
Hidden Markov Models (HTK)
Jan Černocký, FIT VUT Brno

This exercise deals with the isolated-word recognition using HMM. We will use the HTK toolkit from University
of Cambridge (UK).

1 HTK

serves to define, train and recognize speech using HMM and contains tools for parameterization (feature ex-
traction), evaluation of results, pronunciation dictionaries, and others. HTK is written in C-language and for
non-commercial use, it can be downloaded from:
http://htk.eng.cam.ac.uk/
In this exercise, we will use a set of pre-compiled programs that we will run from the command line of Windows
operating system:

• HCopy - as the name says, it should copy. While copying however, it can perform a conversion of speech
data, for example from signal samples to MFCC vectors. The behavior is controlled by a configuration file.

• HList - visualizes (as text) a file with feature vectors.

• HCompV - initializes parameters of emission probability distribution functions (PDFs) in HMM states to
global values for given word.

• HRest - retraining of model. It computes the values of the “soft” function assigning vectors to states (state
occupation likelihood), followed by re-estimation of model parameters.

• HParse - converts human-readable form of recognition network to human-unreadable HTK format.

• HVite - Viterbi decoder or recognizer. For an unknown word, it computes the Viterbi probability of all
models and finds the maximum. The model that “emitted” the given word with the maximum probability,
wins.

• HResults - a tool for evaluation of recognition results – based on the correct transcriptions, it computes
the word accuracy.

Running any of the programs without parameters shows a brief help.

2 The task

Create a speaker-independent recognizer for isolated words ANO/NE (yes/no in Czech). For the training, use
data from 60 speakers from the Czech database “Č́ıslovky” (each speaker has uttered both “ano” and “ne”). For
testing, use data from 20 speakers.

Parameterization (feature extraction) should be done using 12 MFCC (Mel-frequency cepstral) coefficients
and log-energy (in HTK notation MFCC E). Complete the feature vector by the approximations of the 1st and
2nd derivative (∆ and ∆∆ coefficients, in HTK notation MFCC E D A). Set the frame-length to 25 ms, and the
frame shift to 10 ms, you will therefore obtain 100 feature vectors per second.

Models will have left-right architecture, without state-skips. From i-th state, only transitions to i-th state and
to (i + 1)-th state are allowed. The models will have 7 states in total. The first and last are special non-emitting,
there will therefore be 5 emitting states. The probability distribution function (PDF) in states will be a single
Gaussian with diagonal covariance matrix. One PDF will therefore be described by a vector of 39 mean values
and a vector of 39 variances.

3 Solution and comments

This section contains complete solution of the task. Details on the creation of lists, MLF files, etc., are in the
enclosed README file1.

1Many of the commands in README file will, however, run only under UNIX operating system. . .
1

Practical comments

Copy the contents of to arbitrary local directory on your computer. The subdirectories contain:

• cfg — configuration files for HTK programs.

• dics — dictionaries.

• net — word networks for the recognition.

• lists — lists of models.

• proto — prototypes of models.

• hmm0 — models initialized using HCompV.

• hmm1 — models retrained using HRest.

• data — speech in raw format: no header, Fs=8000 Hz, 16-bit lin. Files with MFCC coefficients will be
generated to the same directories. Files *a0.raw contain ANO, files *a1.raw contain NE.

• mlf — speech data transcriptions in Master-Label files.

• scripts — lists of files for HTK. The name ’scripts’ is a bit misleading (scripts are usually batches of
commands for operating system, for example *.bat under DOS). This notation is unfortunately common in
the documentation of HTK, so that we will use it here, too.

Open a window with a command line (here, you will run HTK programs) and a File manager (for modifications
and visualizations of text files).

3.1 Parameterization (Feature Extraction)

• Study the configuration file cfg\hcopy.conf:

BYTEORDER = VAX the byte order will be Intel-PC
SOURCEKIND = WAVEFORM
SOURCEFORMAT = NOHEAD header-less files
SOURCERATE = 1250 sampling period is 1250×100 ns = 1/8000
ZMEANSOURCE = FALSE no removal of DC offset

TARGETKIND = MFCC_E type of output features: MFCC and log-energy
TARGETFORMAT = HTK
TARGETRATE = 100000 sampling period of output feature vectors (frame shift) will be 10 ms
WINDOWSIZE = 250000.0 frame length 25 ms
NUMCHANS = 24 number of triangular filters used for the computation of MFCC
ENORMALISE = TRUE energy will be normalized.

• Study script-files scripts\train.scp a scripts\test.scp.

• Run the feature extraction for both training and test sets:
HCopy -T 1 -C cfg\hcopy.conf -S scripts\train.scp
HCopy -T 1 -C cfg\hcopy.conf -S scripts\test.scp

• Visualize one of created feature files as text (using HList) and in Matlab using readhtk.m function.

4 Model training

4.1 Initialization

• Study the prototypes of models in directory proto. Note, that allowed and forbidden transitions are “hard-
wired” in the matrix of transition probabilities at the end of each model. Mean values are set to 0, variances
to 1.

• Study the Master-Label file mlf\train.mlf The numbers before the label stand for beginning and end of
file in hundreds of ns. For one file, check, if the length recorded in MLF corresponds to the file-size:
time[100ns] = # of bytes / 2 / 8000 / 100×10−9.

2

• Note, that the configuration file for model initialization cfg\hcompv.conf contains only one line:
TARGETKIND=MFCC_E_D_A
This means, that MFCC and energy coefficients (already on the disk in *.mfc files), will be on-line completed
with ∆ a ∆∆ coefficients.

• Look at the script-file scripts\train_htk.scp

• Run the initialization for both models:
HCompV -T 7 -I mlf\train.mlf -l ANO -C cfg\hcompv.conf

-m -S scripts\train_htk.scp -M hmm0 proto\ANO
HCompV -T 7 -I mlf\train.mlf -l NE -C cfg\hcompv.conf

-m -S scripts\train_htk.scp -M hmm0 proto\NE

• Study resulting models in directory hmm0. What has changed?

4.2 Re-training of models

• Note, that the configuration file for re-training cfg\hrest.conf contains again only one line:
TARGETKIND=MFCC_E_D_A

• Run the re-training of both models:
HRest -T 7 -I mlf\train.mlf -l ANO -C cfg\hrest.conf

-S scripts\train_htk.scp -M hmm1 hmm0\ANO
HRest -T 7 -I mlf\train.mlf -l NE -C cfg\hrest.conf

-S scripts\train_htk.scp -M hmm1 hmm0\NE

• Study resulting models in directory hmm1. What do you observe?

5 Recognition and evaluation

5.1 What else will we need

The results of training are two trained models in directory hmm1. We will however need a couple of other things:

• List of models. See file lists\models.

• Pronunciation dictionary. This dictionary contains the transcription of words in terms of models. In case
we used smaller units (phonemes), it would contain for example: ANO=A N O. In our case, one word is
modeled by one model, the pronunciation dictionary is therefore trivial: dics\dictionary.

• Recognition network. This network determines allowed sequences of words at the output of the recognizer.
For us, this is ANO or NE. Hand-made and human-readable recognition network is in file: net\oldnetwork.
For HTK, it is necessary to convert it to a human-unreadable form using:
HParse net\oldnetwork net\network

5.2 Recognition

for unknown files, it produces a transcription and stores it to MLF-file mlf\testout.mlf. The recognition is run
using:
HVite -T 1 -C cfg\hvite.conf -d hmm1 -S scripts\test_htk.scp

-i mlf\testout.mlf -w net\network dics\dictionary lists\models

• Look at the recognition results in the resulting Master Label file.

5.3 Evaluation

We are interested in the quality of the recognizer. In this experiment, we have a reference MLF with the correct
transcription of test files: mlf\test.mlf. This can be compared to HVite output using:
HResults -I mlf\test.mlf lists\models mlf\testout.mlf
The most important number in the output of HResults is Acc= (word accuracy). How many % did you reach?

3

6 And more. . .

1. Record yourself a set of 10 WAV-files (8 kHz, 16 bit) containing ANO. For HCopy, use configuration file
hcopy_wav.conf, which allows for reading of WAV-files. Create your own script-files for feature extraction
and for the recognition. Create your own reference MLF file (in case MLF is used only as a reference for
HResults, it is not necessary to fill the beginning and end times). Extract the features using HCopy and
recognize using HVite. Evaluate the recognition accuracy using HResults. How many % did you reach?

2. In Matlab, add white noise to your files so that the signal-to-noise ratio (SNR) is 0 dB. You may for example
move the original files to xx_clean.wav and then use the following sequence of Matlab-commands:

SNR = 0;
[s,fs,nbit] = wavread(’xx_clean.wav’);
s = s’ - mean(s);
E = sum(s.^2) / length(s); % energy of the signal
Enoise = E / 10^(SNR/10); % energy of the noise
n = randn(1,length(s)) * sqrt(Enoise); % generating the noise
wavwrite (s + n, fs, nbit,’xx.wav’); % writing signal+noise to disk

Listen to the resulting files (note, that for SNR=0 dB, the energy of noise is the same as the energy of
signal!). Extract MFCC features, recognize and evaluate the word accuracy. What is your result?

4

