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Abstract. We address the problem of reducing the size of (nonde-
terministic, bottom-up) tree automata (TA) using suitable, language-
preserving equivalences on the states of the automata. In particular,
we propose the so-called composed bisimulation equivalence as a new
language preserving equivalence. A composed bisimulation equivalence
is defined in terms of two different relations, namely the upward and
downward bisimulation equivalence. We provide simple and efficient algo-
rithms for computing these relations. The notion of composed bisimula-
tion equivalence is motivated by an attempt to obtain an equivalence that
can provide better reductions than what currently known bisimulation-
based approaches can offer, but which is not significantly more difficult
to compute (and hence stays below the computational requirements of
simulation-based reductions). The experimental results we present in the
paper show that our composed bisimulation equivalence meets such re-
quirements, and hence provides users of TA with a finer way to resolve
the trade-off between the available degree of reduction and its cost.

1 Introduction

Tree automata (TA) are widely used in many areas of computer science
such as XML manipulation, natural language processing, or formal verifi-
cation. For instance, in formal verification, TA are—among other uses—at
the heart of the so-called regular tree model checking (RTMC) framework
developed for a fully automated verification of infinite-state or parame-
terised systems such as parameterised networks of processes with a tree-
like topology or programs with dynamic linked data-structures [9, 5, 7, 8].
In RTMC, TA are, in particular, used to finitely represent and manipulate
infinite sets of reachable configurations.

⋆ This work was supported by the French projects ANR-06-SETI-001 AVERISS and
RNTL AVERILES, the Czech Grant Agency (projects 102/07/0322, 102/05/H050),
the Barrande project 17356TD, and the Czech Ministry of Education by the project
MSM 0021630528 Security-Oriented Research in Information Technology



In many applications of TA, such as in the above mentioned RTMC
framework, it is highly desirable to deal with automata which are as small
as possible, in order to save memory as well as time. In theory, one can
always determinise and minimise any given (bottom-up) tree automaton.
However, the determinisation step may lead to an exponential blow-up
in the size of the TA. Therefore, even if the minimal deterministic TA is
small, it might not be feasible to compute it in practice because of the
expensive determinisation step. Moreover, the minimal deterministic TA
may still be bigger than the original non-deterministic TA.

To avoid determinisation, a TA can be reduced by identifying and col-
lapsing states that are equal wrt a suitable equivalence relation that pre-
serves the language of the automaton. One such equivalence is downward
bisimulation (also called backward bisimulation) equivalence considered
in [11]. For a given TA A, the downward bisimulation equivalence can be
computed efficiently in time O(r̂2 m log n) where r̂ is the maximal rank of
the input symbols, m the size of the transition table, and n the number
of states of A. Unfortunately, the reduction obtained by using downward
bisimulation equivalence might be limited.

To get a better reduction, some simulation-based equivalence (as, e.g.,
downward simulation equivalence or composed simulation equivalence [1])
can be used. Simulation-based relations are commonly weaker than those
based on bisimulations and hence they can offer a better reduction. On the
other hand, they are considerably harder to compute—in particular, the
time complexity of computing bisimulations on TA is in O(mn). Hence,
despite the recent advances in efficient heuristics for computing simulation
relations on TA [1], the choice between bisimulations and simulations is a
trade-off between the time consumption of the reduction and the achieved
degree of reduction.

In this paper, we propose a new notion of composed bisimulation equiv-
alence, which is a composition of downward bisimulation equivalence and
its dual upward bisimulation equivalence (also proposed in the paper).4

The proposal is motivated by an attempt to obtain a relation which is
still easy to compute and, on the other hand, can give a better reduction
than downward bisimulation equivalence, and hence give users of TA a
finer choice in the above mentioned trade-off.

We then also discuss how upward bisimulation equivalence (which is
a basis for computing composed bisimulation equivalence) can be com-

4 Note that a composed bisimulation equivalence is not itself a bisimulation, but rather
a relation built from bisimulations.
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puted in an efficient way.5 Inspired by the approach of [1], we show how
the computation of upward bisimulation equivalence can be reduced to
computing (word) bisimulation equivalence on suitable transition systems
derived from the automata at hand. This transformation allows us to re-
use the results proposed for an efficient computation of (word) bisimula-
tion equivalence on transition systems (or, equivalently, Kripke structures
or finite word automata).

We have implemented a prototype tool in which we have performed
practical experiments with using the proposed composed bisimulation
framework for reducing TA. Our experimental results show that composed
bisimulation equivalence indeed reduces the size of TA much more than
downward bisimulation equivalence and more than downward simulation
equivalence, but, as expected, less than composed simulation equivalence.
Computationally, composed bisimulation equivalence is, of course, more
difficult to compute than downward bisimulation equivalence, but it is
still much easier to compute than all simulation-based relations.

Related work. Several algorithms for reducing the size of non-determi-
nistic tree automata while preserving their language have been proposed
in the literature. The first attempt was done in [3] where an algorithm
inspired by the partition refinement algorithm by Paige and Tarjan [13]
was presented.

In [11], two different types of bisimulations—namely, backward and
forward bisimulations—are presented. The concept of backward bisimu-
lations corresponds to downward bisimulations used here. Forward bisim-
ulations are even cheaper to compute than backward bisimulations and
turn out to be especially well-suited for reducing deterministic TA. More-
over, [11] also shows that by using backward bisimulations followed by
forward bisimulations (or vice versa), one can get a better reduction than
using any of the methods alone. The reduction power of the sequential
applications of these relations is in general incomparable with the use of
our composed bisimulation equivalence. Moreover, all of these approaches
differ in various practical aspects of their use as we discuss at the end of
the paper.

Efficient algorithms for computing simulation equivalences over TA
have been discussed in [1]. Our method for computing upward bisimula-
tion equivalences (and possibly also downward bisimulation equivalences)

5 Downward bisimulation equivalence can be computed by an algorithm proposed
in [11], or a similar approach as in the case of upward bisimulation equivalence can
be used too.
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is inspired by the approach of [1], which we here extend to cope with
bisimulation relations.

Plan of the paper. In the next section, we give some preliminaries on
tree automata and transition systems. In Section 3, we present the up-
ward and downward bisimulation equivalences. In Section 4, we discuss
how these relations can be computed. Next, in Section 5, composed bisim-
ulation equivalence is proposed. In Section 6, we present our experimental
results and a further comparison of the various existing as well as newly
proposed relations suitable for reducing TA. Finally, in Section 7, we give
some concluding remarks and directions for future work.

2 Preliminaries

In this section, we introduce some preliminaries on trees, tree automata,
and transition systems (TS).

For an equivalence relation ≡ defined on a set Q, we call each equiv-
alence class of ≡ a block, and use Q/≡ to denote the set of blocks in
≡.

Trees. A ranked alphabet Σ is a set of symbols together with a function
Rank : Σ → N. For f ∈ Σ, the value Rank (f) is called the rank of f .
For any n ≥ 0, we denote by Σn the set of all symbols of rank n from Σ.
Let ǫ denote the empty sequence. A tree t over an alphabet Σ is a partial
mapping t : N

∗ → Σ that satisfies the following conditions:

– dom(t) is a finite, prefix-closed subset of N
∗, and

– for each p ∈ dom(t), if Rank (t(p)) = n ≥ 0, then {i | pi ∈ dom(t)} =
{1, . . . , n}.

Each sequence p ∈ dom(t) is called a node of t. For a node p, we define
the ith child of p to be the node pi, and we define the ith subtree of p to be
the tree t′ such that t′(p′) = t(pip′) for all p′ ∈ N

∗. A leaf of t is a node p
which does not have any children, i.e., there is no i ∈ N with pi ∈ dom(t).
We denote by T (Σ) the set of all trees over the alphabet Σ.

Tree Automata. A (finite, non-deterministic, bottom-up) tree automa-
ton (TA) is a 4-tuple A = (Q,Σ,∆,F ) where Q is a finite set of states,
F ⊆ Q is a set of final states, Σ is a ranked alphabet, and ∆ is a set of tran-
sition rules. Each transition rule is a triple of the form ((q1, . . . , qn), f, q)

where q1, . . . , qn, q ∈ Q, f ∈ Σ, and Rank (f) = n. We use (q1, . . . , qn)
f

−→
q to denote that ((q1, . . . , qn), f, q) ∈ ∆. In the special case of n = 0, we
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speak about the so-called leaf rules, which we may abbreviate as
f

−→ q.
We use Lhs(A) to denote the set of left-hand sides of rules, i.e., the set

of tuples of the form ((q1, . . . , qn), f) where (q1, . . . , qn)
f

−→ q for some q.
Finally, we denote by Rank (A) the smallest n ∈ N such that n ≥ m for
each m ∈ N where (q1, . . . , qm) ∈ Lhs(A) for some qi ∈ Q, 1 ≤ i ≤ m.

A run of A over a tree t ∈ T (Σ) is a mapping π : dom(t) → Q
such that for each node p ∈ dom(t) where q = π(p), we have that if

qi = π(pi) for 1 ≤ i ≤ n, then ∆ has a rule (q1, . . . , qn)
t(p)
−→ q. We write

t
π

=⇒ q to denote that π is a run of A over t such that π(ǫ) = q. We use
t =⇒ q to denote that t

π
=⇒ q for some run π. The language of a state

q is defined by L(q) = {t| t =⇒ q}, while the language of A is defined by
L(A) =

⋃

q∈F L(q).

An environment is a tuple of the form ((q1, . . . , qi−1,�, qi+1, . . . , qn), f, q)
obtained by removing a state qi, 1 ≤ i ≤ n, from the ith position of
the left hand side of a rule ((q1, . . . , qi−1, qi, qi+1, . . . , qn), f, q), and by
replacing it by a special symbol � 6∈ Q (called a hole below). Like

for transition rules, we write (q1, . . . ,�, . . . , qn)
f

−→ q provided that
((q1, . . . , qi−1, qi, qi+1, . . . , qn), f, q) ∈ ∆ for some qi ∈ Q. Sometimes, we

also write the environment as (q1, . . . ,�i, . . . , qn)
f

−→ q to emphasise that
the hole is at position i. We denote the set of all environments of A by
Env(A).

Transition Systems. A (finite) transition system (TS) is a pair
T = (Q,∆) where ∆ is a finite set of states and → ⊆ Q × Q is a transition
relation. Given a TS T = (Q,∆) and two states q, r ∈ Q, we denote by
q −→ r the fact that (q, r) ∈ ∆.

A (finite) labeled transition system (LTS) is a quadruple
T = (Q,∆,Σ,L) where (Q,∆) is a transition system, Σ is a finite set of
labels and L : ∆ → 2Σ is a labeling function that assigns a set of labels
to each transition of ∆. Given an LTS T = (Q,∆,Σ,L) and two states
q, r ∈ Q, we denote by q

a
−→ r the fact that (q, r) ∈ ∆ and a ∈ L((q, r)).

3 Downward and Upward Bisimulation

In this section, we present two different relations on states of tree auto-
mata—namely, downward bisimulations and upward bisimulations—that
we will subsequently use as a basis for defining composed bisimulations,
which we will then exploit for reducing tree automata.
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Downward Bisimulation. For a tree automaton A = (Q,Σ,∆,F ), a
downward bisimulation D is a binary relation on Q such that if (q, r) ∈ D,
then

(i) whenever there are q1, . . . , qn ∈ Q, f ∈ Σ such that (q1, . . . , qn)
f

−→ q,

then there are r1, . . . , rn ∈ Q such that (r1, . . . , rn)
f

−→ r and (qi, ri) ∈
D for each i : 1 ≤ i ≤ n; and, symmetrically,

(ii) whenever there are r1, . . . , rn ∈ Q, f ∈ Σ such that (r1, . . . , rn)
f

−→ r,

then there are q1, . . . , qn ∈ Q such that (q1, . . . , qn)
f

−→ q and (qi, ri) ∈
D for each i : 1 ≤ i ≤ n.

Lemma 1. For each tree automaton there exists a unique maximal down-
ward bisimulation which is an equivalence.

The proof of Lemma 1 is straightforward and similar to the (slightly
more complicated) proof of Lemma 2 presented below—and so we leave
it to the reader. The maximal downward bisimulation, denoted as the
downward bisimulation equivalence or ≃ below, corresponds to the max-
imal backward bisimulation from [11].

Upward Bisimulation. Given a tree automaton A = (Q,Σ,∆,F ) and
a downward bisimulation D, an upward bisimulation U wrt D is a binary
relation on Q such that if (q, r) ∈ U , then

(i) whenever there are q1, . . . , qn, q′ ∈ Q, f ∈ Σ such that qi = q and

(q1, . . . , qn)
f

−→ q′, then there are r1, . . . , rn, r′ ∈ Q s.t. (r1, . . . , rn)
f

−→
r′, ri = r, (q′, r′) ∈ R, and qj ≃ rj for each j : 1 ≤ j 6= i ≤ n; and
symmetrically,

(ii) whenever there are r1, . . . , rn, r′ ∈ Q, f ∈ Σ such that ri = r and

(r1, , . . . , rn)
f

−→ r′, then there are q1, . . . , qn, q′ ∈ Q s.t. (q1, . . . , qn)
f

−→
q′, qi = q, (q′, r′) ∈ R and qj ≃ rj for each j : 1 ≤ j 6= i ≤ n; and,
finally,

(iii) q ∈ F iff r ∈ F .

Lemma 2. For each tree automaton A and a downward bisimulation D
which is an equivalence there exists a unique maximal upward bisimulation
wrt D which is also an equivalence.

Proof. Let A = (Q,Σ,∆,F ). We will prove that the set of all upward
bisimulations wrt D is closed under reflexive and transitive closure and
under union, from which the lemma directly follows.
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(Closure under Union) Given two upward bisimulations U1 and U2 wrt
D, we want to prove that U = U1∪U2 is also an upward bisimulation wrt
D. Let qUr for some q, r ∈ Q, then either qU1r or qU2r. Assume without
loss of generality that qU1r. Then, from the definition of upward bisim-
ulations, q ∈ F ⇐⇒ r ∈ F , and there are q1, . . . , q2, q

′ ∈ Q with qi = q

such that (q1, . . . , qn)
f

−→ q′ if and only if there are r1, . . . , r2, r
′ ∈ Q such

that ri = r, q′U1r
′, qjDrj for all j : 1 ≤ j 6= i ≤ n, and (r1, . . . , rn)

f
−→ r′.

As U1 ⊆ U gives q′Ur′, U fulfils the definition of upward bisimulations
wrt D.

(Reflexive Closure) It can be seen from the definition that the iden-
tity is an upward bisimulation wrt D for any downward bisimulation D.
Therefore, from the closure under union, the union of the identity and
any upward bisimulation wrt D is an upward bisimulation wrt D.

(Transitive Closure) Let U be an upward bisimulation wrt D and let
UT be its transitive closure. We will prove that UT is also an upward
bisimulation wrt D. Let qUT r for some q, r ∈ Q. Suppose that there exist

s1
1, . . . , s

1
n, t1 ∈ Q such that q = s1

i , 1 ≤ i ≤ n, and (s1
1, . . . , s

1
n)

f
−→ t1.

From s1
i UT r, we have that there are states s1

i , . . . , s
m
i ∈ Q with sm

i = r
such that s1

i Us2
i U . . . Usm

i . From the definition of upward bisimulation,
this implies that there are states s2

1, . . . , s
2
n, t2, . . . , sm

1 , . . . , sm
n , tm ∈ Q

such that (s2
1, . . . , s

2
n)

f
−→ t2, . . . , (sm

1 , . . . , sm
n )

f
−→ tm, t1U . . . Utm, s1

i ∈
F ⇐⇒ . . . ⇐⇒ sm

i ∈ F , and s1
jD . . . Dsm

j for all j : 1 ≤ j 6= i ≤ n.

From transitivity of UT , we have t1UT tm; from transitivity of ⇐⇒ , we
have s1

i ∈ F ⇐⇒ sm
i ∈ F ; and from transitivity of D, we have s1

jDsm
j for

all j : 1 ≤ j 6= i ≤ n. We have thus proven that UT fulfils Conditions (i)
and (iii) from the definition of upward bisimulation wrt D, Condition (ii)
can be proven in a symmetrical way to Condition (i), hence UT is an
upward bisimulation wrt D. ⊓⊔

In the sequel, we will use
•

≃ to denote the (unique) maximal upward
bisimulation wrt ≃, which we call the upward bisimulation equivalence.

4 Computing Downward and Upward Bisimulation

Equivalences

In this section, we describe how the bisimulation equivalences described
in the previous section can be computed.
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4.1 Computing Downward Bisimulation Equivalences

For computing the downward bisimulation equivalence, one can use the
specialised algorithm proposed for computing the equal maximal back-
ward bisimulation in [11]. This algorithm runs in time O(r̂2 m log n) where
m is the number of transitions, n is the number of states, and r̂ is the
maximal rank of the alphabet.

An alternative approach to computing the downward bisimulation
equivalence is to use an analogy of the method presented in [1], where
an approach for computing maximal downward simulations on tree au-
tomata via their translation to certain specialised labeled transition sys-
tems (LTSs) is proposed. Downward simulations are then computed on
the generated LTSs using standard simulation algorithms such as [10, 14].
Since downward bisimulation equivalence is a bisimulation counterpart
of downward simulation equivalence, the LTSs generated for computing
the latter can also be exploited for computing the former using stan-
dard algorithms for computing (word) bisimulations such as [13]. This
method gives us an algorithm which is easy to implement and runs in
time O(r̂3 m log n).

We now give the details of the translation from the downward bisimu-
lation problem on a tree automaton A = (Q,Σ,∆,F ) to the bisimulation
problem on a derived LTS.

Consider a LTS (Q,∆,Σ,L). A bisimulation is an equivalence relation
on Q such that if (q, r) ∈ R, then q

a
−→ q′ for some q′ if and only if r

a
−→ r′

for some r′ such that (q′, r′) ∈ R. For an equivalence relation I, we use
∼=I to denote the largest bisimulation which is included in I.

We derive a LTS A⊙ = (Q⊙,∆⊙, Σ⊙,L) and an so called initial equiv-
alence I on the set Q⊙ as follows:

– The set Q⊙ contains a state q⊙ for each state q ∈ Q, and it also
contains a state (q1, . . . , qn)⊙ for each (q1, . . . , qn) ∈ Lhs(A).

– The set Σ⊙ contains a symbol ǫ and each index i ∈ {1, 2, . . . , n} where
n is the maximal rank of any symbol in Σ.

– For each transition rule (q1, . . . , qn)
f

−→ q of A, A⊙ contains both the

transition q⊙
ǫ

−→ ((q1, . . . , qn), f)⊙ and ((q1, . . . , qn), f)⊙
i

−→ q⊙i for
each i : 1 ≤ i ≤ n.

– The sets Q⊙, Σ⊙, ∆⊙ and L do not contain any other elements.

Furthermore, we define the initial equivalence I to be the smallest
relation containing the following elements:

– (q⊙1 , q⊙2 ) ∈ I for all states q1, q2 ∈ Q.
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– for left-hand sides l1 and l2, (l⊙1 , l⊙2 ) ∈ I if they are of the form l1 =
((q1, . . . , qn)), f) and l2 = ((r1, . . . , rn)), f). In other words, the two
left-hand sides has the same arity and share the same symbol.

The following theorem shows correctness of the translation.

Theorem 1. For all q, r ∈ Q, we have q⊙ ∼=I r⊙ iff qDr.

Proof. (if) Suppose that q⊙ ∼=I r⊙. This means that there is a bisimula-
tion R⊙ on Q⊙ such that (q⊙, r⊙) ∈ R⊙. We define D to be the smallest
binary relation on Q such that (q′, r′) ∈ D if (q′⊙, r′⊙) ∈ R⊙. Obviously,
(q, r) ∈ D. We show that D is a downward bisimulation on Q which
immediately implies the result.

Suppose that (q′, r′) ∈ D and (q1, . . . , qn)
f

−→ q′. Since (q′, r′) ∈ D

we know that (q′⊙, r′⊙) ∈ R⊙; and since (q1, . . . , qn)
f

−→ q′ we know by
definition of A⊙ that q′⊙

ǫ
−→ ((q1, . . . , qn), f)⊙. Since R⊙ is a bisim-

ulation and R⊙ ⊆ I, there are r1, . . . , rn ∈ Q, g ∈ Σ with r′⊙
ǫ

−→
((r1, . . . , rn), g)⊙ and (((q1, . . . , qn), f)⊙, ((r1, . . . , rn), f)⊙) ∈ R⊙. Since

r′⊙
ǫ

−→ ((r1, . . . , rn), f)⊙ we have (r1, . . . , rn)
f

−→ r′. Also, by definition

of A⊙ we know that ((q1, . . . , qn), f)⊙
i

−→ q⊙i for each i : 1 ≤ i ≤ n. We

observe that ri is the only state such that ((r1, . . . , rn), f)⊙
i

−→ r⊙i , and
hence it must be the case that (q⊙i , r⊙i ) ∈ R⊙. This means that (qi, ri) ∈ D
for each i : 1 ≤ i ≤ n.

(only if) Suppose that qDr. This means that there is a bisimula-
tion D on Q such that (q, r) ∈ D. We define R⊙ to be the small-
est binary relation on Q⊙ such that (q′⊙, r′⊙) ∈ R⊙ if (q′, r′) ∈ D,
and (((q1, . . . , qn)⊙, f), ((r1, . . . , rn)⊙, f)) ∈ R⊙ if (qi, ri) ∈ D for each
i : 1 ≤ i ≤ n. Obviously, (q, r) ∈ R⊙. We show that R⊙ is a simulation
on Q⊙ which immediately implies the result. In the proof, we consider
two sorts of states in A⊙; namely those corresponding to states and those
corresponding to left hand sides in A.

Suppose that (q′⊙, r′⊙) ∈ R⊙ and q′⊙
ǫ

−→ ((q1, . . . , qn), f)⊙. Since
(q′⊙, r′⊙) ∈ R⊙, we know that (q′, r′) ∈ D, and as q′⊙

ǫ
−→ ((q1, . . . , qn), f)⊙,

we know by definition of A⊙ that (q1, . . . , qn)
f

−→ q′. Since D is a down-

ward simulation, there are r1, . . . , rn ∈ Q with (r1, . . . , rn)
f

−→ r′ and

(qi, ri) ∈ D for each i : 1 ≤ i ≤ n. Since (r1, . . . , rn)
f

−→ r′, we have
r′⊙

ǫ
−→ ((r1, . . . , rn), f)⊙. By definition of R⊙, it follows that

(((q1, . . . , qn), f)⊙, ((r1, . . . , rn), f)⊙) ∈ R⊙.
Now, suppose that (((q1, . . . , qn), f)⊙, ((r1, . . . , rn), f)⊙) ∈ R⊙ and

that
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(q1, . . . , qn), f)⊙
i

−→ q⊙i . We know that ((r1, . . . , rn), f)⊙
i

−→ r⊙i from
definition of A⊙. Since (((q1, . . . , qn)), f)⊙, ((r1, . . . , rn), f)⊙) ∈ R⊙, it
follows by definition of R⊙ that (qi, ri) ∈ D and hence also that (q⊙i , r⊙i ) ∈
R⊙. ⊓⊔

4.2 Complexity of Computing Downward Bisimulation via

LTS Translation

We analyse the complexity of computing downward bisimulation using the
translation scheme presented above. Let m = |∆|, n = |Q|, r̂ = Rank (A),
and p = |Σ|.

The initial equivalence I can be computed in time O(r̂m + p). Fur-
thermore, we observe that |Σ⊙| = O(r), |Q⊙| = O(n + m) = O(m),
and |∆⊙| = O(r̂m). From the Paige-Tarjan algorithm [13] (more pre-
cisely, from its generalization allowing multiple labels as in [2]), we know
that we can compute ∼=I in time O(|Σ⊙| |∆⊙| log |Q⊙|). Therefore, the
time complexity of using our method for computing upward bisimulation
amounts to O

(

r̂2m log m
)

≤ O
(

r̂2m log
(

nr̂p
))

= O
(

r̂3m log(np)
)

.

4.3 Computing Upward Bisimulation Equivalences

Similarly to the second above mentioned approach to computing down-
ward bisimulation equivalences, we can translate the problem of comput-
ing upward bisimulation equivalences on TA to computing (word) bisim-
ulation equivalences on suitable TSs. This translation is analogical to the
translation used for computing the maximal upward simulations in [1].6

Note that no specialised algorithm for computing the upward bisimula-
tion equivalence like the one for computing the downward bisimulation
equivalence from [11] is available.

Consider a transition system (Q,∆). A (word) bisimulation is a binary
relation R on Q such that if (q, r) ∈ R, then whenever q

a
−→ q′ for some

q′ ∈ Q, a ∈ Σ, then r
a

−→ r′ for some r′ ∈ Q such that (q′, r′) ∈ R, and
symmetrically, whenever r

a
−→ r′ for some r′ ∈ Q, a ∈ Σ, then q

a
−→ q′

for some q′ ∈ Q such that (r′, q′) ∈ R. For the so called initial equivalence
relation I over Q, one can easily show that there is a unique largest
bisimulation included in I which is an equivalence and which we denote
by ∼=I in what follows.

6 In [1], the translation is done towards LTSs in order to have a uniform approach with
the downward simulations. However, the labels are not really needed for computing
upward simulations nor bisimulations and so we optimise the algorithm a bit here.
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We translate the computation of the upward bisimulation equivalence
on TA into computing the (word) bisimulation equivalence on TSs. Con-
sider a TA A = (Q,Σ,∆,F ) and the downward bisimulation equivalence
≃. We derive a TS A• = (Q•,∆•) and an initial equivalence I on the set
Q• as follows:

– The set Q• contains a state q• for each state q ∈ Q and a state e• for
each environment e ∈ Env(A).

– The set ∆• is the smallest set such that if (q1, . . . , qn)
f

−→ q, where
1 ≤ i ≤ n, then the set ∆• contains both q•i −→ e•i and e•i −→ q•,

where ei is of the form (q1, . . . ,�i, . . . , qn)
f

−→ q.

Furthermore, we define the initial equivalence I to be the smallest relation
containing the following elements:

– (q•1 , q
•
2) for all states q1, q2 ∈ Q such that q1 ∈ F ⇐⇒ q2 ∈ F .

– (e•1, e
•
2) if the environments e1, e2 are of the forms (q1, . . . ,�i, . . . , qn)

f
−→

q and (r1, . . . ,�i, . . . , rn)
f

−→ r, respectively, qj ≃ rj for each j : 1 ≤
j 6= i ≤ n, and q ∈ F iff r ∈ F . In other words, the two environments
share the same label, and, moreover, the respective states in the left
hand sides are equivalent wrt ≃ at all positions except position i. Fur-
thermore, the states in the right hand sides agree on their membership
in F .

The following theorem shows correctness of the translation, i.e., it

allows us to compute
•

≃ by (i) computing A•; (ii) computing I; and (iii)
computing ∼=I by running a word bisimulation algorithm on A• and I.

Theorem 2. For all q, r ∈ Q, we have q
•

≃ r iff q• ∼=I r•.

Proof. (if) Suppose that q• ∼=I r•. We show that q
•

≃ r. We define a
binary relation R on Q such that R = {(s1, s2) | s•1

∼=I s•2}. Obviously,
(q, r) ∈ R, and hence if we show that R is an upward bisimulation wrt ≃,

we have q
•

≃ r.
It remains to show that R is indeed an upward bisimulation wrt ≃.

Assume (s1, s2) ∈ R and assume that there is a transition rule of the

form (q1, . . . , qn)
f

−→ qn+1, where qi = s1. Since (s1, s2) ∈ R, we know
that s•1

∼=I s•2. By definition, we have s•1 −→ e•1 where e1 is of the form

(q1, . . . ,2i, . . . , qn)
f

−→ qn+1. Since s•1
∼=I s•2, we know that there is an e•2

such that s•2 −→ e•2 and e•2
∼=I e•1. Since ∼=I⊆ I, we get that (e•1, e

•
2) ∈ I,

and hence e2 is of the form (r1, . . . ,2i, . . . , rn)
f

−→ rn+1, where qj ≃ rj
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for each j : 1 ≤ j 6= i ≤ n. By definition, the only transition e•1 can make
is e•1 −→ q•n+1; and the only transition e•2 can make is e•2 −→ r•n+1. From
this, it follows that q•n+1

∼=I r•n+1 and therefore (qn+1, rn+1) ∈ R. Finally,
consider states s1, s2 ∈ Q such that (s1, s2) ∈ R. By definition, it follows
that s•1

∼=I s•2. Since ∼=I⊆ I, it follows that (s•1, s
•
2) ∈ I and, according to

the definition of I, we get that s1 ∈ F iff s2 ∈ F .

(only if) Suppose that q
•

≃ r. We show that q• ∼=I r•. Let R be the
smallest binary relation on Q• containing

– (s•1, s
•
2) if s1

•

≃ s2,

– (e•1, e
•
2) where e1 is of the form (q1, . . . ,2i, . . . , qn)

f
−→ qn+1, e2 is of the

form (r1, . . . ,2i, . . . , rn)
f

−→ rn+1, qj ≃ rj for each j : 1 ≤ j 6= i ≤ n,

and qn+1
•

≃ rn+1.

Obviously, (q•, r•) ∈ R, and hence if we show that R is a (word) bisimu-
lation included in I, we have q• ∼=I r•.

We show that R is a bisimulation included in I. Assume that (s•1, s
•
2) ∈

R and s•1 −→ e•1, where e1 is of the form (q1, . . . ,2i, . . . , qn)
f

−→ qn+1.

This means that (q1, . . . , qn)
f

−→ qn+1 where qi = s1. Since (s•1, s
•
2) ∈

R, it follows that s1
•

≃ s2 and therefore there are r1, . . . , rn+1 where

(r1, . . . , rn)
f

−→ rn+1, ri = s2, rj ≃ qj for each j : 1 ≤ j 6= i ≤ n, and

rn+1
•

≃ qn+1. Define e2 to be (r1, . . . ,2i, . . . , rn)
f

−→ rn+1. Moreover, by
definition, we also know that s•2 −→ e•2 and that (e•1, e

•
2) ∈ R.

Assume that (e•1, e
•
2) ∈ R and that e•1 −→ s•1. Let e1 be an envi-

ronment of the form (q1, . . . ,2i, . . . , qn)
f

−→ qn+1. Then we know by
definition that qn+1 = s1. Since (e•1, e

•
2) ∈ R, we know that e2 is of

the form (r1, . . . ,2i, . . . , rn)
f

−→ rn+1 where qn+1
•

≃ rn+1 (and therefore
(q•n+1, r

•
n+1) ∈ R). By definition, we have that e•2 −→ r•n+1.

Now we show that the R ⊆ I. If (s•1, s
•
2) ∈ R, then, by definition,

we know that s1
•

≃ s2. This means that s1 ∈ F iff s2 ∈ F and hence
(s•1, s

•
2) ∈ I.

Assume that (e1, e2) ∈ R. Let e1 be of the form (q1, . . . ,2i, . . . , qn)
f

−→

qn+1. It follows that e2 is of the form (r1, . . . ,2i, . . . , rn)
f

−→ rn+1 where

qj ≃ rj for each j : 1 ≤ j 6= i ≤ n and qn+1
•

≃ rn+1. According to the

definition of
•

≃, it is the case that qn+1 ∈ F iff rn+1 ∈ F , and hence we
get that (e•1, e

•
2) ∈ I. ⊓⊔
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4.4 Complexity of Computing Upward Bisimulation

Equivalences

We analyse the complexity of computing the upward bisimulation equiva-
lence using the translation scheme presented above. Let m = |∆|, n = |Q|,
r̂ = Rank (A), and p = |Σ|. In order to be able to express complexity of
our algorithm in these terms, we approximate |Env(A)| by r̂m.

Given the relation ≃, we can compute the transition system A• in time
O(r̂m log(r̂m)). Firstly, we create the subset {q• | q ∈ Q} of TS states. To
create the subset {e• | e ∈ |Env(A)|}, for each rule, we create all possible
environments that can arise from it by replacing a left-hand side state
by �. To avoid duplicities, each of the newly created environments has
to be checked whether it is created for the first time (this introduces the
logarithmic factor into the complexity of the procedure). The transitions
of the TS can be created while creating the set of environments (a con-
stant time for each transition, the number of transition equals 2|Env(A)|).
Thus, the entire A• can be constructed in time O(r̂m log(r̂m)).

Moreover, the initial equivalence I can be built in time O(r̂2m). To
compute I on environments, we first group them according to the posi-
tion of the hole (time O(r̂m)). Each of these r̂ groups will then be itera-
tively split into equivalence classes of I wrt non-hole left-hand side states
(only those environments with left-hand side states downward bisimula-
tion equivalent at the corresponding positions can be in the same class),
wrt the symbol of the environment, and wrt membership of the right-hand
side in the set of final states. This can be done in time O(r̂2m).

Furthermore, we observe that |Q•| ∈ O(n + r̂m) = O(r̂m) and |∆•| ∈
O(r̂m). From the Paige-Tarjan algorithm [13], we know that we can com-
pute ∼=I in time O(|∆•| log |Q•|). Therefore, the time complexity of com-
puting ∼=I amounts to O(r̂m log (r̂m)) ⊆ O(r̂m log

(

r̂nr̂p
)

) = O(r̂2 m log n+
r̂m log p), which is also the final complexity as it covers the complexity
of computing A• and I. This means that, for a given Σ, we have time
complexity O(m log n).

5 Composed Bisimulation Equivalence

Consider a tree automaton A = (Q,Σ,∆,F ). We will reduce A with

respect to an equivalence relation
◦

≃, which we propose below and which
we call a composed bisimulation equivalence. Like downward bisimulation
equivalence, composed bisimulation equivalence preserves the language of
tree automata, but it may be much coarser than downward bisimulation
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equivalence (note that upward bisimulation equivalence does not preserve
the language of tree automata).

For a state r ∈ Q and a set B ⊆ Q of states, we write r ≃ B to

denote that there is a state q ∈ B such that q ≃ r. We define r
•

≃ B and

r
◦

≃ B analogously. We define
◦

≃ to be an equivalence relation such that

≃ ⊆
◦

≃ ⊆
(

≃ ∗
•

≃
)

. Here, ∗ denotes the composition of the two relations.

To compute
◦

≃, the two relations
•

≃ and ≃ are composed, and all links
in the relation violating transitivity are removed, while all elements from
≃ are maintained. In such a manner, we obtain a new relation R. We

define
◦

≃ to be R ∩ R−1. Notice that depending on how the transitive
fragment is computed, there may be several relations satisfying the con-

dition of
◦

≃.

Language Preservation. Consider a tree automaton A = (Q,Σ,∆,F )
and an equivalence relation ≡ on Q. The abstract tree automaton derived
from A and ≡ is A/≡ = (Q/≡, Σ,∆/≡, F/≡) where:

– Q/≡ is the set of blocks in ≡. In other words, we collapse all states
which belong to the same block into one abstract state.

– (B1, . . . , Bn)
f

−→ B iff (q1, . . . , qn)
f

−→ q for some q1 ∈ B1, . . . , qn ∈
Bn, q ∈ B. This is, there is a transition in the abstract automaton iff
there is a transition between states in the corresponding blocks.

– F/≡ contains a block B iff B∩F 6= ∅. Intuitively, a block is accepting
if it contains a state which is accepting.

We will now consider the abstract automaton A/
◦

≃ where the states

of A are collapsed according to
◦

≃. We will relate the languages of A and

A/
◦

≃ by upcoming Theorem 3. To do that, we will first prove a series of
lemmas where we utilize the notion of a context.

Intuitively, a context is a tree with “holes” instead of leaves. Formally,
we consider a special symbol © 6∈ Σ with rank 0. A context over Σ is a
tree c over Σ∪{©} such that for all leaves p ∈ c, we have c(p) = ©. For a
context c with leaves p1, . . . , pn and trees t1, . . . , tn, we define c[t1, . . . , tn]
to be the tree t, where

– dom(t) = dom(c)
⋃

{p1 · p
′| p′ ∈ dom(ti)}

⋃

· · ·
⋃

{pn · p′| p′ ∈ dom(tn)},
– for each p = pi · p

′, we have t(p) = ti(p
′), and

– for each p ∈ dom(c) \ {p1, . . . , pn}, we have t(p) = c(p).

In other words, c[t1, . . . , tn] is the result of appending the trees t1, . . . , tk
to the holes of c. We extend the notion of runs to contexts. Let c be
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a context with leaves p1, . . . , pn. A run π of A on c from (q1, . . . , qn) is
defined in a similar manner to a run on a tree except that for a leaf pi,
we have π(pi) = qi, 1 ≤ i ≤ n. In other words, each leaf labelled with
© is annotated by one qi. We use c [q1, . . . , qn]

π
=⇒ q to denote that π

is a run of A on c from (q1, . . . , qn) such that π(ǫ) = q. The notation
c [q1, . . . , qn] =⇒ q is explained in a similar manner to runs on trees.

The first of the series of lemmas leading to Theorem 3 associates runs

on contexts with the upward bisimulation equivalence
•

≃.

Lemma 3. If c[q1, q2, . . . , qn] =⇒ q and qi
•

≃ ri for some 1 ≤ i ≤ n,
then there are states r1, . . . , ri−1, ri+1, . . . , rn, r such that qj ≃ rj for each

j : 1 ≤ j 6= i ≤ n, q
•

≃ r, and c[r1, . . . , rn] =⇒ r.

Proof. To simplify the notation, we assume (without loss of generality)
that i = 1. We use induction on the structure of c. The base case is trivial
since the context c consists of a single hole. For the induction step, we
assume that c is not only a single hole. Suppose that c[q1, q2, . . . , qn]

π
=⇒ q

for some run π and that q1
•

≃ r1. Let p1, . . . , pj be the left-most leaves of
c with a common parent. Let p be the parent of p1, . . . , pj . Notice that
q1 = π(p1), . . . , qj = π(pj). Let q′ = π(p) and let c′ be the context c with
the leaves p1, . . . , pj deleted.

In other words, dom(c′) = dom(c) \ {p1, . . . , pj}, c′(p′) = c(p′) if
p′ ∈ dom(c′) \ {p}, and c′(p) = ©. Observe that c′[q′, qj+1, . . . , qn] =⇒ q
and also that f(q1, q2, . . . , qj) −→ q′ for some f . By definition of the

upward bisimulation equivalence and the premise q1
•

≃ r1, it follows

that there are r2, . . . , rj , r
′ such that q2 ≃ r2, . . . , qj ≃ rj , q

′
•

≃ r′, and
f(r1, r2, . . . , rj) −→ r′. Since c′ is smaller than c, we can apply the in-
duction hypothesis and conclude that there are rj+1, . . . , rn, r such that

qj+1 ≃ rj+1, . . . , qn ≃ rn, q
•

≃ r, and c′[r′, rj+1, . . . , rn] =⇒ r. The claim
follows immediately. ⊓⊔

With Lemma 3 in hand, we can relate runs of the abstract automaton

with runs of the original automaton. Each run in A/
◦

≃ can be simulated by
a run in A which starts from states that are equivalent wrt the downward
bisimulation equivalence and ends up in a state that is equivalent wrt the
upward bisimulation equivalence.

Lemma 4. For blocks B1, . . . , Bn, B ∈ Q/
◦

≃ and a context c, wheneaver
c[B1, . . . , Bn] =⇒ B, then there exist states r1, . . . , rn, r ∈ Q with r1 ≃

B1, . . . , rn ≃ Bn, r
•

≃ B, and c[r1, . . . , rn] =⇒ r. Moreover, if B ∈ F/
◦

≃,
then also r ∈ F .
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Proof. The claim is shown by induction on the structure of c. In the base
case, the context c consists of a single hole. We choose any q ∈ B ∩ F
if B ∩ F 6= ∅, and any q ∈ B otherwise. The claim holds obviously by

reflexivity of ≃ and
•

≃.
For the induction step, we assume that c is not only a single hole.

Suppose that c[B1, . . . , Bn]
π

=⇒ B for some run π. Let p1, . . . , pj be
the left-most leaves of c with a common parent. Let p be the parent
of p1, . . . , pj . Notice that B1 = π(p1), . . . , Bj = π(pj). Let B′ = π(p) and
let c′ be the context c with the leaves p1, . . . , pj deleted. In other words,
dom(c′) = dom(c)\{p1, . . . , pj}, c′(p′) = c(p′) provided p′ ∈ dom(c′)\{p},
and c′(p) = ©.

Observe that c′[B′, Bj+1, . . . , Bn] =⇒ B. Since c′ is smaller than
c, we can apply the induction hypothesis and conclude that there are

v, q′j+1, . . . , q
′
n, q′ such that v ≃ B′, q′j+1 ≃ Bj+1, . . . , q

′
n ≃ Bn, q′

•

≃ B,
c′[v, q′j+1, . . . , q

′
n] =⇒ q′, and if B ∩ F 6= ∅, then q′ ∈ F . It follows that

there are u ∈ B′, qj+1 ∈ Bj+1, . . . , qn ∈ Bn, q ∈ B with u ≃ v, qj+1 ≃

q′j+1, . . . , qn ≃ q′n, and q
•

≃ q′. By definition of A/
◦

≃, there are states

q1 ∈ B1, . . . , qj ∈ Bj, and z ∈ B′ such that (q1, . . . , qj)
f

−→ z for some f .

Since ≃ ⊆
◦

≃ and u ≃ v, we get u
◦

≃ v. Since u, z ∈ B′, it follows that

z
◦

≃ u. From transitivity of
◦

≃, we get z
◦

≃ v. From the definition of
◦

≃, there

is a state w such that z ≃ w and w
•

≃ v. By the definition of the downward

bisimulation equivalence and premises z ≃ w and (q1, . . . , qj)
f

−→ z, there

are states r1, . . . , rj with q1 ≃ r1, . . . , qj ≃ rj, and (r1, . . . , rj)
f

−→ w. By

Lemma 3 and premises v
•

≃ w and c′[v, q′j+1, . . . , q
′
n] =⇒ q′, there are

states rj+1, . . . , rn, and r with q′j+1 ≃ rj+1, . . . , q
′
n,≃ rn, q′

•

≃ r, and

c′[w, rj+1, . . . , rn] =⇒ r. Finally, by transitivity of ≃ and
•

≃, qj+1 ≃

rj+1, . . . , qn ≃ rn, q
•

≃ r. Moreover, by definition of
•

≃ and the fact that

q′ ∈ F if B ∩ F 6= ∅, we get that r ∈ F if B ∈ F/
◦

≃. The claim thus
holds. ⊓⊔

The next lemma already states that the language of the abstract au-
tomaton is a subset of the language of the original automaton.

Lemma 5. If t =⇒ B, then t =⇒ w for some w with B
•

≃ w. Moreover,

if B ∈ F/
◦

≃, then also w ∈ F .

Proof. Suppose that t
π

=⇒ B for some π. Let p1, . . . , pn be the leafs of t,
and let π(pi) = Bi for each i : 1 ≤ i ≤ n. Let c be the context we get from
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t by deleting the leaves p1, . . . , pn. Observe that c[B1, . . . , Bn]
π

=⇒ B.
It follows from Lemma 4 that there exist states r1, . . . , rn, r ∈ Q and

q1 ∈ B1, . . . , qn ∈ Bn, q ∈ B such that q1 ≃ r1, . . . , qn ≃ rn, q
•

≃ r,

c[r1, . . . , rn] =⇒ r, and if B ∩ F 6= ∅, then r ∈ F . By definition of A/
◦

≃,
it follows that there are q′1 ∈ B1, . . . , q

′
n ∈ Bn and f1, . . . , fn such that

fi

−→ q′i for each i such that 1 ≤ i ≤ n.

We show by induction on i that for each i such that 1 ≤ i ≤ n
there are states ui

1, . . . , u
i
i, v

i
i+1, . . . , v

i
n, wi such that q′1 ≃ ui

1, . . . , q
′

i ≃
ui

i, ri+1 ≃ vi
i+1, . . . , rn ≃ vi

n, r ≃ wi, and c[ui
1, . . . , u

i
i, v

i
i+1, . . . , v

i
n] =⇒ wi.

The base case where i = 0 is trivial. We consider the induction step.

Since ≃ ⊆
◦

≃ and vi
i+1 ≃ ri+1, we get vi

i+1

◦

≃ ri+1. Since ri+1 ≃ qi+1,

we get ri+1
◦

≃ qi+1. Since qi+1, q
′

i+1 ∈ Bi+1, we have that qi+1
◦

≃ q′i+1.

By transitivity of
◦

≃, it follows that vi
i+1

◦

≃ q′i+1. By the definition of
◦

≃, there is zi+1 such that q′i+1 ≃ zi+1 and vi
i+1

•

≃ zi+1. By Lemma 3,
there are z1, . . . , zi, zi+2, . . . , zn, z such that ui

1 ≃ z1, . . . , u
i
i ≃ zi, v

i
i+2 ≃

zi+2, . . . , v
i
n ≃ zn, wi •

≃ z, and c[z1, . . . , zn] =⇒ z. By transitivity of ≃ and
the premises q′j ≃ ui

j and ui
j ≃ zj , we have q′j ≃ zj for each j : 1 ≤ j ≤ i.

By transitivity of ≃ and the premises qj ≃ vi
j and vi

j ≃ zj , we have qj ≃ zj

for each j : i+ 2 ≤ j ≤ n. Define ui+1
j = zj for j : 1 ≤ j ≤ i+ 1; vi+1

j = zj

for j : i + 2 ≤ j ≤ n; and wi+1 = z.

The induction proof above implies that c[un
1 , . . . , un

n] =⇒ wn. From

the definition of downward bisimulation and the premises that
fi

−→ q′i and
q′i ≃ un

i , it follows that fi can move to un
i for each i : 1 ≤ i ≤ n. It follows

that t =⇒ wn By definition of
•

≃ and the fact that r ∈ F if B ∩ F 6= ∅,

it follows that ∀1 ≤ i ≤ n. wi ∈ F provided that B ∈ F/
◦

≃. Thus, in the
claim of the lemma, it suffices to take w = wn. ⊓⊔

In other words, Lemma 5 says that each tree t which leads to a block

B in A/
◦

≃ will also lead to a state in A which is in the block B wrt the
upward bisimulation equivalence. Moreover, if t can be accepted at B in

A/
◦

≃ meaning that B contains a final state of A, i.e., B ∩F 6= ∅), then it
can be accepted at w in A (i.e., w ∈ F ) too. This leads to the following
theorem.

Theorem 3. L(A/
◦

≃) = L(A) for each tree automaton A.
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TA ≃ ∼
◦

≃
◦

∼

size reduction time reduction time reduction time reduction time
202 41% 0.2 41% 3.7 45% 0.3 49% 7.1
354 11% 0.3 11% 4.2 42% 0.4 52% 7.3
909 14% 0.6 52% 3.6 82% 0.8 89% 5.2
1357 9% 3.1 10% 19.8 69% 4.2 82% 36.1
1748 1% 1.4 60% 7.8 75% 3.4 99% 13.7

Table 1. Experimental results on reducing tree automata

6 Experiments and a Comparison of Various Relations

on TA

We have implemented our algorithms in a prototype tool written in Java
and made experiments with the tool on multiple automata obtained from
the framework of regular tree model checking (RTMC). RTMC is the
name of a family of techniques for analysing infinite-state systems in
which configurations of the systems being analysed are represented by
trees, sets of the configurations by TA, and transitions of the analysed
systems by tree transducers. Most of the algorithms in RTMC rely cru-
cially on efficient reduction methods since the size of the generated au-
tomata often explodes, making a further computation with the automata
infeasible without a reduction. In particular, the TA that we have con-
sidered arose during verification of the Arbiter protocol and the Leader
election protocol [6].

Our experimental evaluation was carried out on an AMD Athlon 64
X2 2.19GHz PC with 2.0 GB RAM. We compare the size of the considered
TA after reducing them using the downward bisimulation equivalence ≃,

a composed bisimulation equivalence
◦

≃, the downward simulation equiv-
alence ∼, and a composed simulation equivalence

◦
∼. Definitions and al-

gorithms for computing downward simulation and composed simulation
equivalences can be found in [1].

It is well known that simulations usually (though not necessarily) give
a better reduction but they are harder to compute than bisimulations.

Indeed, in [4], we show that ≃ ⊆ ∼ ⊆
◦
∼, but

◦

≃ and
◦
∼ as well as

◦

≃ and
∼ are incomparable, i.e., for each of the two pairs, there exists a TA for
which the relations are incomparable.

In Table 1, we show the computation time (in seconds) and the re-

duction (in percent) obtained on the chosen automata when using
◦

≃,
◦
∼,

≃, and ∼. As can be seen from the results, composed simulation gives the
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best reduction in all cases, but, on the other hand, it has a much higher
computation time than all the other relations. Composed bisimulation
gives a better reduction than both downward simulation and downward
bisimulation. The time for computing composed simulation is lower than
all simulation relations.

We have further performed a preliminary comparison of our relations
by using the backward and forward bisimulations presented in [11] where
it is also argued that using these relations in succession in one of the
two possible orders (i.e., reducing a given TA first using the backward
bisimulation and then the result by the forward bisimulation or vice versa)
gives a better result than using just one of them. We show that using each
of these two-step reductions is in theory incomparable with our composed
bisimulation equivalences.

For each of the three reduction techniques, we now present an au-
tomaton such that reducing it by the particular reduction technique gives
better result (i.e., the resulting automaton has less states) than reducing
it by the other two techniques. The automaton A1 = (Q1, Σ1,∆1, Q1)
can be reduced most when using composed bisimulation, in the case of
the atomaton A2 = (Q2, Σ2,∆2, Q2), using forward bisimulation reduc-
tion followed by forward (downward) bisimulation reduction is the best,
and the automaton A3 = (Q3, Σ3,∆3, Q3) can be reduced most using
forward (downward) bisimulation reduction followed by forward bisimu-
lation reuction. The automata, that were obtained with help of a random
automata generator, look as follows:
Q1 = {qx, q0, q1, q2, q3, q4, rx, r0, r1, r2, r3, r4}, (Σ1)1 = {x, a, b, c, d},

∆3 :

qx
x

−→ qx, q0
d

−→ q1, q2
d

−→ q1, rx
x

−→ rx, r1
d

−→ r0, r1
d

−→ r2,

qx
a

−→ q4, q0
d

−→ q0, q2
d

−→ q0, r4
a

−→ rx, r0
d

−→ r0, r0
d

−→ r2,

qx
a

−→ q3, q1
d

−→ q4, q3
c

−→ q4, r3
a

−→ rx, r4
d

−→ r1, r4
c

−→ r3,

qx
b

−→ q3, q2
c

−→ q3, q3
c

−→ q2, r3
b

−→ rx, r3
c

−→ r2, r2
c

−→ r3,

q0
c

−→ q0, q2
c

−→ q1, q3
d

−→ q2, r0
c

−→ r0, r1
c

−→ r2, r2
d

−→ r3,

q0
c

−→ q3, q2
c

−→ q0, q3
d

−→ q1, r3
c

−→ r0, r0
c

−→ r2, r1
d

−→ r3,

q0
c

−→ q1, q2
d

−→ q3, q3
d

−→ q0, r1
c

−→ r0, r3
d

−→ r2, r0
d

−→ r3,

q0
d

−→ q2, q2
d

−→ q2, q4
d

−→ q4, r2
d

−→ r0, r2
d

−→ r2, r4
d

−→ r4
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Q2 = Q3 = {q0, q1, q2}, (Σ2)0 = (Σ3)0 = {a, b}, (Σ2)1 = (Σ3)1 = {c, d},

∆1 : ∆2 :
a

−→ q2, q2
c

−→ q1, q2
d

−→ q1,
a

−→ q1, q1
c

−→ q0, q1
d

−→ q2,
a

−→ q1, q1
c

−→ q2, q2
d

−→ q2,
a

−→ q2, q0
c

−→ q0, q1
d

−→ q1,
b

−→ q1, q1
c

−→ q1, q0
d

−→ q0,
b

−→ q1, q2
c

−→ q0, q1
d

−→ q0,
b

−→ q2, q1
c

−→ q0, q0
d

−→ q1
b

−→ q2, q0
d

−→ q0.

q0
c

−→ q1,

On the other hand, in all our test cases, backward bisimulation fol-
lowed by forward bisimulation behaved in a very similar way to composed
bisimulation—a more thorough experimental comparison is to be done in
the future.

Let us note that applying the forward and backward bisimulations
in succession has the advantage that the second relation is applied on
a smaller input automaton. On the other hand, our notion of composi-
tion has the advantage of being applicable also for composing simulations
(while re-using a lot of the needed algorithms and data structures) and
even for combining simulations and bisimulations as we discuss in our
follow-up work [4], which thus gives the user a wider variety of easily
implementable reductions for TA.

7 Conclusions and Future Work

We have presented a new notion of equivalence, called composed bisimula-
tion equivalence, for reducing TA while preserving their language. Com-
posed bisimulation equivalence is defined in terms of a composition of
downward bisimulation equivalence proposed earlier in the literature and
upward bisimulation equivalence proposed in this paper. We have dis-
cussed theoretical as well as experimental evidence that composed bisimu-
lation equivalence offers a new compromise between reduction capabilities
and computational demands and thus offers designers of tools based on
TA a finer choice of the technique to be used for reducing TA. Moreover,
the notion of composed bisimulation equivalence and also the associated
algorithms share some common kernel with those used for working with
various simulation equivalences in [1], which allows for an easy implemen-
tation and combinations of all these approaches. Indeed, the possibility of
composing not only upward and downward bisimulations or upward and
downward simulations, but defining a parametric (bi-)simulation frame-
work allowing one to mix simulations and bisimulations and thus further
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tune the desired degree of the trade-off between reductions and their costs,
is considered in the recent follow-up work [4].

There are several interesting directions for future work. First, one can
consider extending the results to the domain of symbolically encoded tree
automata like in the MONA tree automata library [12], allowing one to
deal with significantly larger automata. Next, one can investigate the pos-
sibility of repeated (nested) compositions of various equivalences. Finally,
it can be interesting to extend the algorithms presented in this paper to
work for other kinds of tree automata such as guided tree automata,
weighted tree automata, or unranked tree automata.
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