such that μ and μ^{\prime} coincide on equivalence classes. We write $P \approx P^{\prime}$ if the initial states are weakly probabilistic bisimilar.

Bisimulations

Definition (Strong bisimulation)

An equivalence relation R is called strong (probabilistic) bisimulation if for all actions $a \in$ Act it holds that $s R t$ implies that for every $s \xrightarrow{a} \mu$ we find $t \xrightarrow{a} c \mu^{\prime}$, such that μ and μ^{\prime} coincide on equivalence classes. We write $P \sim P^{\prime}$ if the initial states are strongly probabilistic bisimilar.

> Definition (Weak bisimulation)
An equivalence relation R is called weak (probabilistic) bisimulation if for all actions $a \in$ Act it holds that $s R t$ implies that for every $s \rightarrow \mu$ we find $t \vec{c}_{c} \mu^{\prime}$, such that μ and μ^{\prime} coincide on equivalence classes. We write $P \approx P^{\prime}$ if the initial states are weakly probabilistic bisimilar.

Bisimulations

Definition (Strong bisimulation)

An equivalence relation R is called strong (probabilistic) bisimulation if for all actions $a \in$ Act it holds that $s R t$ implies that for every $s \xrightarrow{a} \mu$ we find $t \xrightarrow{a}{ }_{c} \mu^{\prime}$, such that μ and μ^{\prime} coincide on equivalence classes. We write $P \sim P^{\prime}$ if the initial states are strongly probabilistic bisimilar.

Definition (Weak bisimulation)

An equivalence relation R is called weak (probabilistic) bisimulation if for all actions $a \in$ Act it holds that $s R t$ implies that for every $s \xrightarrow{a} \mu$ we find $t \stackrel{a}{\Rightarrow}{ }_{c} \mu^{\prime}$, such that μ and μ^{\prime} coincide on equivalence classes. We write $P \approx P^{\prime}$ if the initial states are weakly probabilistic bisimilar.

Isomorphic automata

Definition (Isomorphic automata)
Two automata P and P^{\prime} are called isomorphic if they coincide after relabelling their states. For isomorphic automata we write $P \equiv_{i s o} P^{\prime}$.

Isomorphic automata

Definition (Isomorphic automata)
Two automata P and P^{\prime} are called isomorphic if they coincide after relabelling their states. For isomorphic automata we write $P \equiv_{i s o} P^{\prime}$.

Example

Isomorphic automata

Definition (Isomorphic automata)
Two automata P and P^{\prime} are called isomorphic if they coincide after relabelling their states. For isomorphic automata we write $P \equiv_{i s o} P^{\prime}$.

Example

Quotients

Definition (Quotient automaton)

Let $P=\left(S, A c t, T, s_{0}\right)$ be a PA and R an equivalence relation over S. We write P / R to denote the quotient automaton of P wrt. R, that is

$$
P / R=\left(S / R, A c t, T / R,\left[s_{0}\right]_{R}\right)
$$

We call an automaton a quotient wrt. R if it holds that $P \equiv_{i s o} P / R$.

Quotients

Definition (Quotient automaton)

Let $P=\left(S, A c t, T, s_{0}\right)$ be a PA and R an equivalence relation over S. We write P / R to denote the quotient automaton of P wrt. R, that is

$$
P / R=\left(S / R, A c t, T / R,\left[s_{0}\right]_{R}\right)
$$

We call an automaton a quotient wrt. R if it holds that $P \equiv_{i s o} P / R$.

Example

P

P/

Rescaled automata

Definition (Rescaledness)

An automaton P is called rescaled if for all its transitions $s \xrightarrow{\tau} \mu$ it holds that $\mu(s)=0$ or $\mu(s)=1$.

Lemma
 For every automaton P there is a rescaled automaton P^{\prime} such that $P \approx P^{\prime}$

Rescaled automata

Definition (Rescaledness)

An automaton P is called rescaled if for all its transitions $s \xrightarrow{\tau} \mu$ it holds that $\mu(s)=0$ or $\mu(s)=1$.

Lemma

For every automaton P there is a rescaled automaton P^{\prime} such that $P \approx P^{\prime}$

Rescaled automata

Definition (Rescaledness)

An automaton P is called rescaled if for all its transitions $s \xrightarrow{\tau} \mu$ it holds that $\mu(s)=0$ or $\mu(s)=1$.

Lemma

For every automaton P there is a rescaled automaton P^{\prime} such that $P \approx P^{\prime}$

Example

Outline

- Probabilistic Automata
- Bisimulations, quotients, isomorphisms, rescaledness
- Intersections in the finite case
- Infinite case: counterexample and results
- Conclusion

Known facts on lattice structures for finite automata

> The following lemma is our interpretation of a result from Segala/Cattani '02.

Lemma

The intersection of strongly bisimilar finite (finitely many states and transitions) quotient automata is again bisimilar.

Known facts on lattice structures for finite automata

The following lemma is our interpretation of a result from Segala/Cattani '02.

Lemma

The intersection of strongly bisimilar finite (finitely many states and transitions) quotient automata is again bisimilar.

Example

Known facts on lattice structures for finite automata

The following lemma is our interpretation of a result from Segala/Cattani '02.

Lemma

The intersection of strongly bisimilar finite (finitely many states and transitions) quotient automata is again bisimilar.

Example

Known facts on lattice structures for finite automata

This gives rise to a lattice structure on bisimilar quotients:

Example (Underlying partial order of previous example)

Known facts on lattice structures for finite automata

The following lemma is our interpretation of a result from Eisentraut et al. '13.

Lemma

The intersection of weakly bisimilar rescaled finite (finitely many states and transitions) quotient automata is again bisimilar.

Known facts on lattice structures for finite automata

The following lemma is our interpretation of a result from Eisentraut et al. '13.

Lemma

The intersection of weakly bisimilar rescaled finite (finitely many states and transitions) quotient automata is again bisimilar.

Example

Known facts on lattice structures for finite automata

The following lemma is our interpretation of a result from Eisentraut et al. '13.

Lemma

The intersection of weakly bisimilar rescaled finite (finitely many states and transitions) quotient automata is again bisimilar.

Example

Universität der Bundeswehr München

Known facts on lattice structures for finite automata

This gives rise to a lattice structure on bisimilar rescaled quotients:

Example (Underlying partial order of previous example)

Outline

- Probabilistic Automata
- Bisimulations, quotients, isomorphisms, rescaledness
- Intersections in the finite case
- Infinite case: counterexample and results
- Conclusion

Counterexample for the infinite case

Lemma (no canonical extension to infinite case)
The intersection of strongly bisimilar infinite quotient automata does not have to be bisimilar.

Counterexample for the infinite case

Lemma (no canonical extension to infinite case)
The intersection of strongly bisimilar infinite quotient automata does not have to be bisimilar.

Counterexample

\sim

Our goal

Main objective of this work
 We search conditions where the intersection behaves well, i.e. we get lattice structures.

What we need
 - metrics on distributions
 - compact automata

Our goal

Main objective of this work
We search conditions where the intersection behaves well, i.e. we get lattice structures.

What we need

- metrics on distributions
- compact automata

Segala/Cattani sets

Segala/Cattani defined convex sets of reachable distributions:

- $S_{\approx}(s, a):=\left\{\mu \in \operatorname{Dist}(S) \mid s \Rightarrow_{C} \mu\right\} / \approx$

Segala/Cattani sets

Segala/Cattani defined convex sets of reachable distributions:

- $S_{\sim}(s, a):=\left\{\mu \in \operatorname{Dist}(S) \mid s{ }_{\rightarrow}^{a}{ }_{C} \mu\right\} / \sim$
- $\left.S \approx(s, a):=\left\{\mu \in \operatorname{Dist}(S) \mid s{ }_{c}{ }_{c}\right\}\right\} / \approx$

Segala/Cattani sets

Segala/Cattani defined convex sets of reachable distributions:

- $S_{\sim}(s, a):=\left\{\mu \in \operatorname{Dist}(S) \mid s{ }^{a}{ }_{C} \mu\right\} / \sim$
- $S_{\approx}(s, a):=\left\{\mu \in \operatorname{Dist}(S) \mid s{ }_{\underline{G}}^{C} C \mu\right\} / \approx$

Segala/Cattani sets

Segala/Cattani defined convex sets of reachable distributions:

- $S_{\sim}(s, a):=\left\{\mu \in \operatorname{Dist(S)|ss_{c}{}_{c}\mu \} /\sim }\right.$
- $S_{\approx(s, a)}:=\left\{\mu \in \operatorname{Dist(S)|s{}_{c}{}_{c}c\mu \} } / \approx\right.$

Example $\left(S_{\sim}\left(s_{1}, \tau\right)\right)$

Segala/Cattani sets

Segala/Cattani defined convex sets of reachable distributions:

- $S_{\sim}(s, a):=\left\{\mu \in D i s t(S) \mid s^{a}{ }_{c} \mu\right\} / \sim$
- $S_{\approx(s, a)}:=\left\{\mu \in \operatorname{Dist}(S) \mid s s_{c}^{a} c \mu\right\} / \approx$

Example $\left(S_{\sim}\left(s_{1}, \tau\right)\right)$

Metric spaces

Definition (Desharnais et al. '10)

$$
d\left(\mu_{1}, \mu_{2}\right):=\sup _{A \subseteq S}\left|\mu_{1}(A)-\mu_{2}(A)\right|
$$

Lemma
 d is a metric on distributions over S

Metric spaces of Segala/Cattani sets
$\left(S_{\sim}(s, a), d\right)$ and $\left(S_{\sim}(s, a), d\right)$ are met ic spaces

Metric spaces

Definition (Desharnais et al. '10)

$$
d\left(\mu_{1}, \mu_{2}\right):=\sup _{A \subseteq S}\left|\mu_{1}(A)-\mu_{2}(A)\right|
$$

Lemma

d is a metric on distributions over S

```
Metric spaces of Segala/Cattani sets
(S
```


Metric spaces

Definition (Desharnais et al. ' 10)

$$
d\left(\mu_{1}, \mu_{2}\right):=\sup _{A \subseteq S}\left|\mu_{1}(A)-\mu_{2}(A)\right|
$$

Lemma

d is a metric on distributions over S

Metric spaces of Segala/Cattani sets
$\left(S_{\sim}(s, a), d\right)$ and $\left(S_{\approx}(s, a), d\right)$ are metric spaces

Products

We consider product metric spaces $\left(\prod_{(s, a) \in S \times A c t} S_{R}(s, a), d\right)$ where $d(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{d_{i}\left(x_{i}, y_{i}\right)}{1+d_{i}\left(x_{i}, y_{i}\right)}$.

Definition
 An automaton is called compact, if the associated metric space ($\left.\prod_{(s, a) \in S \times A c t} S_{R}(s, a), d\right)$ is compact.

Products

We consider product metric spaces $\left(\prod_{(s, a) \in S \times A c t} S_{R}(s, a), d\right)$ where $d(x, y)=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \frac{d_{i}\left(x_{i}, y_{i}\right)}{1+d_{i}\left(x_{i}, y_{i}\right)}$.

Definition

An automaton is called compact, if the associated metric space $\left(\prod_{(s, a) \in S \times A c t} S_{R}(s, a), d\right)$ is compact.

Main result

The following theorem gives the big picture:

Theorem
 For compact automata, intersections of strongly bisimilar quotient automata are again bisimilar

Theorem

For comnact automata, intersections of weakly bisimilar rescaled quotient automata are again bisimilar

Corollary
This includes also the finite case (finitely many states and transitions)

Main result

The following theorem gives the big picture:

Theorem

For compact automata, intersections of strongly bisimilar quotient automata are again bisimilar

Theorem
 For compact automata, intersections of bisimilar quotient automata are again bisimilar
 This includes also the finite case (finitely many states and transitions)

Main result

The following theorem gives the big picture:

Theorem

For compact automata, intersections of strongly bisimilar quotient automata are again bisimilar

Theorem

For compact automata, intersections of weakly bisimilar rescaled quotient automata are again bisimilar

This includes also the finite case (finitely many states and transitions)

Main result

The following theorem gives the big picture:

Theorem

For compact automata, intersections of strongly bisimilar quotient automata are again bisimilar

Theorem

For compact automata, intersections of weakly bisimilar rescaled quotient automata are again bisimilar

Corollary

This includes also the finite case (finitely many states and transitions)

...and what about the counterexample?

Universität 鳃 München

...and what about the counterexample?

Compactification - intersection again bisimilar

Universität der Bundeswehr München

Bounded and unbounded lattices

Theorem

Considering also unreachable parts of the state spaces for compact quotient automata leads to unbounded lattices, i.e. no upper bound.

Bounded and unbounded lattices

Theorem

Considering also unreachable parts of the state spaces for compact quotient automata leads to unbounded lattices, i.e. no upper bound.

Example (proof idea)

- add a unreachable state s_{c} with $s_{c} \xrightarrow{\tau} c \Delta_{1} \oplus(1-c) \Delta_{2}$
- $c \in[0,1] \subset \mathbb{R}$: uncountably many s_{c} 's cannot be covered in a countable state space

Bounded and unbounded lattices

Theorem

Considering also unreachable parts of the state spaces for compact quotient automata leads to unbounded lattices, i.e. no upper bound.

Example (proof idea)

- add a unreachable state s_{c} with $s_{c} \xrightarrow{\tau} c \Delta_{1} \oplus(1-c) \Delta_{2}$

- $c \in[0,1] \subset \mathbb{R}$: uncountably many s_{C} 's cannot be covered in a countable state space

Bounded and unbounded lattices

Theorem

Considering also unreachable parts of the state spaces for compact quotient automata leads to unbounded lattices, i.e. no upper bound.

Example (proof idea)

- add a unreachable state s_{c} with $s_{c} \xrightarrow{\tau} c \Delta_{1} \oplus(1-c) \Delta_{2}$
- $c \in[0,1] \subset \mathbb{R}$: uncountably many s_{c} 's cannot be covered in a countable state space

Bounded and unbounded lattices

Theorem
Restriction to reachable state spaces for compact quotient automata leads to bounded lattices.

Summing up

Conclusion

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form
- main problem: calculate quotient automata of infinite PA

Summing up

Conclusion

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form
- main problem: calculate quotient automata of infinite PA

Summing up

Conclusion

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form
- main problem: calculate quotient automata of infinite PA

Summing up

Conclusion

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form
- main problem: calculate quotient automata of infinite PA

Summing up

Conclusion

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form
- main problem: calculate quotient automata of infinite PA

