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Agenda

• Speech Parameterization

– Preprocessing
– Basic Parameters: short-time energy, zero crossing rate.

• Speech production and its model.

• Spectrogram.

• Separation of excitation and modification – cepstrum.

• Approximation of cepstra according to the human auditory system’s response– MFCC.
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PARAMETERIZATION

• Goal: express a signal on a limited number of values – a) “parameterization”, b)

“feature extraction”.

• a) representation based on findings in signals processing (filter banks, Fourier

transform, etc.) ⇒ non-parametric representation.

• b) representation based on findings about speech production ⇒ parametric

representation.

BUT:

• b) also makes use of the techniques of non-parametric representation, thus difficult

(sometimes unfavorable) to distinguish between the two groups.

• The calculated values are anyway usually called parameters.
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Parameters

• scalar per frame – one number calculated from a speech frame (short-time energy or

zero crossing rate).

• vector per frame – a set of numbers (vector) calculated from a speech frame. When

having a sequence of frames, parameters are usually stored in matrices.

time

index ...
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PRE-PROCESSING

Mean Normalization

Direct current offset (dc-offset) carries no useful information. Moreover, can carry

disturbing information (when calculating energy).
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dc-offset removal!

s′[n] = s[n] − µs, µs must be estimated. (1)
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Mean Value Off-Line

Here, equivalent to the average value:

s̄ =
1

N

N
∑

n=1

s[n] (2)
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Mean Value On-Line

The whole signal is not (yet) available: either is too long or there is a flow of new values..

s̄[n] = γs̄[n − 1] + (1 − γ)s[n], (3)

where γ −→ 1. This is equivalent to passing a signal through a filter with the impulse

response:

h = [(1 − γ) (1 − γ)γ (1 − γ)γ2 . . .]. (4)

Defined as the geometric progression: the initial element is a0 = 1 − γ and the quotient is

q = γ. The sum is thus:
∞
∑

n=0

h[n] =
a0

1 − q
=

1 − γ

1 − γ
= 1, (5)

(this is what we originally expected ,).
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Example, γ = 0.99 (see the first computer lab):
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Preemphasis

Increases the magnitude of the higher frequencies with respect to the magnitude of the

lower frequencies. Equalization of the speech frequency characteristics (the magnitude

decreases towards higher frequencies). Rather a historical operation.

A simple first-order FIR filter:

H(z) = 1 − κz−1, (6)

where κ ∈ [0.9, 1]. Calculated difference between the two neighboring samples. The

magnitude frequency characteristics for κ=0.95:
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Passing through the defined filter:

s′[n] = s[n] − κs[n − 1] (7)
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⇒ The processed signal (after applying preemphasis) contains of more higher frequencies.
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FRAMES

• Why?

• Speech signal is considered as random, parameter estimation methods require

stationary signals.

• Thus dividing the signal into shorter segments (segments, micro-segments, frames)

within which the signal behaves (we hope) as stationary.

• Frame parameters: length lram, overlap pram, frame shift sram = lram − pram.

Frame Length

1. short enough to assume the signal (within the given length) is stationary.

2. BUT: long enough to provide accurate estimation of the desired parameters (features).

⇒ trade off (momentum of the articulation tract), typical length 20–25 ms (160–200

samples for Fs =8000 Hz).
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Overlap

• small or none: , fast time shift in the signal, low memory/processor demands, / the

difference of the parameter values of the neighboring frames can be significant.

• large: , slow time shift, smooth change in the parameter values, / high

memory/processor demands, alike parameter values (violates the independency

assumption!).

⇒ tradeoff, typical length 10 ms, thus 100 frames per second, centi-second vectors.
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How many frames per segment of the length N ?

No overlap, pram = 0

lram

N

ram
p     =0

Nram =

⌊

N

lram

⌋

, (8)

. . . ⌊·⌋ denotes the operation ’floor’.
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Frames overlap, pram 6= 0

lram

ram
p

N

ram
s

Nram = 1 +

⌊

N − lram

sram

⌋

(9)

. . . the signal must be at least one frame long.
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Signal Segmentation - Windowing Function

Select a frame of a signal using a window - window(ing) function:

Rectangular – no change of the signal, selection only:

w[n] =







1 pro 0 ≤ n ≤ lram − 1

0 otherwise
(10)

Hamming – suppresses the signal at the sides of the window, selection and weighting:

w[n] =







0.54 − 0.46 cos
2πn

lram − 1
pro 0 ≤ n ≤ lram − 1

0 otherwise
(11)
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How does windowing change the spectrum of the selected segment? A product in time

domain corresponds to convolution of the speech spectrum with the window spectrum.

X(f) = S(f) ⋆ W (f) (12)

Comparison of the rectangular and the Hamming window:
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BASIC PARAMETERS OF SPEECH SIGNAL

all the parameters will be derived for single frames. For each frame:

• scalar ⇒ a row vector.

• vector ⇒ matrix, columns contain dimensions of the parameter vector, rows contain a

sequence of values in a particular dimension over time (time in frames).

Average Short-Time Energy

E =
1

lram

lram−1
∑

n=0

x2[n] (13)

• speech activity detector.

• separation of phonemes to voiced (high energy) and unvoiced (low energy).

• often we use log-energy.

• careful with noise and low-energy phonemes.
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Example: “létaj́ıćı prase”
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Zero-Crossing Rate

. . . rate of sign changes of the signal within a given frame.

Z =
1

2

lram−1
∑

n=1

| sign x[n] − sign x[n − 1]|, (14)

where sign (x) is the sign function defined as:

sign x[n] =







+1 pro x[n] ≥ 0

−1 pro x[n] < 0
(15)

How does it work? The function | signx[n] − sign x[n − 1]| results in 2 when there is a

change in the sign between the samples x[n − 1] and x[n]:
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• distinguishing between the voiced (low zero-crossing rate) and unvoiced (high rate,

rather like in noise).

• very sensitive to noise. . .
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Example: “létaj́ıćı prase”
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HUMAN VOCAL APPARATUS AND ITS MODEL

(Adopted from Wikipedia )
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Organs and their Models in Digital Processing

• lungs — energy source — signals: none

• larynx — energy modulation – signals: excitation.

– opened vocal cords — noise.

– vibrating vocal cords — periodic signal (tone). fundamental frequency:

males 90–120 Hz

females 150–300 Hz

children 350–400 Hz

• vocal (articulatory) tract — modification tract — signals: filter.

– pharynx.
– velum.
– tongue.
– oral and nasal cavity.
– teeth.
– lips.
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Model

±°
²¯
¡
¡µ

±°
²¯

±°
²¯

¡
¡µ

-

-

?

6

- -current
source

Σ

= vibrating vocal cords

= lungs

= open vocal cords

= articulatory tract

impuls
generator

noise
generator

linear
transfer
system
(filter)

speech

Transfer system: linear filter - usually IIR.
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Vocal Tract Model in Time and Frequency Domain

cca -12 dB/okt.
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Top part – time behaviour, bottom part – spectrum.

• a) and d) excitation: T0 is the period, F0 is the fundamental frequency (pitch).

• b) and e) articulation tract: F1 to F3 are the formants (resonance frequency of the

vocal tract), are given by the physical configuration of the vocal tract.

• c) and f) the resulting signal and its spectrum.

The resulting signal is given in the time domain by convolution:

s(t) = g(t) ⋆ h(t) =

∫ +∞

−∞

g(τ)h(t − τ)dτ. (16)

Convolution in time domain corresponds to product in frequency:

S(f) = G(f)H(f). (17)

A relevant task in speech processing is de-convolution; the goal is to separate excitation

and modification.
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SPECTROGRAM

One spectrum is not enough (speech is non-nonstationary) ⇒ representation of the

spectrum (strictly speaking PSD) behaviour over time:

• segment speech into frames.

• estimate the PSD for each frame, usually using DFT.

• depict:

– horizontal axes represents time (“rough” time in frames).
– vertical axes represents frequency.
– color represents energy.

Depending on the frame length we talk about:

• long-term spectrogram.

• short-term spectrogram.

/ Drawback of DFT: Fine scale in frequency and time domain cannot be satisfied

simultaneously
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long-term: specgram(s,256,8000,hamming(256),200);
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short-term: specgram(s,256,8000,hamming(50));
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CEPSTRUM

. . . separates excitation from modification – convenient for encoding; dropping excitation

frequency in speech processing (excitation carries information dependent on speaker,

mood,. . . )

What can we do.. 1: filter off frequency lower than 400 Hz and get rid of the fundamental

frequency. . . BAD IDEA:
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• fundamental frequency folds are present

along the whole spectrum.

• we can loose the fist formant.

• land line band starts on 300 Hz and we

still can recognize the pitch.

• . . . so we need a better approach.

⇒ Cepstrum
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Challenge

Excitation e(t) is convoluted with the filter (modification) impulse response:

s(t) = g(t) ⋆ h(t) =

∫ +∞

−∞

g(τ)h(t − τ)dτ, (18)

which in frequency domain corresponds to product:

S(f) = G(f)H(f). (19)

we cannot well separate the two components in either domain. Solution: non-linearity,

which can translate product to summation.
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Definition of Cepstrum

lnG(f) =

+∞
∑

n=−∞

c(n)e−j2πfn (20)

The c(n) values are the cepstral coefficients. Since G(f) is an even function, c(n) are

real and the following holds:

c(n) = c(−n) (21)

The sum in the equation is the definition of DFT, hence we can compute the c(n) as:

c(n) = F−1 [lnG(f)] (22)

DFT-cepstrum

c(n) = F−1
{

ln |F [s(n)]|2
}

, (23)

• spectrum −→ cepstrum.
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Can it really “break” convolution?

s(n) = e(n) ⋆ h(n), (24)

S(f) = E(f)H(f) a thus |S(f)|2 = |E(f)|2 |H(f)|2. (25)

For the cepstrum calculation we make use of the linearity of the inverse Fourier transform:

F−1(a + b) = F−1(a) + F−1(b).

It results in:

c(n) = F−1
{

ln[|E(f)|2 |H(f)|2]
}

= F−1
{

ln |E(f)|2 + ln |H(f)|2
}

= (26)

= F−1
{

ln |E(f)|2
}

+ F−1
{

ln |H(f)|2
}

= ce(n) + ch(n) (27)

(28)

Convolution becames summation. The coefficients ce(n) and ch(n) are separable in

frequency, which allows to separate them by windowing.
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signal, |F [s(n)]|2, ln |F [s(n)]|2, F−1
{

ln |F [s(n)]|2
}

.
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For the sampling frequency Fs =8000 Hz, we can separate excitation from modification in

frequency domain using threshold of 30.
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Excitation only – set the cepstra related to modification to zero:

modified cepstrum, ln |F [s(n)]|2, |F [s(n)]|, signal (after IDFT, phases of the

original signal are used).

50 100 150 200 250 300 350 400 450 500

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0 500 1000 1500 2000 2500 3000 3500 4000
−7

−6

−5

−4

−3

−2

−1

0

1

2

3

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

50 100 150 200 250 300 350 400 450 500

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Speech Preprocessing, Speech Production, Cepstrum Jan Černocký, Valentina Hubeika, DCGM FIT BUT Brno39/46



Modification only – set the cepstra related to excitation to zero:

modified cepstrum, ln |F [s(n)]|2, |F [s(n)]|, signal (after IDFT, phases are set to

zero).
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Mel-frequency cepstrum – MFCC

• DFT has equivalent frequency resolution along the axes.

• Human ear has higher resolution on lower frequencies than on higher frequencies.

• We want to adjust cepstrum to human hearing.

how do we do it?

• Place filters along the frequency axes non-linearly, calculate the energy on the output,

use the calculated values instead of DFT when calculating cepstra.

• Calculate non-linear frequency axes and place the filters on the modified axes linearly,

. . .
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Convert Hertz to Mel (to transform the frequency axes):

FMel = 2959 log10(1 +
FHz

700
) (29)
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When linearly placed on the Mel axes, the filters correspond to the non-linearly placed

filters on the Hertz axes:

m m m m m m1 2 3 4 5 6

frequency

1
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Energy estimation:

1. construct filter bank, filter the input signal in time domain and calculate

energy:
∑

n s2
i (n) . . . TOO DIFFICULT.

2. apply DFT, power, multiply by a triangular window and add up. (used in the HTK

toolkit).

Inverse FT can be realized by the discrete cosine transform (DCT) . . . (without derivation:

makes use of symmetry of the spectrum and the fact that the result should be real):

cmf (n) =

K
∑

i=1

log mk cos
[

n(k − 0.5)
π

K

]

(30)

⇒ Mel-frequency cepstral coefficients (MFCC)
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