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Probabilistic Automata (PA)

Example

Definition

A probabilistic automaton (PA) P consists of

a countable set of states S

a countable set of actions Act= {τ}
.

∪ E

a possibly uncountable set of transitions
T ⊆ S× Act× Dist(S)

an initial state s0
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transitions

For (s,a, µ) ∈ T we also write s
a
→ µ

different types

strong weak

non-combined

(deterministic schedulers) a
→

0−n times
︷ ︸︸ ︷
τ
→ · · ·

τ
→

a
→

0−m times
︷ ︸︸ ︷
τ
→ · · ·

τ
→

︸ ︷︷ ︸
a
⇒

combined
(randomized schedulers) a

→c
a
⇒c
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Bisimulations

Definition (Strong bisimulation)

An equivalence relation R is called strong (probabilistic)
bisimulation if for all actions a ∈ Act it holds that sRt implies that
for every s

a
→ µ we find t

a
→c µ

′, such that µ and µ′ coincide on
equivalence classes. We write P ∼ P′ if the initial states are
strongly probabilistic bisimilar.

Definition (Weak bisimulation)

An equivalence relation R is called weak (probabilistic)
bisimulation if for all actions a ∈ Act it holds that sRt implies that
for every s

a
→ µ we find t

a
⇒c µ

′, such that µ and µ′ coincide on
equivalence classes. We write P ≈ P′ if the initial states are
weakly probabilistic bisimilar.
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Isomorphic automata

Definition (Isomorphic automata)

Two automata P and P′ are called isomorphic if they coincide
after relabelling their states. For isomorphic automata we write
P ≡iso P′.

Example
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Quotients

Definition (Quotient automaton)

Let P = (S,Act,T, s0) be a PA and R an equivalence relation
over S. We write P/R to denote the quotient automaton of P
wrt. R, that is

P/R = (S/R,Act, T/R, [s0]R).

We call an automaton a quotient wrt. R if it holds that P ≡iso P/R.

Example
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Rescaled automata

Definition (Rescaledness)

An automaton P is called rescaled if for all its transitions s
τ
→ µ

it holds that µ(s) = 0 or µ(s) = 1.

Lemma

For every automaton P there is a rescaled automaton P′ such
that P ≈ P′

Example
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Known facts on lattice structures forfiniteautomata

The following lemma is our interpretation of a result from
Segala/Cattani ’02.

Lemma

The intersection of strongly bisimilar finite (finitely many states
and transitions) quotient automata is again bisimilar.

Example
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Known facts on lattice structures forfiniteautomata

This gives rise to a lattice structure on bisimilar quotients:

Example (Underlying partial order of previous example)
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Known facts on lattice structures forfiniteautomata
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Lemma

The intersection of weakly bisimilar rescaled finite (finitely many
states and transitions) quotient automata is again bisimilar.

Example

Johann Schuster Infinity 2013 (13 / 25)



Known facts on lattice structures forfiniteautomata

The following lemma is our interpretation of a result from
Eisentraut et al. ’13.

Lemma

The intersection of weakly bisimilar rescaled finite (finitely many
states and transitions) quotient automata is again bisimilar.

Example

1/2

1

1/2

2

t

3

t

t 1

1

2 3

t

1
~1/4

3/4 1/2

1/2

t

t 1

~

t

1

1

ba

1 1

a

1

b

Johann Schuster Infinity 2013 (13 / 25)



Known facts on lattice structures forfiniteautomata

The following lemma is our interpretation of a result from
Eisentraut et al. ’13.

Lemma

The intersection of weakly bisimilar rescaled finite (finitely many
states and transitions) quotient automata is again bisimilar.

Example

1/2

1

1/2

2

t

3

t

t 1

1

2 3

t

1
=

U
1/4

3/4 1/2

1/2

t

t 1

1

2 3

1/2

1/2

t

t 1

t

1

1

ba

1 11

a

1

a

1

b b

Johann Schuster Infinity 2013 (13 / 25)



Known facts on lattice structures forfiniteautomata

This gives rise to a lattice structure on bisimilar rescaled
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Counterexample for the infinite case

Lemma (no canonical extension to infinite case)

The intersection of strongly bisimilar infinite quotient automata
does not have to be bisimilar.

Counterexample
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Our goal

Main objective of this work

We search conditions where the intersection behaves well,
i.e. we get lattice structures.

What we need

metrics on distributions

compact automata
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Segala/Cattani sets

Segala/Cattani defined convex sets of reachable distributions:

S∼(s,a) := {µ∈Dist(S)|s
a
→Cµ}/∼

S≈(s,a) := {µ∈Dist(S)|s
a
⇒Cµ}/≈

Example (S∼(s1, τ))
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Metric spaces

Definition (Desharnais et al. ’10)

d(µ1, µ2) := supA⊆S|µ1(A)− µ2(A)|

Lemma

d is a metric on distributions over S

Metric spaces of Segala/Cattani sets

(S∼(s,a),d) and (S≈(s,a),d) are metric spaces
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Products

We consider product metric spaces (
∏

(s,a)∈S×Act SR(s,a),d)

where d(x, y) =
∑∞

i=1
1
2i

di(xi ,yi)
1+di(xi ,yi)

.

Definition

An automaton is called compact, if the associated metric space
(
∏

(s,a)∈S×Act SR(s,a),d) is compact.
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Main result

The following theorem gives the big picture:

Theorem

For compact automata, intersections of strongly bisimilar
quotient automata are again bisimilar

Theorem

For compact automata, intersections of weakly bisimilar
rescaled quotient automata are again bisimilar

Corollary

This includes also the finite case (finitely many states and
transitions)
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...and what about the counterexample?

Counterexample - not compact
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...and what about the counterexample?

Compactification - intersection again bisimilar
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Bounded and unbounded lattices

Theorem

Considering also unreachable parts of the state spaces for
compact quotient automata leads to unbounded lattices, i.e. no
upper bound.

Example (proof idea)

add a unreachable state sc with sc
τ
→ c∆1 ⊕ (1− c)∆2

c ∈ [0,1] ⊂ R: uncountably many sc’s cannot be covered in
a countable state space
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Bounded and unbounded lattices

Theorem

Restriction to reachable state spaces for compact quotient
automata leads to bounded lattices.
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Summing up

Conclusion

new viewpoint to bisimilar quotient automata

deep structure in quotients of bisimilar automata (up to
isomorphism)

intersection of all elements in the lattice leads to canonical
normal form

main problem: calculate quotient automata of infinite PA
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