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Agenda

• Groups of encoders

• Quality measure

• Waveform coding

• Vocoders

• Vector quantization
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Why ?

Most of the communication nowadays is digital.

• lowest possible bit-rate.

• highest possible quality.

• lowest possible delay.

• highest possible robustness to errors.

• lowest possible computation cost.

... some criteria are in contradiciton, thus need to tradeoff.

Encoding — simplest commercial subfield of ASP (automatic speech processing)
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Standardization

• CCITT (Centre Consultatif International Téléphonique et Télégraphique), from which

was found ITU-TSS (International Telecommunication Union — Telecom.

Standardization Sector). Reccomendations Gxxx. http://www.itu.int

• US DoD (Department of Defense). Federal standards FSxxxx.

• ETSI (European Telecommunications Standards Institute), mobile telephony.

http://www.etsi.org

• and other institutions, e.g. INMARSAT.
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Groups of coders – Principal division

• waveform coders - sample by sample, high quality, not only for speech signals.

• vocoders facilitates findings on human speech production and perception (excitation

and modification). Working in frames, where the signal is considered stationary and

mostly making use of linear-predictive (LP) model. Good only for speech.

• Hybrid - alias for the CELP algorithms (GSM). Model based representation of

modification, waveform encoding of excitation.

• phonetic vocoders – longer speech segments, contain units longer than frames

(phonemes, automatically trained units). Based on recognition in the encoder and

synthesis in the decoder. Laboratory prototypes. Speech signal only, language

(speaker) dependent.
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Division with Respect to Bit-Rate

Bit rate = bits per second (source coding, channel coding).

• fixed-rate (standard scheme)

• variable-rate (buffering, re-allocation of channel capacity among speech and data

channels).

notation bit rate

high rate > 16 kbit/s

medium rate 8 – 16 kbit/s

low rate 2.4 – 8 kbit/s

very low rate < 2.4 kbit/s
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Division with Respect to Quality

• broadcast – better than analog telephony bit-rate > 64 kbit/s.

• network or toll – quality of the analog telephone, band of 300–3400 Hz.

• communications – intelligible and preserving speaker characteristics.

• synthetic – unnatural, does not preserve speaker characteristics, lower intelligibility.

Quality Evaluations

• objective

• subjective
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Objective Evaluations

signal-to-noise ratio SNR:

SNR = 10 log10

{

∑N−1
n=0 s2(n)

∑N−1
n=0 [s(n) − ŝ(n)]2

}

Drawback: considers the global signal.

Example: encoding of the syllable “as” on 4 bits (16 quantization levels) SNR = 14.89 dB.
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Segmented Signal to Noise Ratio (SEGSNR)

SEGSNR =
10

Nram
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∑

i=0

log10
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

























(1)

Here, SNR is calculated separately for each frame (for the “classical” frame length of 160

samples):

20.04 19.63 14.35 0.21 4.26 -0.54(!)

and SEGSNR (average value) is 9.66 dB, the obtained result is substantially worse but

more informative than in case of SNR.
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Logarithmic Spectral Distance

evaluates the distance between speech frames in spectral domain: (. . . can be simply

calculated from LPC-cepstral coefficients – no integration, just a sum)

d2 =

√

∫ +1/2

−1/2

|V (f)|2 df, where V (f) = 10 log G(f) − 10 log Ĝ(f), (2)

where G(f) and log Ĝ(f) are power spectral densities of the original and the coded frame.
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Subjective Quality Evaluations

requires a group of trained listeners.

• DRT (Diagnostic Rhyme Test) – intelligibility measurement using pairs of similarly

sounding words (e.g. meat×heat).

• DAM (Diagnostic Acceptability Measure) – a set of methods judging the overall

quality of a communication system.

• MOS (Mean Opinion Score) – a group of 12-64 listeners evaluating the quality on a

5-point axis. The listeners are “calibrated” by signals of known MOS:

MOS quality remark

1 bad (unacceptable) very annoying noise and artifacts in the signal

2 poor . . .

3 fair in between

4 good . . .

5 excellent not distinguishable from the original, w/o any audible noise
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Quality Measure Inspired by Human Perception

Perceptual Speech Quality Measure – PSQM

source: OPTICOM Whitepaper on ”State-of-the-Art Voice Quality Testing”, 2000

ITU standard 1996, P.861.

Speech Encoding Jan Černocký, Valentina Hubeika, DCGM FIT BUT Brno 13/42



Perceptual Evaluation of Speech Quality – PESQ

source: OPTICOM Whitepaper on ”State-of-the-Art Voice Quality Testing”, 2000

ITU standard P.862

A.W.Rix et al.: Perceptual evaluation of speech quality (PESQ) a new method for speech quality assessment of telephone networks and coders, Proc. ICASSP 2001.
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WAVEFORM CODING

Pulse code modulation (PCM)

historical title, independent quantization of samples using fixed number of bits.

s(n)^
Q

s(n)

Linear quantization (constant quantization step):

SNR = 6B + K (3)

in [dB], where B is the number of bits and K is a constant depending on the character of

the signal. For CD theoretically: 16×6=96 dB. Interpretation of the equation: adding

1 bit, SNR will improve by 6 dB.
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For speech signals, linear quantization is not optimal:

1. speech contains a lot of “small samples”, the probability density function (PDF) can

be approximated by the Laplace distribution:

p(x) =
1√
2σx

e−
√

2|x|
σx , (4)

where σx is standard deviation. Example: Czech sentence with discarded silence

segments:
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2. Perceptual studies show that human ear has a logarithmic sensitivity to the amplitude

of acoustic pressure

Speech Encoding Jan Černocký, Valentina Hubeika, DCGM FIT BUT Brno 16/42



logarithmic PCM, compression in the encoder and decompression in the decoder:

F(s)

s

Q
u(n)^

Q-1
s(n)^

-1F    (u)

u

s(n) u(n)

uniform
quantization
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Nonlinearity cannot be defined as log: (log(0) = −∞), thus approximations:

• Europe: A-law:

u(n) = Smax

1 + lnA
|s(n)|
Smax

1 + lnA
sign [s(n)], where A = 87.56. (5)

• USA: µ-law:

u(n) = Smax

ln

(

1 + µ
|s(n)|
Smax

)

ln(1 + µ)
sign [s(n)], where µ = 255. (6)
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Comparison of A-law and µ-law:
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⇒ both are practically identical and both improving SNR for small signals by 12 dB. For

telephony applications, 8 bit log-PCM has similar quality as 13 bit linear. CCITT G.711
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Adaptive Pulse-Code Modulation (APCM)

The quantization levels (uniform or non-uniform) are adapted for each block of signal

samples. Information on quantization levels can be:

• sent to the decoder as additional information – feed-forward.

• computed from several past samples (as well available for the decoder) – feed-back.

APCM is not used independently, but as a part of other coders (for example full-rate GSM:

RPE-LTP).

Speech Encoding Jan Černocký, Valentina Hubeika, DCGM FIT BUT Brno 20/42



Differential Pulse-Code Modulation (DPCM)

• Exploits statistical dependencies between samples (the only signal where samples are

independent is white noise).

• The current sample is estimated from several previous samples. Encoding of the error

signal.

• In case the estimate is good, the error signal has low energy and low amplitude, that

means less bits are required for the encoding than for the original signal.

A(z) =

P
∑

i=1

aiz
−i (7)

Error signal:

Σ

A(z)
~s(n)

s(n) e(n)+

-
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The decoder is simple: current sample is predicted from previous ones and the decoded

error is added:

Σ

A(z)~s(n)

+ s(n)e(n)

+

. . . the error signal is quantized

Σ

A(z)
~s(n)

s(n) e(n)+

-
Q Q-1

Σ

A(z)

e(n)^

s(n)~̂

+ s(n)

+

^
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!!! In such case, the decoder would estimate the signal from different samples than the

encoder!!!

• Encoder disposes of: s(n).

• Decoder disposes of ŝ(n) due to quantization of e(n), not equal to s(n) !

• Decoder thus has to be embedded in the encoder. The output is used for the

prediction.

QΣ

A(z)

Q-1 e(n)^

Σ

A(z)
s(n)~̂

s(n)~̂

s(n) e(n)+

-

+ s(n)

+

^

decoder

This scheme is not optimal as the filter A(z) appears twice and it filters in both cases the

same signal!
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Optimization:

QΣ Q-1 e(n)^

Σ

A(z)
s(n)^s(n)~̂

e(n)+

- + +

s(n)

decoder

The coder again contains a complete decoder (yellow color) in itself.
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Adaptive Differential Pulse-Code Modulation (ADPCM) G. 721

QΣ Q-1 e(n)^

Q step
setting

B(z)

A(z) ΣΣ
s(n)^

s(n)~̂

decoder
output

e(n)+s(n)

decoder

-

+

+
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• difference to DPCM - adaptation of the quantization step.

• ADCPM is used in G.721: log-PCM (64 kbit/s) ⇒ 32 kbit/s.

• G.721 is composed of 2 filters used for the error signal computation e(n): A(z) (as in

the previous example), B(z) estimates a sample of the error signal from several

previous values of the error sample (IIR).

• Block “Q-step setting” regulates the quantization step.

• Decoder (yellow) is “hidden” in the encoder.

• Information of the Q step and the filter parameter identification is based on the

encoder output (back-ward).
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VOCODERS

Voice coders

• exploit findings of human speech production to reduce bit-rate.

• work well only for speech.

• make use of the excitation—filter model.
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Encoder Based on the Linear Predictive Model - LPC

The input signal is segmented into frames, and for each frame, a set of predictor

coefficients is estimated: A(z) = 1 +
∑P

i=1 aiz
−i. Then, gain G of the filter and

voiced/unvoiced flag is calculated. In case of a voiced frame, pitch period (lag) is

estimated.

voicing
and F0
detection

computation
of filter
coefficients
and gain

ia

generator 
of noise

ia

s(n)^

of periodic
pulses

generator

Q Q
-1

voicing

F0

G

s(n)

F0

G

voicing
1/A(z)

Excitation !!!
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Example: US-DoD FS1015 standard: filter 1800 bps, excitation 600 bps, 2.4 kbps. The

main drawback is poor modeling of excitation. Unnatural sound of speech. Big

improvement in the CELP encoders.
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Residual Excited Linear Prediction – RELP

For each frame, parameters of the filter A(z) are estimated and the error signal is

calculated e(n): E(z) = A(z)S(z). This signal is transferred to the decoder, where then

filtered by the filter H(z) = 1
A(z) . If the filter coefficients ai nor the error signal e(n) are

not quantized, the resulting signal is equivalent to the input signal s(n).

Increasing of the bit-rate — Bad. . .
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VECTOR QUANTIZATION

Why ?

• Encoding of P -dimensional vectors is very costly (P float numbers results in P × 4

byte. . . )

• Scalar quantization of the single components results in wasting bits.

• In the P -dimensional space, it is more efficient to use code-vectors (“typical”) and

map the input vectors to these code-vectors.
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Code vectors, centroids, Voronoi cells. . .

2
7

1

3

4
5

6
9

8

1

2

x

x

C

C

C
C

CC C

CC
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Code-Vectors Training — K-means

The code-vectors are trained on the training data.

• Given N training vectors,

• train a codebook Y of the size K.

• Initialization: k = 0, define Y(0).

• Step 1: Alignment of the vectors to the cells — “encoding”:

Q[x] = yi(k) if d(x,yi(k)) ≤ d(x,yj(k)) pro j 6= i, j ∈ 1 . . .K (8)

To measure the distance d(x,yj), Euclidean distance can be used:

d(x,y) =
√

(x − y)T (x − y) =

√

√

√

√

P
∑

k=1

|xk − yk|2. (9)

Note, that code-vectors and cells carry the index of the current generation of the

codebook.
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• Step 2: Calculate relative improvement of distortion – total distance:

DV Q =
1

N

N
∑

n=1

d (x(n), Q[x(n)]) . (10)

• Step 3: If the calculated relative improvement is smaller than the threshold calculated

as:
DV Q(k − 1) − DV Q(k)

DV Q(k)
≤ ε, (11)

STOP and denote the k-th generation to be the resulting codebook. Y = Y(k). If

the improvement is still significant, continue:

• Step 4: Calculate new centroids of the cells and use them as new code-vectors:

yi(k + 1) = Cent(Ci(k)) =
1

Mi(k)

∑

x∈Ci(k)

x, (12)

where Mi(k) is the number of the training vectors, that for the k-th generation of the

codebook are aligned to the cell i. Simple arithmetic average. Increment: k = k + 1.

GOTO Step 1.
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Linde-Buzo-Gray — LBG

• The K-means algorithms can be suboptimal due to incorrect initialization (how to

initialize Y(0) – random initialization ? random selection from the input vectors?)

• Can happen, that during training a code-vector will end up in having no training

vectors ⇒ division by zero ⇒ crash :-(

• LBG solves the problem by gradual splitting of the vectors in the codebook:

r = 0, L = 1

1
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Utilization of Vector Quantization

1. quantization of the filter coefficients ai (most often PARCOR, LAR or LSF are

derived).

2. excitation encoding in CELP-like algorithms, blocks of samples passed through a

short-term A(z) and a long-term B(z).
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Flavors of Vector Quantization

The algorithms of both VQ training and coding are computationally quite expensive, the

following tricks make VQ more efficient:

• split-VQ: split of a vector into several sub-vectors with less coefficients. Thus it results

in having several smaller codebooks. (typically 3-3-4 for P=10).

• algebraic VQ: The code vectors are not distributed arbitrarily in the space, but their

positions are deterministic (e.g. uniform on a hyper-plane). Thus the input vector

does not have to be compared to all the code vectors.

• random codebook (for training): for large K quality of the trained codebook

approaches a randomly defined codebook ⇒ no need in training!

• tree-structured VQ: remember all generations of LBG and assume, that if the vector

yk was in the generation k of the codebook aligned to some code vector, then in the

generation k + 1 the vector yk can be assigned only to the child code vectors

⇒ suboptimal, but requires only 2 log2 K comparisons instead of K.

• multi-stage VQ: 2 codebooks are used, the second codebook is used for quantization of

the first codebook error. While decoding, vectors from both codebooks are summed.
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CELP – Codebook-Excited Linear Prediction

Excitation is coded using code-books

Basic structure with a perceptual filter is:

Σ
s(n)^

1/A(z)1/B(z)

energy
computation W(z)

−
G

s(n)
+

search
miniumum

excitation
codebook

...

q(n)

. . . Each tested signal has to be filtered by W (z) = A(z)
A⋆(z) — too much work!
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Perceptual filter on the Input

Filtering is a linear operation, thus W (z) can be moved to both sides: to the input and to

the signal after the sequence 1
B(z)–

1
A(z) . Can be simplified to: 1

A(z)
A(z)
A⋆(z) = 1

A⋆(z) — this

is a new filter that has to be used after 1
B(z) .

1/B(z)

energy
computation

Σ-

W(z)

G

search
miniumum

excitation
codebook

...

+
1/A (z)

s(n)

p̂(n)
x(n)

*

p(n)e(n)

Speech Encoding Jan Černocký, Valentina Hubeika, DCGM FIT BUT Brno 42/42


