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A probabilistic automaton (PA) P consists of
@ a countable set of states S
@ a countable set of actions Act= {r} UE

@ a possibly uncountable set of transitions
T C Sx Act x Dist(S)

o an initial state s
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For (s,a, 1) € T we also write s
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An equivalence relation Ris called strong (probabilistic)
bisimulation if for all actions a € Actit holds that sRtimplies that
for every s % ; we find t —°. ;/, such that 4 and x’ coincide on
equivalence classes. We write P ~ ' if the initial states are
strongly probabilistic bisimilar.
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Definition (Strong bisimufaion)

An equivalence relation Ris called strong (probabilistic)
bisimulation if for all actions a € Actit holds that sRtimplies that
for every s % ; we find t —°. ;/, such that 4 and x’ coincide on
equivalence classes. We write P ~ ' if the initial states are
strongly probabilistic bisimilar. )
Definition (Weak bisimulation)
An equivalence relation Ris called weak (probabilistic)
bisimulation if for all actions a € Actit holds that sRtimplies that
for every s % ; we find t =% ;/, such that  and x’ coincide on

equivalence classes. We write P ~ P’ if the initial states are
weakly probabilistic bisimilar.




Two automata P and P’ are called isomorphic if they coincide
after relabelling their states. For isomorphic automata we write
P Eiso P’
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Two automata P and P’ are called isomorphic if they coincide
after relabelling their states. For isomorphic automata we write
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Two automata P and P’ are called isomorphic if they coincide
after relabelling their states. For isomorphic automata we write
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Let P= (S Act T,s) be a PA and R an equivalence relation
wrt. R, that is

over S. We write P/r to denote the quotient automaton of P

F/R= (SR, Act T/R, [o]Rr)-

We call an automaton a quotient wrt. Rif it holds that P =iso P/R.
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Let P =

(S Act T,s) be a PA and R an equivalence relation
over S We write P/R to denote the quotient automaton of P
wrt. R, that is

F/R = (§/R, Act, T/R, [so]Rr)

We call an automaton a quotient wrt. Rif it holds that P =5, P/R
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An automaton P is called rescaled if for all its transitions s =
it holds that y(s) = 0 or u(s) = 1.
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An automaton P is called rescaled if for all its transitions s =
it holds that u(s) = 0 or u(s) = 1.

For every automaton P there is a rescaled automaton P’ such
that P ~ P/

ehr
linchen
- - Dar



An automaton P is called rescaled if for all its transitions s =
it holds that u(s) = 0 or u(s) = 1.

For every automaton P there is a rescaled automaton P’ such
that P ~ P/

rescale €
loop
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The following lemma is our interpretation of a result from
Segala/Cattani '02.

The intersection of strongly bisimilar finite (finitely many states
and transitions) quotient automata is again bisimilar.
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The following lemma is our interpretation of a result from
Segala/Cattani '02.

The intersection of strongly bisimilar finite (finitely many states
and transitions) quotient automata is again bisimilar.




This gives rise to a lattice structure on bisimilar quotients:
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The following lemma is our interpretation of a result from
Eisentraut et al. '13.

The intersection of weakly bisimilar rescaled finite (finitely many
states and transitions) quotient automata is again bisimilar.
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Eisentraut et al. '13.

The intersection of weakly bisimilar rescaled finite (finitely many
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The following lemma is our interpretation of a result from
Eisentraut et al. '13.

The intersection of weakly bisimilar rescaled finite (finitely many
states and transitions) quotient automata is again bisimilar.




This gives rise to a lattice structure on bisimilar rescaled
guotients:
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The intersection of strongly bisimilar infinite quotient automata
does not have to be bisimilar.




The intersection of strongly bisimilar infinite quotient automata
does not have to be bisimilar.




We search conditions where the intersection behaves well,
i.e. we get lattice structures.




We search conditions where the intersection behaves well,
i.e. we get lattice structures.

@ metrics on distributions
@ compact automata
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Segala/Cattani defined convex sets of reachable distributions:
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Segala/Cattani defined convex sets of reachable distributions:
o S.(s a) := {neDis(S)|s>cu}/n
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Segala/Cattani defined convex sets of reachable distributions:
o S.(s a) := {neDis(S)|s>cu}/n
@ S.(s a) := {neDist(S)ls2cu}/~
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Segala/Cattani defined convex sets of reachable distributions:
@ S_(s ) := {neDist(S)|sScu}/~

o S.(s ) = {neDistSIsteul/~
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Segala/Cattani defined convex sets of reachable distributions:
@ S_(s ) := {neDist(S)|sScu}/~
® S.(s a) := {neDist(S)|sScu}/~
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d(p1, pi2) = SUpncs|pa(A) — pa(A)|
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d(p1, pi2) = SUpncs|pa(A) — pa(A)|

d is a metric on distributions over S l
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d(p1, p2) = supcs|pa(A) — p2(A)] I
d is a metric on distributions over S I

(S.(s,a),d) and (S<(s,a),d) are metric spaces
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We consider product metric spaces (][ (s aesxact R(S, @), d)
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where d(x,y) = >, 2T ()




We consider product metric spaces (][ (s aesxact R(S, @), d)

where d(x,y) = >, %%

An automaton is called compact, if the associated metric space
(H(s,a)esmctSR(S, a),d) is compact.
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The following theorem gives the big picture:
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The following theorem gives the big picture:

For compact automata, intersections of strongly bisimilar
guotient automata are again bisimilar
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The following theorem gives the big picture:

For compact automata, intersections of strongly bisimilar
guotient automata are again bisimilar

For compact automata, intersections of weakly bisimilar
rescaled quotient automata are again bisimilar
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The following theorem gives the big picture:

For compact automata, intersections of strongly bisimilar
guotient automata are again bisimilar

For compact automata, intersections of weakly bisimilar
rescaled quotient automata are again bisimilar

This includes also the finite case (finitely many states and
transitions)
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Considering also unreachable parts of the state spaces for
compact quotient automata leads to unbounded lattices, i.e. no
upper bound.
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Considering also unreachable parts of the state spaces for

compact quotient automata leads to unbounded lattices, i.e. no
upper bound.
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Considering also unreachable parts of the state spaces for
compact quotient automata leads to unbounded lattices, i.e. no
upper bound.

o

@ add a unreachable state s; with s; = cA; @ (1-c0c)A;
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Considering also unreachable parts of the state spaces for
compact quotient automata leads to unbounded lattices, i.e. no
upper bound.

@ add a unreachable state s; with s; = cA; @ (1-c0c)A;

@ c € [0,1] C R: uncountably many s's cannot be covered in
a countable state space
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Restriction to reachable state spaces for compact quotient
automata leads to bounded lattices.
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@ new viewpoint to bisimilar quotient automata

@ deep structure in quotients of bisimilar automata (up to

isomorphism)

@ intersection of all elements in the lattice leads to canonical

normal form

@ main problem: calculate quotient automata of infinite PA
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@ new viewpoint to bisimilar quotient automata

@ deep structure in quotients of bisimilar automata (up to
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@ new viewpoint to bisimilar quotient automata

@ deep structure in quotients of bisimilar automata (up to
isomorphism)

o intersection of all elements in the lattice leads to canonical
normal form
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@ new viewpoint to bisimilar quotient automata

@ deep structure in quotients of bisimilar automata (up to
isomorphism)

o intersection of all elements in the lattice leads to canonical
normal form

@ main problem: calculate quotient automata of infinite PA
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