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LPC Jan Černocký, Valentina Hubeika, DCGM FIT BUT Brno 1/38



Agenda

• Signal model of articulatory tract.

• Motivation for linear prediction.

• Filter coefficients estimation.

• Levinson-Durbin algorithm.

• Power Spectral Density (PSD) using LPC.

• Parameters derived from LPC.
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Recap – speech processing and its model
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Articulatory Tract Model

cords
model

vocal
tract
model

sound
radiation
model

-- - -
s(n)

speechexcitation

Objective: estimate parameters of the speech production model.

This lecture is focused on filters.
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Vocal Cords

Low band filter 2d order with the cutoff frequency at about 100 Hz:

G(z) =
1

[1 − e−cTsz−1]2
(1)

LPC Jan Černocký, Valentina Hubeika, DCGM FIT BUT Brno 5/38



Vocal Tract

a cascade of two-pole resonators corresponding to formants.

resonator
      1

resonator resonator
      2       k

...

For the k formants Fi with the band pass Bi:

V (z) =
1

K
∏

i=1

[1 − 2e−αiTs cos βiTsz
−1 + e−2αiTsz−2]

(2)

where parameters αi and βi are given by the location and bandwidth of the formants.
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Model of the Sound Radiation

L(z) = 1 − z−1 (3)

which is a high-pass filter.
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It gives . . .

H(z) = G(z)V (z)L(z) =

=
1 − z−1

(1 − e−cTsz−1)2
K
∏

i=1

[1 − 2e−αiTs cos βiTsz
−1 + e−2αiTsz−2]

(4)

Component cTs → 0, hence we can cancel out the 1− z−1 component from the nominator

and denominator. The model is thus the all-pole filter. (consists of denominator only –

purely recursive IIR filter). Usually denoted as:

H(z) =
1

1 +

P
∑

i=1

aiz
−i

=
1

A(z)
, (5)

where the polynomu A(z) = 1 + a1z
−1 + a2z

−2 + · · · + aP z−P is of order P = 2k + 1 (k

is number of formants). The most informative are first 4 or 5 formants, thus P is set to 10

(for Fs=8 kHz). Higher sampling frequencies require higher P (for instance 16), to cover

higher part of the spectrum.
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Estimation of the Model Parameters using Linear Prediction (LP)

Speech is produced using the following filter:

excitation
generator ±°

²¯
- -

6

-excitation

U(z)

G

H(z)=1/A(z)x
speech

S(z)

n-th speech sample is thus given by:

s(n) = Gu(n) −

P
∑

i=1

ais(n − i) (6)

Parameters (coefficients) ai of the filter are unknown and have to be estimated, or

identified (system identification).
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Filter Parameters Estimation

We can construct so called inverse filter A⋆(z) with coefficients αi:

- - -

unknown

Gu(n) e(n)

can change

*1/A(z) A (z)

For stationary signals s(n), the coefficients ai are identified using the coefficients αi, when

the e(n)’ output energy is minimized : E{e2(n)}. “tune the filter parameters as long untill

the output signal energy is minimal. . . ”
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Why “Linear Prediction” ?

Assume, E{e2(n)} is minimized. Thus A⋆(z) = A(z).

A(z) can be re-written as:

A(z) = 1 − [1 − A(z)] (7)

Thus:

1-A(z)

A(z) =
s(n)

+

-

s(n) e(n)s(n) e(n)

~
+

The signal sample s̃(n) is given by a linear combination of a number of the preceding

samples,

s̃(n) is interpreted as prediction of the true sample s(n):

s̃(n) = −

P
∑

i=1

ais(n − i) (8)
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Prediction Error is given as the difference between the true and the estimated sample:

e(n) = s(n) − s̃(n) = s(n) − [−

P
∑

i=1

ais(n − i)] = s(n) +

P
∑

i=1

ais(n − i). (9)

the better prediction the smaller error.

In the plane z:

E(z) = S(z)A(z) (10)

Advantages of the method:

• if αi = ai, the prediction error is equal to excitation. (we can get to the root of vocal

tract without a scalpel ;) ).

• coefficient prediction using LP leads to a system of easy-to-solve linear equations.
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Solution

Unnormalized energy of the prediction error is given by:

E =
∑

n

e2(n) (11)

The value of E has to be minimized. Lets rewrite it using the signal s(n) (known value)

and unknown coefficients ai. To get to the minimum, the expression must be partially

derivated with respect to each ai (gradient) and the derivations set to zero:

δ

δaj

{

∑

n

[s(n) +

P
∑

i=1

ais(n − i)]2

}

= 0 (12)

∑

n

2[s(n) +

P
∑

i=1

ais(n − i)]s(n − j) = 0 (13)

∑

n

s(n)s(n − j) +

P
∑

i=1

ai

∑

n

s(n − i)s(n − j) = 0. (14)

(15)
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Denote:
∑

n

s(n − i)s(n − j) = φ(i, j), (16)

then
P

∑

i=1

aiφ(i, j) = −φ(0, j) for 1 ≤ j ≤ P (17)

Which is a system of linear equations:

φ(1, 1)a1 + φ(2, 1)a2+ · · · +φ(P, 1)aP = −φ(0, 1)

φ(1, 2)a1 + φ(2, 2)a2+ · · · +φ(P, 2)aP = −φ(0, 2)
...

φ(1, P )a1 + φ(2, P )a2+ · · · +φ(P, P )aP = −φ(0, P ),

(18)
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Estimation of φ(·, ·)

The coefficients are estimated from frames of N samples. There are two methods differing

in treating of the signal outside the frame (thus the samples for n < 0 and n > N − 1):
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Covariance method

The signal outside the frame is unknown: samples beyond [0, N − 1] are simply not

considered.

forbidden

overlap for computing 

0 s[n]i j

s[n−j]

s[n−i]

N−1
forbidden

overlap for computing 

0 s[n]

s[n−j]

s[n−i]

N−1i+2 j+2

⇒φ(i, j) and φ(i + const, j + const) are not equal (we have a different number of samples

- we have to compute the whole system of linear equations). Difficult, moreover the

covariance method leads to an unstable filter 1/A(z).
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Correlation method

The signal outside the frame is considered as known but having null values.

overlap for computing 

allowed
0 s[n]i j

s[n−j]

s[n−i]

N−1

overlap for computing 

allowed
0 s[n]

s[n−j]

s[n−i]

N−1i+2 j+2

⇒φ(i, j) and φ(i + const, j + const) are equal (we have consistent number of samples) -

easier to solve the linear equation system - the values on the diagonal are mutually equal

(for instance, φ(2, 1) = φ(3, 2) = φ(4, 3) = · · · ).
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Why φ are the autocorrelation coefficients

Autocorrelation coefficients’ estimation (with no normalization) for a signal of the length

N with positive k, see the Signals and Systems course, Random Processes II.:

http://www.fit.vutbr.cz/~cernocky/sig

R(k) =

N−1−k
∑

n=0

s(n)s(n + k)

Correlation coefficients “indicate signal similarity to its copy shifted by n samples”

overlap for computing 

0 s[n] N−1

−k s[n−k] N−1−k
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For φ(i, j) and φ(j, i):

overlap for computing 

allowed
0 s[n]i j

s[n−j]

s[n−i]

N−1

overlap for computing 

allowed
j i0 s[n]

s[n−j]

s[n−i]

N−1

⇒ in both examples the computation is done using the same samples ⇒ both are equal

to the autocorrelation coefficient R(|i − j|). That is, the matrix is symmetric. Symmetric

matrix containing identical diagonal components is called Töplitz.
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Resulting equation system for the coefficients a1 . . . aP

R(0)a1 + R(1)a2+ · · · +R(P − 1)aP = −R(1)

R(1)a1 + R(0)a2+ · · · +R(P − 2)aP = −R(2)
...

R(P − 1)a1 + R(P − 2)a2+ · · · +R(0)aP = −R(P ),

(19)
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Prediction Error Energy

Without derivation, using LPC, unnormalized prediction error is:

E =

N+P−1
∑

n=0

e2(n) = R(0) +

P
∑

i=1

aiR(i) (20)

When the exciting signal has normalized energy (equal to 1) — for instance white noise

with variability 1 or a series of impulses with
1

N

N−1
∑

n=0

u2(n) = 1, then, to achieve the same

energy as for the original signal s(n), the filter gain (boost) has to be set to:

G2 =
E

N
=

1

N

[

R(0) +
P

∑

i=1

aiR(i)

]

. (21)

. . . will be useful in encoding.
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Levinson–Durbin

As the matrix R is symmetric and Töplitz (the diagonal items are equal), the Levinson and

Durbin algorithm can be used to get fast solution for the equation system 19:

E(0) = R(0) (22)

ki = −



R(i) +

i−1
∑

j=1

a
(i−1)
j R(i − j)



 /E(i−1) (23)

a
(i)
i = ki (24)

a
(i)
j = a

(i−1)
j + kia

(i−1)
i−j pro 1 ≤ j ≤ i − 1 (25)

E(i) = (1 − k2
i )E(i−1) (26)
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Levinson-Durbin II.

• Subsequently, increase the predictor order (columns of the following table). a
(i)
j is the

j-th coefficient of the i-th order predictor:

a
(1)
1 a

(2)
1 a

(3)
1 · · · a

(P )
1

a
(2)
2 a

(3)
2 · · · a

(P )
2

a
(3)
3 · · · a

(P )
3

. . .
...

a
(P )
P

(27)
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• According to the plot of prediction error E(i) as a function of the predictor order, an

optimal order can be chosen:

E (i)

P

Increasing the predictor order P after reaching the function’s inflection point brings no

improvement in the error energy.
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Estimation of Power Spectral Density (PSD) using LPC Model

So far, PSD was estimated using DFT (contained the “fine” component containing folds

of the fundamental frequency). PSD can as well be estimated using the filter 1/A(z)

frequency characteristics:

ĜLPC =

∣

∣

∣

∣

G

A(z)

∣

∣

∣

∣

2

z=ej2πf

, (28)

where f is the normalized frequency f =
F

Fs

. After the substitution:

ĜLPC =
G2

∣

∣

∣

∣

∣

1 +

P
∑

i=1

aie
−j2πfi

∣

∣

∣

∣

∣

2 (29)

This PSD provides better formant resolution since the influence of the fundamental

frequency is suppressed.
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Example: PSD estimation using DFT and LPC on a voiced and an unvoiced frame.
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LPC Jan Černocký, Valentina Hubeika, DCGM FIT BUT Brno 26/38



Spectrogram comparison

Long-term spectrogram: specgram(s,256,8000,hamming(256),200);
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Short-term spectrogram: specgram(s,256,8000,hamming(50));
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LPC spectrogram
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Parameters Derived from LPC Coefficients

Why ? Simple coefficients ai are suitable for filtering, and thats about it:

• Difficult quantization (filter sensibility to the quantization error: ai ∈< −∞, +∞ >).

• The coefficients are strongly correlated – not suitable for HMM base recognition.

• Distance between the coefficients ai does not correspond to the similarity of the

speech frames – cannot be used even in recognition based on direct parameter

comparison (DTW).

⇒ Is there anything better?
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PARCOR

• Byproducts of the Levinson-Durbin algorithm: coefficients ki = a
(i)
i are denoted as

reflection coefficients or PARCOR coefficients (partial correlation).

• It holds: ki ∈< −1, 1 >, are thus suitable for using in encoding in contrast to ai.

• Coefficients ai and ki are mutually convertible.
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Cylinder Model of the Vocal Tract

A vocal tract can be modeled by cylindric sections of the same length and variable

diameter (thus different cuts):

0 l [cm]

A [cm  ]2
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Relationship of Cylinder Model to LPC

the ratio of the neighboring sections:

Am−1

Am

=
1 + km

1 − km

(30)

for m = P, P − 1, . . . , 1. Area AP is fictive – we don’t know the true value, thus put

AP = 1. Values
Am−1

Am

are then area ratios (AR). Usually, logarithmic ratios are used – log

area ratios (LAR):

gm = log
Am−1

Am

= log
1 + km

1 − km

(31)

Advantage of gm over ki is in linear sensibility of the spectrum. Linear quantifier gm can

be used. At the values ki the spectrum is very sensitive to values ki → 0.
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LSF or LSP

Line Spectrum Frequencies (LSF) or Line Spectrum Pairs (LSP), are derived from the

roots of the two polynomes:

M(z) = A(z) − z−(P+1)A(z−1)

Q(z) = A(z) + z−(P+1)A(z−1).
(32)

Can be rewritten using the roots:

M(z) = (1 − z−1)
∏

i=2,4,...,P

(1 − 2z−1 cos ωi + z−2)

Q(z) = (1 + z−1)
∏

i=1,3,...,P−1

(1 − 2z−1 cos ωi + z−2).
(33)

where ω is the normalized angular frequency ω = 2πf (f is the “usual” frequency). Line

spectral frequencies fi lie within interval (0,0.5) and are sorted upward:

0 < f1 < f2 < . . . < fP−1 < fP <
1

2
. (34)
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If we use LSFs (quantized) in a transfer function definition, we can test accuracy of the

decoder by checking correct order of the frequencies.
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LPC-cepstrum

Cepstral coefficients were so far calculated using DFT. Cepstrum can as well be estimated

from PSD calculated using LPC, thus:

ĜLPC(f) =

∣

∣

∣

∣

G

A(z)

∣

∣

∣

∣

2

z=ej2πf

, (35)

where G is the gain of the filter and A(z) is a polynome of the order P . Thus we talk

about LPC-cepstrum (LPCC):

c(n) = F−1[ln ĜLPC(f)] (36)

We can derive the following properties of the LPC-cepstral coefficients:

c(0) = lnG2. (37)

Zero cepstral coefficient carries information on the energy of the given speech frame.

The following coefficients can be calculated from the LPC coefficients using recurrent
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relations:

c(n) = −an −
1

n

n−1
∑

k=1

kckan−k for 1 ≤ n ≤ P

c(n) = −
1

n

n−1
∑

k=1

kckan−k for n > P

(38)

⇒ very simple estimation.
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Use of LPCC coefficients

• LPCC coefficients are used in speech recognition. The advantage lies in weaker

correlation than for instance in case of LPC coefficients, which means we can use

diagonal covariance matrices Σ (vectors of standard deviations) in recognizers based

on Hidden Markov models (HMMs).

• Given two sets of LPCC coefficients we can simply compute logarithmic spectral

distance between two speech frames.
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