Lattice structures for bisimilar Probabilistic Automata

Johann Schuster, Markus Siegle

Institut für Technische Informatik Universität der Bundeswehr München

October 14, Infinity 2013

< □ > < 同 >

- Probabilistic Automata
- Bisimulations, quotients, isomorphisms, rescaledness
- Intersections in the finite case
- Infinite case: counterexample and results
- Conclusion

Example

Definition

A probabilistic automaton (PA) P consists of

- a countable set of states S
- a countable set of actions $Act = \{\tau\} \stackrel{.}{\cup} E$
- a possibly uncountable set of transitions $T \subseteq S \times Act \times Dist(S)$
- an initial state s_0

<mark>ünchen</mark> ภุณุ ๙

Definition

A probabilistic automaton (PA) P consists of

- a countable set of states S
- a countable set of actions $Act = \{\tau\} \stackrel{.}{\cup} E$
- a possibly uncountable set of transitions $T \subseteq S \times Act \times Dist(S)$
- an initial state s_0

<mark>ünchen</mark> ภุงุ ๙

Definition

A probabilistic automaton (PA) P consists of

- a countable set of states S
- a countable set of actions $Act = \{\tau\} \stackrel{.}{\cup} E$
- a possibly uncountable set of transitions $T \subseteq S \times Act \times Dist(S)$
- an initial state s_0

<mark>ünchen</mark> ภุงุ ๙

Definition

A probabilistic automaton (PA) P consists of

- a countable set of states S
- a countable set of actions $Act = \{\tau\} \stackrel{.}{\cup} E$
- a possibly uncountable set of transitions $T \subseteq S \times Act \times Dist(S)$
- an initial state s_0

<mark>ünchen</mark> ภุณุ ๙

Definition

A probabilistic automaton (PA) P consists of

- a countable set of states S
- a countable set of actions $Act = \{\tau\} \stackrel{.}{\cup} E$
- a possibly uncountable set of transitions $T \subseteq S \times Act \times Dist(S)$
- an initial state s₀

<mark>ünchen</mark> ภุณุ ๙

transitions

For $(s, a, \mu) \in T$ we also write $s \stackrel{a}{\rightarrow} \mu$

different types

	strong	weak
non-combined		
(deterministic schedulers)		$\underbrace{\overbrace{\tau \cdots \tau}^{\tau} \xrightarrow{a} \overbrace{\tau \cdots \tau}^{0-m \text{ times}}}_{\stackrel{a}{\Rightarrow}}$
combined (randomized schedulers)		

Johann Schuster

Universität & München 《 다 > 《 문 > 《 문 > 문 > 문 의 오 (Infinity 2013 (4/25)

transitions

For $(s, a, \mu) \in T$ we also write $s \stackrel{a}{\rightarrow} \mu$

different typesstrongweaknon-combined $a \rightarrow c$ (deterministic schedulers) $a \rightarrow c$ combined $a \rightarrow c$ combined $a \rightarrow c$ (randomized schedulers) $a \rightarrow c$

- Probabilistic Automata
- Bisimulations, quotients, isomorphisms, rescaledness
- Intersections in the finite case
- Infinite case: counterexample and results
- Conclusion

Universität

< □ > < 同 >

Definition (Strong bisimulation)

An equivalence relation *R* is called *strong* (*probabilistic*) *bisimulation* if for all actions $a \in Act$ it holds that *sRt* implies that for every $s \xrightarrow{a} \mu$ we find $t \xrightarrow{a}_{c} \mu'$, such that μ and μ' coincide on equivalence classes. We write $P \sim P'$ if the initial states are strongly probabilistic bisimilar.

Definition (Weak bisimulation)

An equivalence relation *R* is called *weak* (probabilistic) bisimulation if for all actions $a \in Act$ it holds that *sRt* implies that for every $s \xrightarrow{a} \mu$ we find $t \xrightarrow{a}_{c} \mu'$, such that μ and μ' coincide on equivalence classes. We write $P \approx P'$ if the initial states are weakly probabilistic bisimilar.

Definition (Strong bisimulation)

An equivalence relation *R* is called *strong* (*probabilistic*) *bisimulation* if for all actions $a \in Act$ it holds that *sRt* implies that for every $s \xrightarrow{a} \mu$ we find $t \xrightarrow{a}_{c} \mu'$, such that μ and μ' coincide on equivalence classes. We write $P \sim P'$ if the initial states are strongly probabilistic bisimilar.

Definition (Weak bisimulation)

An equivalence relation *R* is called *weak* (probabilistic) bisimulation if for all actions $a \in Act$ it holds that *sRt* implies that for every $s \xrightarrow{a} \mu$ we find $t \xrightarrow{a}_{c} \mu'$, such that μ and μ' coincide on equivalence classes. We write $P \approx P'$ if the initial states are weakly probabilistic bisimilar.

Definition (Strong bisimulation)

An equivalence relation *R* is called *strong* (*probabilistic*) *bisimulation* if for all actions $a \in Act$ it holds that *sRt* implies that for every $s \xrightarrow{a} \mu$ we find $t \xrightarrow{a}_{c} \mu'$, such that μ and μ' coincide on equivalence classes. We write $P \sim P'$ if the initial states are strongly probabilistic bisimilar.

Definition (Weak bisimulation)

An equivalence relation *R* is called *weak* (probabilistic) bisimulation if for all actions $a \in Act$ it holds that *sRt* implies that for every $s \xrightarrow{a} \mu$ we find $t \xrightarrow{a}_{c} \mu'$, such that μ and μ' coincide on equivalence classes. We write $P \approx P'$ if the initial states are weakly probabilistic bisimilar.

👌 München

Definition (Isomorphic automata)

Two automata *P* and *P'* are called isomorphic if they coincide after relabelling their states. For isomorphic automata we write $P \equiv_{iso} P'$.

Johann Schuster

Example

Definition (Isomorphic automata)

Two automata *P* and *P'* are called isomorphic if they coincide after relabelling their states. For isomorphic automata we write $P \equiv_{iso} P'$.

Università

(7/25)

Definition (Isomorphic automata)

Two automata *P* and *P'* are called isomorphic if they coincide after relabelling their states. For isomorphic automata we write $P \equiv_{iso} P'$.

Quotients

Definition (Quotient automaton)

Let $P = (S, Act, T, s_0)$ be a PA and R an equivalence relation over S. We write P/R to denote the quotient automaton of Pwrt. R, that is

$$P/R = (S/R, Act, T/R, [s_0]_R).$$

We call an automaton a *quotient wrt*. *R* if it holds that $P \equiv_{iso} P/R$.

Example

<mark>ünchen</mark> ФОС

Quotients

Definition (Quotient automaton)

Let $P = (S, Act, T, s_0)$ be a PA and *R* an equivalence relation over *S*. We write P/R to denote the quotient automaton of *P* wrt. *R*, that is

$$P/R = (S/R, Act, T/R, [s_0]_R).$$

We call an automaton a *quotient wrt*. *R* if it holds that $P \equiv_{iso} P/R$.

Rescaled automata

Definition (Rescaledness)

An automaton *P* is called rescaled if for all its transitions $s \xrightarrow{\tau} \mu$ it holds that $\mu(s) = 0$ or $\mu(s) = 1$.

Lemma

```
For every automaton P there is a rescaled automaton P' such that P \approx P'
```

Example

Rescaled automata

Definition (Rescaledness)

An automaton *P* is called rescaled if for all its transitions $s \xrightarrow{\tau} \mu$ it holds that $\mu(s) = 0$ or $\mu(s) = 1$.

Lemma

For every automaton *P* there is a rescaled automaton *P'* such that $P \approx P'$

Example

Rescaled automata

Definition (Rescaledness)

An automaton *P* is called rescaled if for all its transitions $s \xrightarrow{\tau} \mu$ it holds that $\mu(s) = 0$ or $\mu(s) = 1$.

Lemma

For every automaton P there is a rescaled automaton P' such that $P \approx P'$

- Probabilistic Automata
- Bisimulations, quotients, isomorphisms, rescaledness
- Intersections in the finite case
- Infinite case: counterexample and results
- Conclusion

The following lemma is our interpretation of a result from Segala/Cattani '02.

Lemma

The intersection of strongly bisimilar finite (finitely many states and transitions) quotient automata is again bisimilar.

The following lemma is our interpretation of a result from Segala/Cattani '02.

Lemma

The intersection of strongly bisimilar finite (finitely many states and transitions) quotient automata is again bisimilar.

Johann Schuster

Universitä

(11/25)

The following lemma is our interpretation of a result from Segala/Cattani '02.

Lemma

The intersection of strongly bisimilar finite (finitely many states and transitions) quotient automata is again bisimilar.

This gives rise to a lattice structure on bisimilar quotients:

The following lemma is our interpretation of a result from Eisentraut et al. '13.

Lemma

The intersection of weakly bisimilar rescaled finite (finitely many states and transitions) quotient automata is again bisimilar.

Example

Universität

< □ > < 同 > <

The following lemma is our interpretation of a result from Eisentraut et al. '13.

Lemma

The intersection of weakly bisimilar rescaled finite (finitely many states and transitions) quotient automata is again bisimilar.

The following lemma is our interpretation of a result from Eisentraut et al. '13.

Lemma

The intersection of weakly bisimilar rescaled finite (finitely many states and transitions) quotient automata is again bisimilar.

This gives rise to a lattice structure on bisimilar rescaled quotients:

- Probabilistic Automata
- Bisimulations, quotients, isomorphisms, rescaledness
- Intersections in the finite case
- Infinite case: counterexample and results
- Conclusion

Universität

(15/25)

Counterexample for the infinite case

Lemma (no canonical extension to infinite case)

The intersection of strongly bisimilar infinite quotient automata does not have to be bisimilar.

ünchen

Counterexample for the infinite case

Lemma (no canonical extension to infinite case)

The intersection of strongly bisimilar infinite quotient automata does not have to be bisimilar.

Main objective of this work

We search conditions where the intersection behaves well, i.e. we get lattice structures.

What we need

- metrics on distributions
- compact automata

 < □ ▷ < ⊡ ▷ < ⊡ ▷ < ≧ ▷</td>

 Johann Schuster
 Infinity 2013

Main objective of this work

We search conditions where the intersection behaves well, i.e. we get lattice structures.

What we need

- metrics on distributions
- compact automata

Johann Schuster Infinity 2013

Universität

(17/25)

Segala/Cattani defined convex sets of reachable distributions:

- $S_{\sim}(s,a) := \{\mu \in Dist(S) | s \xrightarrow{a}_{C} \mu\}/\sim$
- $S_{\approx}(s,a) := \{\mu \in Dist(S) | s \stackrel{a}{\Rightarrow} c \mu\} / \approx$

Example ($S_{\sim}(s_1, \tau)$)

Aünchen

SQA

(18/25)

▶ < Ξ ▶</p>

< □ > < 同 > < 三

Segala/Cattani defined convex sets of reachable distributions:

- $S_{\sim}(s,a) := \{\mu \in Dist(S) | s \xrightarrow{a}_{C} \mu\} / \sim$
- $S_{\approx}(s,a) := \{\mu \in Dist(S) | s \stackrel{a}{\Rightarrow} c \mu\} / \approx$

Example ($S_{\sim}(s_1, \tau)$)

 $\rightarrow \rightarrow \equiv \rightarrow$

< □ > < 同 > < 回

Aünchen

SQA

Segala/Cattani defined convex sets of reachable distributions:

- $S_{\sim}(s,a) := \{\mu \in Dist(S) | s \xrightarrow{a}_{C} \mu\} / \sim$
- $S_{\approx}(s,a) := \{\mu \in Dist(S) | s \stackrel{a}{\Rightarrow} c \mu\} / \approx$

Example $(S_{\sim}(s_1, \tau))$

 $\rightarrow \rightarrow \equiv \rightarrow$

-

Aünchen

SQA

Segala/Cattani defined convex sets of reachable distributions:

- $S_{\sim}(s,a) := \{\mu \in Dist(S) | s \xrightarrow{a} C \mu\} / \sim$
- $S_{\approx}(s,a) := \{\mu \in Dist(S) | s \stackrel{a}{\Rightarrow} c \mu\} / \approx$

Segala/Cattani defined convex sets of reachable distributions:

• $S_{\sim}(s,a) := \{\mu \in Dist(S) | s \xrightarrow{a} C \mu\} / \sim$

•
$$S_{\approx}(s,a) := \{\mu \in Dist(S) | s \stackrel{a}{\Rightarrow} c \mu\} / \approx$$

Definition (Desharnais et al. '10)

$$d(\mu_1, \mu_2) := sup_{A \subseteq S} |\mu_1(A) - \mu_2(A)|$$

Lemma

d is a metric on distributions over S

Metric spaces of Segala/Cattani sets $(S_{\sim}(s, a), d)$ and $(S_{\sim}(s, a), d)$ are metric spa

 < □ > < @ > < ≥ >

 Johann Schuster
 Infinity 2013

Universität

500

(19/25)

Definition (Desharnais et al. '10)

$$d(\mu_1, \mu_2) := sup_{A \subseteq S} |\mu_1(A) - \mu_2(A)|$$

Lemma

d is a metric on distributions over S

Metric spaces of Segala/Cattani sets

 $(S_{\sim}(s, a), d)$ and $(S_{\approx}(s, a), d)$ are metric spaces

Johann Schuster

de Dudieneri Universität München イロトイクトイミトイミトモディングへへ Infinity 2013 (19/25) Definition (Desharnais et al. '10)

$$d(\mu_1, \mu_2) := sup_{A \subseteq S} |\mu_1(A) - \mu_2(A)|$$

Lemma

d is a metric on distributions over S

Metric spaces of Segala/Cattani sets

 $(S_{\sim}(s,a),d)$ and $(S_{\approx}(s,a),d)$ are metric spaces

Johann Schuster

We consider product metric spaces $(\prod_{(s,a)\in S\times Act} S_R(s,a), d)$ where $d(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{d_i(x_i, y_i)}{1+d_i(x_i, y_i)}$.

Definition

An automaton is called *compact*, if the associated metric space $(\prod_{(s,a)\in S\times Act} S_R(s,a), d)$ is compact.

Universität

(20/25)

We consider product metric spaces $(\prod_{(s,a)\in S\times Act} S_R(s,a), d)$ where $d(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{d_i(x_i, y_i)}{1+d_i(x_i, y_i)}$.

Definition

An automaton is called *compact*, if the associated metric space $(\prod_{(s,a)\in S\times Act} S_R(s,a), d)$ is compact.

< □ > < 同 > <

Universität

(20/25)

Main result

The following theorem gives the big picture:

Theorem

For compact automata, intersections of strongly bisimilar quotient automata are again bisimilar

Theorem

For compact automata, intersections of weakly bisimilar rescaled quotient automata are again bisimilar

Corollary

This includes also the finite case (finitely many states and transitions)

Universität

naa

(21/25)

The following theorem gives the big picture:

Theorem

For compact automata, intersections of strongly bisimilar quotient automata are again bisimilar

Theorem

For compact automata, intersections of weakly bisimilar rescaled quotient automata are again bisimilar

Corollary

This includes also the finite case (finitely many states and transitions)

Universität

(21/25)

The following theorem gives the big picture:

Theorem

For compact automata, intersections of strongly bisimilar quotient automata are again bisimilar

Theorem

For compact automata, intersections of weakly bisimilar rescaled quotient automata are again bisimilar

Corollary

This includes also the finite case (finitely many states and transitions)

Universität

(21/25)

The following theorem gives the big picture:

Theorem

For compact automata, intersections of strongly bisimilar quotient automata are again bisimilar

Theorem

For compact automata, intersections of weakly bisimilar rescaled quotient automata are again bisimilar

Corollary

This includes also the finite case (finitely many states and transitions)

...and what about the counterexample?

Universität Sudatuttiv Universität München ペロト ペラト ペラト マラト マラト マクへへ Johann Schuster Infinity 2013 (22/25)

...and what about the counterexample?

Universität Sudatuttiv Universität München ペロト ペラト ペラト マラト マラト マクへへ Johann Schuster Infinity 2013 (22/25)

Theorem

Considering also unreachable parts of the state spaces for compact quotient automata leads to unbounded lattices, i.e. no upper bound.

Example (proof idea)

- add a unreachable state s_c with $s_c \xrightarrow{\tau} c\Delta_1 \oplus (1-c)\Delta_2$
- c ∈ [0, 1] ⊂ ℝ: uncountably many s_c's cannot be covered in a countable state space

<mark>ünchen</mark> กจ.จ

Theorem

Considering also unreachable parts of the state spaces for compact quotient automata leads to unbounded lattices, i.e. no upper bound.

Example (proof idea)

- add a unreachable state s_c with $s_c \xrightarrow{\tau} c\Delta_1 \oplus (1-c)\Delta_2$
- $c \in [0, 1] \subset \mathbb{R}$: uncountably many s_c 's cannot be covered in a countable state space

Theorem

Considering also unreachable parts of the state spaces for compact quotient automata leads to unbounded lattices, i.e. no upper bound.

Example (proof idea)

• add a unreachable state s_c with $s_c \xrightarrow{\tau} c\Delta_1 \oplus (1-c)\Delta_2$

• $c \in [0, 1] \subset \mathbb{R}$: uncountably many s_c 's cannot be covered in a countable state space

Theorem

Considering also unreachable parts of the state spaces for compact quotient automata leads to unbounded lattices, i.e. no upper bound.

Example (proof idea)

- add a unreachable state s_c with $s_c \xrightarrow{\tau} c\Delta_1 \oplus (1-c)\Delta_2$
- $c \in [0, 1] \subset \mathbb{R}$: uncountably many s_c 's cannot be covered in a countable state space

Theorem

Restriction to reachable state spaces for compact quotient automata leads to bounded lattices.

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form
- main problem: calculate quotient automata of infinite PA

naa

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form
- main problem: calculate quotient automata of infinite PA

naa

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form
- main problem: calculate quotient automata of infinite PA

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form

Universität

naa

(25/25)

main problem: calculate quotient automata of infinite PA

- new viewpoint to bisimilar quotient automata
- deep structure in quotients of bisimilar automata (up to isomorphism)
- intersection of all elements in the lattice leads to canonical normal form

Universitä

(25/25)

• main problem: calculate quotient automata of infinite PA