
Efficient Inclusion Checking
on Explicit and Semi-Symbolic

Tree Automata

FIT BUT Technical Report Series

Lukáš Hoĺık, Onďrej Lengál,
Jǐŕı Šimáček, and Tomáš Vojnar

Technical Report No. FIT-TR-2011-04
Faculty of Information Technology, Brno University of Technology

Last modified: January 6, 2014

NOTE: This technical report contains an extended version of the ATVA’11 paper with
the same name, later additionally extended by the new optimization of top-down inclu-
sion checking presented in Section 3.3.

Efficient Inclusion Checking on Explicit and
Semi-Symbolic Tree Automata

Lukáš Holı́k1,2, Ondřej Lengál1, Jiřı́ Šimáček1,3, and Tomáš Vojnar1

1 FIT, Brno University of Technology, Czech Republic
2 Uppsala University, Sweden

3 VERIMAG, UJF/CNRS/INPG, Gières, France

Abstract. The paper considers several issues related to efficient use of tree au-
tomata in formal verification. First, a new efficient algorithm for inclusion check-
ing on non-deterministic tree automata is proposed. The algorithm traverses the
automaton downward, utilising antichains and simulations to optimise its run.
Results of a set of experiments are provided, showing that such an approach of-
ten very significantly outperforms the so far common upward inclusion checking.
Next, a new semi-symbolic representation of non-deterministic tree automata,
suitable for automata with huge alphabets, is proposed together with algorithms
for upward as well as downward inclusion checking over this representation of
tree automata. Results of a set of experiments comparing the performance of these
algorithms are provided, again showing that the newly proposed downward inclu-
sion is very often better than upward inclusion checking.

1 Introduction

Finite tree automata play a crucial role in several formal verification techniques, such
as (abstract) regular tree model checking [3, 5], verification of programs with complex
dynamic data structures [6, 11], analysis of network firewalls [7], and implementation
of decision procedures of logics such as WS2S or MSO [14], which themselves have
numerous applications (among the most recent and promising ones, let us mention at
least verification of programs manipulating heap structures with data [15]).

Recently, there has been notable progress in the development of algorithms for ef-
ficient manipulation of non-deterministic finite tree automata (TA), more specifically,
in solving the crucial problems of automata reduction [1] and of checking language
inclusion [17, 4, 2]. As shown, e.g., in [4], replacing deterministic automata by non-
deterministic ones can—in combination with the new methods for handling TA—lead
to great efficiency gains. In this paper, we further advance the research on efficient
algorithms for handling TA by (i) proposing a new algorithm for inclusion checking
that turns out to significantly outperform the existing algorithms in most of our exper-
iments and (ii) by presenting a semi-symbolic multi-terminal binary decision diagram
(MTBDD) based representation of TA, together with various important algorithms for
handling TA working over this representation.

The classic textbook algorithm for checking inclusion L(AS)⊆L(AB) between two
TA AS (Small) and AB (Big) first determinises AB, computes the complement automa-
ton AB of AB, and then checks language emptiness of the product automaton accepting

1

L(AS)∩L(AB). This approach has been optimised in [17, 4, 2] which describe variants
of this algorithm that try to avoid constructing the whole product automaton (which
can be exponentially larger than AB and which is indeed extremely large in many prac-
tical cases) by constructing its states and checking language emptiness on the fly. By
employing the antichain principle [17, 4], possibly combined with using upward simu-
lation relations [2], the algorithm is often able to prove or refute inclusion by construct-
ing a small part of the product automaton only.4 We denote these algorithms as upward
algorithms to reflect the direction in which they traverse automata AS and AB.

The upward algorithms are sufficiently efficient in many practical cases. However,
they have two drawbacks: (i) When generating the bottom-up post-image of a set S of
sets of states, all possible n-tuples of states from all possible products S1× . . .×Sn, Si ∈
S need to be enumerated. (ii) Moreover, these algorithms are known to be compatible
with only upward simulations as a means of their possible optimisation, which is a
disadvantage since downward simulations are often much richer and also cheaper to
compute.

The alternative downward approach to checking TA language inclusion was first
proposed in [12] in the context of subtyping of XML types. This algorithm is not deriv-
able from the textbook approach and has a more complex structure with its own weak
points; nevertheless, it does not suffer from the two issues of the upward algorithm
mentioned above. We generalise the algorithm of [12] for automata over alphabets with
an arbitrary rank ([12] considers rank at most two), and, most importantly, we improve
it significantly by using the antichain principle, empowered by a use of the cheap and
usually large downward simulation. In this way, we obtain an algorithm which is com-
plementary to and highly competitive with the upward algorithm as shown by our ex-
perimental results (in which the newly proposed algorithm significantly dominates in
most of the considered cases).

Certain important applications of TA such as formal verification of programs with
complex dynamic data structures or decision procedures of logics such as WS2S or
MSO require handling very large alphabets. Here, the common choice is to use the
MONA tree automata library [14] which is based on representing transitions of TA
symbolically using MTBDDs. However, the encoding used by MONA is restricted to
deterministic automata only. This implies a necessity of immediate determinisation after
each operation over TA that introduces nondeterminism, which very easily leads to
a state space explosion. Despite the extensive engineering effort spent to optimise the
implementation of MONA, this fact significantly limits its applicability.

As a way to overcome this difficulty, we propose a semi-symbolic representation of
non-deterministic TA which generalises the one used by MONA, and we develop algo-
rithms implementing the basic operations on TA (such as union, intersection, etc.) as
well as more involved algorithms for computing simulations and for checking inclusion

4 The work of [17] does, in fact, not use the terminology of antichains despite implementing
them in a symbolic, BDD-based way. It specialises to binary tree automata only. A more gen-
eral introduction of antichains within a lattice-theoretic framework appeared in the context
of word automata in [18]. Subsequently, [4] has generalised [18] for explicit upward inclusion
checking on TA and experimentally advocated its use within abstract regular tree model check-
ing [4]. See also [10] for other combinations of antichains and simulations for word automata.

2

(using simulations and antichains to optimise it) over the proposed representation. We
also report on experiments with a prototype implementation of our algorithms showing
again a dominance of downward inclusion checking and justifying usefulness of our
symbolic encoding for TA with large alphabets.

The rest of this paper is organised as follows. Section 2 contains basic definitions
for tree automata, tree automata languages, and simulations. Section 3 describes our
downward inclusion checking algorithm and its experimental comparison with the up-
ward algorithms. Further, Section 4 presents our MTBDD-based TA encoding, the algo-
rithms working over this encoding, and an experimental evaluation of these algorithms.
Section 5 then concludes the paper.

2 Preliminaries

A ranked alphabet Σ is a set of symbols together with a ranking function # : Σ →
N. For a ∈ Σ, the value #a is called the rank of a. For any n ≥ 0, we denote by Σn
the set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t
over a ranked alphabet Σ is a partial mapping t : N∗ → Σ that satisfies the following
conditions: (1) dom(t) is a finite prefix-closed subset of N∗ and (2) for each v ∈ dom(t),
if #t(v) = n≥ 0, then {i | vi∈ dom(t)}= {1, . . . ,n}. Each sequence v∈ dom(t) is called
a node of t. For a node v, we define the ith child of v to be the node vi, and the ith subtree
of v to be the tree t ′ such that t ′(v′) = t(viv′) for all v′ ∈N∗. A leaf of t is a node v which
does not have any children, i.e., there is no i ∈N with vi ∈ dom(t). We denote by TΣ the
set of all trees over the alphabet Σ.

A (finite, non-deterministic) tree automaton (abbreviated sometimes as TA in the
following) is a quadruple A = (Q,Σ,∆,F) where Q is a finite set of states, F ⊆ Q is
a set of final states, Σ is a ranked alphabet, and ∆ is a set of transition rules. Each
transition rule is a triple of the form ((q1, . . . ,qn),a,q) where q1, . . . ,qn,q ∈ Q,a ∈ Σ,
and #a = n. We use equivalently (q1, . . . ,qn)

a−→ q and q a−→ (q1, . . . ,qn) to denote
that ((q1, . . . ,qn),a,q) ∈ ∆. The two notations correspond to the bottom-up and top-
down representation of tree automata, respectively. (Note that we can afford to work
interchangeably with both of them since we work with non-deterministic tree automata,
which are known to have an equal expressive power in their bottom-up and top-down
representations.) In the special case when n= 0, we speak about the so-called leaf rules,
which we sometimes abbreviate as a−→ q or q a−→.

For an automaton A = (Q,Σ,∆,F), we use Q# to denote the set of all tuples of
states from Q with up to the maximum arity that some symbol in Σ has, i.e., if r =
maxa∈Σ #a, then Q# =

⋃
0≤i≤r Qi. For p ∈ Q and a ∈ Σ, we use downa(p) to denote the

set of tuples accessible from p over a in the top-down manner; formally, downa(p) =
{(p1, . . . , pn) | p a−→ (p1, . . . , pn)}. For a ∈ Σ and (p1, . . . , pn) ∈ Q#a, we denote by
upa((p1, . . . , pn)) the set of states accessible from (p1, . . . , pn) over the symbol a in
the bottom-up manner; formally, upa((p1, . . . , pn)) = {p | (p1, . . . , pn)

a−→ p}. We also
extend these notions to sets in the usual way, i.e., for a ∈ Σ, P ⊆ Q, and R ⊆ Q#a,
downa(P) =

⋃
p∈P downa(p) and upa(R) =

⋃
(p1,...,pn)∈R upa((p1, . . . , pn)).

Let A =(Q,Σ,∆,F) be a TA. A run of A over a tree t ∈ TΣ is a mapping π : dom(t)→
Q such that, for each node v ∈ dom(t) of rank #t(v) = n where q = π(v), if qi = π(vi)

3

for 1 ≤ i ≤ n, then ∆ has a rule (q1, . . . ,qn)
t(v)−→ q. We write t π

=⇒ q to denote that
π is a run of A over t such that π(ε) = q. We use t =⇒ q to denote that t π

=⇒ q for
some run π. The language accepted by a state q is defined by LA(q) = {t | t =⇒ q},
while the language of a set of states S ⊆ Q is defined as LA(S) =

⋃
q∈S LA(q). When

it is clear which TA A we refer to, we only write L(q) or L(S). The language of A
is defined as L(A) = LA(F). We also extend the notion of a language to a tuple of
states (q1, . . . ,qn) ∈Qn by letting L((q1, . . . ,qn)) = L(q1)×·· ·×L(qn). The language
of a set of n-tuples of sets of states S ⊆ (2Q)

n is the union of languages of elements of
S, the set L(S) =

⋃
E∈S L(E). We say that X accepts y to express that y ∈ L(X).

A downward simulation on TA A = (Q,Σ,∆,F) is a preorder relation �D⊆ Q×Q
such that if q �D p and (q1, . . . ,qn)

a−→ q, then there are states p1, . . . , pn such that
(p1, . . . , pn)

a−→ p and qi �D pi for each 1 ≤ i ≤ n. Given a TA A = (Q,Σ,∆,F) and
a downward simulation �D, an upward simulation �U⊆ Q×Q induced by �D is a re-
lation such that if q �U p and (q1, . . . ,qn)

a−→ q′ with qi = q, 1 ≤ i≤ n, then there are
states p1, . . . , pn, p′ such that (p1, . . . , pn)

a−→ p′ where pi = p, q′ �U p′, and q j �D p j
for each j such that 1≤ j 6= i≤ n.

3 Downward Inclusion Checking

Let us fix two tree automata AS = (QS,Σ,∆S,FS) and AB = (QB,Σ,∆B,FB) for which we
want to check whether L(AS)⊆ L(AB) holds. If we try to answer this query top-down
and we proceed in a naı̈ve way, we immediately realize that the fact that the top-down
successors of particular states are tuples of states leads us to checking inclusion of the
languages of tuples of states. Subsequently, the need to compare the languages of each
corresponding pair of states in these tuples will again lead to comparing the languages
of tuples of states, and hence, we end up comparing the languages of tuples of tuples of
states, and the need to deal with more and more nested tuples of states never stops.

For instance, given a transition q a−→ (p1, p2) in AS, transitions r a−→ (s1,s2) and
r a−→ (t1, t2) in AB, and assuming that there are no further top-down transitions from q
and r, it holds that L(q) ⊆ L(r) if and only if L((p1, p2)) ⊆ L((s1,s2))∪L((t1, t2)).
Note that the union L((s1,s2))∪L((t1, t2)) cannot be computed component-wise, this
is, L((s1,s2))∪L((t1, t2)) 6= (L(s1)∪L(t1))× (L(s2)∪L(t2)). For instance, provided
L(s1) = L(s2) = {b} and L(t1) = L(t2) = {c}, it holds that L((s1,s2))∪L((t1, t2)) =
{(b,b),(c,c)}, but the component-wise union is (L(s1)∪L(t1))× (L(s2)∪L(t2)) =
{(b,b),(b,c),(c,b),(c,c)}. Hence, we cannot simply check whether L(p1) ⊆ L(s1)∪
L(t1) and L(p2)⊆ L(s2)∪L(t2) to answer the original query, and we have to proceed
by checking inclusion on the obtained tuples of states. However, exploring the top-down
transitions that lead from the states that appear in these tuples will lead us to dealing
with tuples of tuples of states, etc.

Fortunately, there is a way out of the above trap. In particular, as first observed
in [12] in the context of XML type checking, we can exploit the following property of
the Cartesian product of sets G,H ⊆U:

G×H = (G×U)∩ (U×H). (1)

4

Continuing in our example, we can rewrite

L(p1)×L(p2)⊆ L((s1,s2))∪L((t1, t2)) = (L(s1)×L(s2))∪ (L(t1)×L(t2)) (2)

as

L(p1)×L(p2)⊆ ((L(s1)×TΣ)∩ (TΣ×L(s2)))∪ ((L(t1)×TΣ)∩ (TΣ×L(t2))) , (3)

This can further be rewritten, using the distributive laws in the (2TΣ×TΣ ,⊆) lattice, as

L(p1)×L(p2)⊆((L(s1)×TΣ)∪ (L(t1)×TΣ))∩
((L(s1)×TΣ)∪ (TΣ×L(t2)))∩
((TΣ×L(s2))∪ (L(t1)×TΣ))∩
((TΣ×L(s2))∪ (TΣ×L(t2))) .

(4)

It is easy to see that the inclusion holds exactly if it holds for all components of the
intersection, i.e., if and only if

L(p1)×L(p2)⊆((L(s1)×TΣ)∪ (L(t1)×TΣ))∧
L(p1)×L(p2)⊆((L(s1)×TΣ)∪ (TΣ×L(t2)))∧
L(p1)×L(p2)⊆((TΣ×L(s2))∪ (L(t1)×TΣ))∧
L(p1)×L(p2)⊆((TΣ×L(s2))∪ (TΣ×L(t2))) .

(5)

Two things should be noted in the previous equation.

1. If we are computing the union of languages of two tuples such that they have TΣ at
all indices other than some index i, we can compute it component-wise, i.e.,

L(p1)×L(p2)⊆ ((L(s1)×TΣ)∪ (L(t1)×TΣ)) = (L(s1)∪L(t1))×TΣ. (6)

The above clearly holds iff L(p1)⊆ L(s1)∪L(t1).
2. If TΣ does not appear at the same positions as in the inclusion

L(p1)×L(p2)⊆ ((L(s1)×TΣ)∪ (TΣ×L(t2))) , (7)

it must hold that either

L(p1)⊆ L(s1) or L(p2)⊆ L(t2). (8)

Using the above observations, we can finally rewrite the equation L(p1)×L(p2) ⊆
L((s1,s2))∪L((t1, t2)) into the following formula that does not contain languages of
tuples but of single states only:

L(p1)⊆ L(s1)∪L(t1) ∧
(L(p1)⊆ L(s1)∨L(p2)⊆ L(t2)) ∧
(L(p1)⊆ L(t1)∨L(p2)⊆ L(s2)) ∧

L(p2)⊆ L(s2)∪L(t2).

(9)

5

The above reasoning can be generalised to dealing with transitions of any arity as
shown in Theorem 1, proved in Appendix A. In the theorem, we conveniently exploit
the notion of choice functions. Given PB ⊆ QB and a ∈ Σ, #a = n ≥ 1, we denote by
cf (PB,a) the set of all choice functions f that assign an index i, 1≤ i≤ n, to all n-tuples
(q1, . . . ,qn) ∈Qn

B such that there exists a state in PB that can make a transition over a to
(q1, . . . ,qn); formally, cf (PB,a) = { f : downa(PB)→{1, . . . ,#a}}.

Theorem 1. Let AS = (QS,Σ,∆S,FS) and AB = (QB,Σ,∆B,FB) be tree automata. For
sets PS ⊆ QS and PB ⊆ QB it holds that L(PS)⊆ L(PB) if and only if ∀pS ∈ PS ∀a ∈ Σ :
if pS

a−→ (r1, . . . ,r#a),

then

downa(PB) = {()} if #a = 0,

∀ f ∈ cf (PB,a) ∃1≤ i≤ #a : L(ri)⊆
⋃

u∈downa(PB)
f (u)=i

L(ui) if #a > 0.

3.1 Basic Algorithm of Downward Inclusion Checking

Next, we construct a basic algorithm for downward inclusion checking on tree automata
AS = (QS,Σ,∆S,FS) and AB = (QB,Σ,∆B,FB). The algorithm is shown as Algorithm 1.
Its main idea relies on a recursive application of Theorem 1 in function expand1.
The function is given a pair (pS,PB) ∈ QS × 2QB for which we want to prove that
L(pS) ⊆ L(PB)—initially, the function is called for every pair (qS,FB) where qS ∈ FS.
The function enumerates all possible top-down transitions that AS can do from pS (lines
4–10). For each such transition, the function either checks whether there is some tran-
sition pB

a−→ for pB ∈ PB if #a = 0 (line 7), or it starts enumerating and recursively
checking queries L(p′S) ⊆ L(P′B) on which the result of L(pS) ⊆ L(PB) depends ac-
cording to Theorem 1 (lines 11–19).

The expand1 function keeps track of which inclusion queries are currently be-
ing evaluated in the set workset (line 3). Encountering a query L(p′S) ⊆ L(P′B) with
(p′S,P

′
B) ∈ workset means that the result of L(p′S) ⊆ L(P′B) depends on the result of

L(p′S) ⊆ L(P′B) itself. In this case, the function immediately successfully returns be-
cause the result of the query then depends only on the other branches of the call tree.

Using Theorem 1 and noting that Algorithm 1 necessarily terminates because all its
loops are bounded, and the recursion in function expand1 is also bounded due to the
use of workset, it is not difficult to see that the following theorem holds.

Theorem 2. When applied on TA AS = (QS,Σ,∆S,FS) and AB = (QB,Σ,∆B,FB), Algo-
rithm 1 terminates and returns true if and only if L(AS)⊆ L(AB).

3.2 Optimised Algorithm of Downward Inclusion Checking

In this section, we propose several optimisations of the basic algorithm presented above
that, according to our experiments, often have a huge impact on the efficiency of the
algorithm—making it in many cases the most efficient algorithm for checking inclusion
on tree automata that we are currently aware of. In general, the optimisations are based

6

Algorithm 1: Downward inclusion
Input: Tree automata AS = (QS,Σ,∆S,FS),AB = (QB,Σ,∆B,FB)
Output: true if L(AS)⊆ L(AB), false otherwise

1 foreach qS ∈ FS do
2 if ¬expand1(qS,FB, /0) then return false;
3 ;
4 return true;

Function expand1(pS, PB, workset)
/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS×2QB */

1 if (pS,PB) ∈ workset then return true;
2 ;
3 workset := workset∪{(pS,PB)};
4 foreach a ∈ Σ do
5 if #a = 0 then
6 if downa(pS) 6= /0∧downa(PB) = /0 then return false;
7 ;
8 else
9 W := downa(PB);

10 foreach (r1, . . . ,r#a) ∈ downa(pS) do /* pS
a−→ (r1, . . . ,r#a) */

11 foreach f ∈ {W →{1, . . . ,#a}} do
12 found := false;
13 foreach 1≤ i≤ #a do
14 S := {qi | (q1, . . . ,q#a) ∈W, f ((q1, . . . ,q#a)) = i};
15 if expand1(ri,S,workset) then
16 found := true;
17 break;
18 if ¬found then return false;
19 ;
20 return true;

on an original use of simulations and antichains in a way suitable for the context of
downward inclusion checking.

In what follows, we assume that there is available a preorder �⊆ (QS∪QB)
2 com-

patible with language inclusion, i.e., such that p � q =⇒ L(p) ⊆ L(q), and we use
P�∀∃ R where P,R⊆ (QS ∪QB)

2 to denote that ∀p ∈ P∃r ∈ R : p� r. An example of
such a preorder, which can be efficiently computed, is the (maximal) downward simu-
lation �D. We propose the following concrete optimisations of the downward checking
of L(pS)⊆ L(PB):

1. If there exists a state pB ∈ PB such that pS � pB, then the inclusion clearly holds
(from the assumption made about �), and no further checking is needed.

2. Next, it can be seen without any further computation that the inclusion does not
hold if there exists some (p′S,P

′
B) such that p′S � pS and PB �∀∃ P′B, and we have al-

ready established that L(p′S) 6⊆L(P′B). Indeed, we have L(PB)⊆L(P′B) 6⊇L(p′S)⊆
L(pS), and therefore L(pS) 6⊆ L(PB).

7

3. Finally, we can stop evaluating the given inclusion query if there is some (p′S,P
′
B)∈

workset such that pS � p′S and P′B �∀∃ PB. Indeed, this means that the result of
L(p′S) ⊆ L(P′B) depends on the result of L(pS) ⊆ L(PB). However, if L(p′S) ⊆
L(P′B) holds, then also L(pS) ⊆ L(PB) holds because we have L(pS) ⊆ L(p′S) ⊆
L(P′B) ⊆ L(PB). On the other hand, if L(p′S) ⊆ L(P′B) does not hold, the path be-
tween (p′S,P

′
B) and (pS,PB) cannot be the only reason for that since a counterexam-

ple has not been found on that path yet, and the chance of finding a counterexample
is only smaller from (pS,PB).

The version of Algorithm 1 including all the above proposed optimisations is shown
as Algorithm 1. The optimisations can be found in the function expand2 that replaces
the function expand1. In particular, line 5 implements the first optimisation, line 3 the
second one, and line 1 the third one. In order to implement the second optimisation, the
algorithm maintains a new set NN. This set stores pairs (pS,PB) for which it has already
been shown that the inclusion L(pS)⊆ L(PB) does not hold.

As a further optimisation, the set NN is maintained as an antichain w.r.t. the pre-
order that compares the pairs stored in NN such that the states from QS on the left are
compared w.r.t. �, and the sets from 2QB on the right are compared w.r.t. �∃∀ (line 23).
Clearly, there is no need to store a pair (pS,PB) that is bigger in the described sense
than some other pair (p′S,P

′
B) since every time (pS,PB) can be used to prune the search,

(p′S,P
′
B) can also be used.

Taking into account Theorem 2 and the above presented facts, it is not difficult to
see that the following holds.

Theorem 3. When applied on TA AS = (QS,Σ,∆S,FS) and AB = (QB,Σ,∆B,FB), Algo-
rithm 1 terminates and returns true if and only if L(AS)⊆ L(AB).

3.3 Even More Optimised Algorithm of Downward Inclusion Checking

The algorithm from the previous section can be optimised even more. Recall that the
algorithm caches pairs for which the inclusion does not hold, i.e., pairs (pS,PB) such
that L(pS) 6⊆ L(PB), in the set NN (which is maintained as an antichain). A natural
question that arises is whether there is a similar option for pairs for which the inclusion
does hold, i.e., pairs (pS,PB) such that L(pS) ⊆ L(PB). Such an option indeed exists
and is presented in the rest of this subsection.

Let us denote the set of the above-mentioned pairs for which the inclusion holds as
IN. Then, when checking the inclusion L(pS)⊆ L(PB), when there is a pair (p′S,P

′
B) ∈

IN such that pS � p′S and P′B �∀∃ PB, then we immediately know that the checked
inclusion holds because L(pS)⊆ L(p′S)⊆ L(P′B)⊆ L(PB).

The set IN can again be optimised as an antichain but with the opposite ordering
than NN. This means that there are no two pairs (pS,PB),(p′S,P

′
B) such that pS � p′S and

P′B �∀∃ PB in IN. It is easy to understand that a pair (pS,PB) does not have to be stored
since whenever (pS,PB) can be used to prune the search, (p′S,P

′
B) can also be used.

However, adding new pairs to IN is not as straightforward as for NN. Assume that we
add a pair (pS,PB) to IN immediately when the function call expand2(pS,PB,workset)
at line 19 of Algorithm 1 returns true for some workset. This is not correct as shown in
the following example.

8

Suppose that when checking inclusion L(p′S)⊆ L(P′B), a test for inclusion L(pS)⊆
L(PB) where pS � p′S and P′B �∀∃ PB is encountered somewhere deep in the recursive
calls of expand2. As stated previously, the inclusion L(pS) ⊆ L(PB) does not need to
be tested since if L(p′S)⊆ L(P′B), then L(pS)⊆ L(PB), and if L(p′S) 6⊆ L(P′B), then this
cannot be caused solely by L(pS) 6⊆ L(PB). Hence, expand2(pS,PB,workset) returns
true, and the result of the query L(p′S)⊆ L(P′B) will be given by other branches of the
call tree generated for the L(p′S) ⊆ L(P′B) query. However, if we put the pair (pS,PB)
into IN and later proved that L(p′S) 6⊆ L(P′B), then the set IN would become invalid.

A solution to this issue is given in Algorithm 1. The expand2e function is a modified
version of expand2 that additionally returns a formula of the form

∧
Ant →

∧
Con

where Con (consequents) is a set of inclusion queries that can be answered positively
provided that the inclusion queries in Ant (antecedents) are all answered positively.

When the recursive call of expand2e(pS,PB,workset) is at the bottom of the call
tree and there is (p′S,P

′
B) ∈ workset such that pS � p′S and P′B �∀∃ PB (line 4), then ac-

cording to the above, the formula returned from expand2e along with true could be∧
{L(p′S)⊆ L(P′B)}→

∧
{L(pS)⊆ L(PB)} because L(pS)⊆ L(PB) cannot be consid-

ered guaranteed before L(p′S) ⊆ L(P′B) is positively answered. This formula is, how-
ever, simplified to

∧
{L(p′S)⊆ L(P′B)}→ /0 since L(pS)⊆ L(PB) can be forgotten as it

is weaker than L(p′S)⊆ L(P′B).
A situation similar to what we have just discussed arises when the recursive call of

expand2e(pS,PB,workset) is at the bottom of the call tree and there is (p′S,P
′
B) ∈ IN

such that pS � p′S and P′B �∀∃ PB (line 1). In this case,
∧

/0→
∧

/0 is returned (along
with true) since the validity of L(p′S) ⊆ L(P′B) has already been established. Next, if
the recursive call of expand2e(pS,PB,workset) is at the bottom of the call tree and
there is p ∈ PB such that pS � p (line 3),

∧
/0→

∧
/0 is again returned since for any

inclusion query L(p′S) ⊆ L(P′B) such that p′S � pS and PB �∀∃ P′B, it will be the case
that there is p′ ∈ P′B such that p′S � p′ (and hence the computation will be immediately
stopped without a need to use IN for this purpose). Finally, when expand2e returns
false (line 2), it is accompanied by the formula

∧
/0→

∧
/0, which, however, is not taken

into account in this case and is returned just to make the result of expand2e to have the
same structure.

For inner nodes of the call tree, this is, nodes that correspond to function calls
expand2e(pS,PB) that themselves call expand2e, all antecedents and consequents re-
turned from successful nested calls are collected into sets Ant and Con. Then, the con-
dition L(pS) ⊆ L(PB) is removed from Ant (if it is there) and added to Con since
it has just been proved that L(pS) ⊆ L(PB) holds provided that the elements from
Ant\{L(pS)⊆ L(PB)} are later proved to also hold. When the set Ant becomes empty,
yielding the formula

∧
/0→

∧
Con, all elements of Con can be added to IN (while re-

specting the antichain property of IN) and the set Con cleared.
Taking into account Theorem 3 and the above presented facts, it can be seen that the

following holds.

Theorem 4. When applied on TA AS = (QS,Σ,∆S,FS) and AB = (QB,Σ,∆B,FB), Algo-
rithm 1 terminates and returns true if and only if L(AS)⊆ L(AB).

9

3.4 Experimental Results

We have implemented Algorithm 1 (which we mark as Down in what follows) as well as
Algorithm 1 using the maximum downward simulation as the input preorder (which is
marked as Down+s below).5 We have also implemented the algorithm of upward inclu-
sion checking using antichains from [4] and its modification using upward simulation
proposed in [2] (these algorithms are marked as Up and Up+s below). We tested our
approach on 387 tree automata pairs of different sizes generated from the intermediate
steps of abstract regular tree model checking of the algorithm for rebalancing red-black
trees after insertion or deletion of a leaf node [4].

The results of the experiments are presented in the following tables. Table 1 com-
pares the methods according to the percentage of the cases in which they were the
fastest when checking inclusion on the same automata pair. The results are grouped
into two sets according to the size of the automata measured in the number of states.
The table also gives the average speedup of the fastest upward approach compared to
the fastest downward approach in case the upward computation was faster than the
downward one (and vice versa). Table 2 provides a comparison of the methods that
use simulation (either upward for Up+s or downward for Down+s) without counting the
time for computing simulation (in such cases they were always faster than the methods
not using simulations). This comparison is motivated by the observation that inclusion
checking may be used as a part of a bigger computation that anyway computes the
simulation relations (which happens, e.g., in abstract regular model checking where the
simulations are used for reducing the size of the encountered automata). Finally, Table 3
summarises how often the particular methods were successful in our testing runs (i.e.,
how often they did not timeout.).

The results show that the overhead of computing upward simulation is too high in all
the cases that we have considered, causing upward inclusion checking using simulation
to be the slowest when the time for computing the simulation used by the algorithm is
included6. Next, it can be seen that for each of the remaining approaches there are cases
in which they win in a significant way. However, the downward approaches are clearly
dominating in significantly more of our test cases (with the only exception being the
case of small automata when the time of computing simulations is not included). More-
over, the dominance of the downward checking increases with the size of the automata
that we considered in our test cases.

4 Semi-Symbolic Representation of Tree Automata

We next consider a natural, semi-symbolic, MTBDD-based encoding of non-determin-
istic TA, suitable for handling automata with huge alphabets. We propose algorithms for
computing union, intersection, downward simulations and for upward and downward
inclusion checking on the considered representation.

5 For time reasons, we have not yet implemented and evaluated Algorithm 1.
6 Note that Up+s was winning over Up in the experiments of [2] even with the time for computing

simulation included, which seems to be caused by a much less efficient implementation of the
antichains in the original algorithm.

10

4.1 Binary Decision Diagrams

Let B = {0,1} be the set of Boolean values. A Boolean function of arity k is a func-
tion of the form f : Bk→ B. We extend the notion of Boolean functions to an arbitrary
nonempty set S where a k-ary Boolean function extended to the domain set S is a func-
tion of the form f : Bk→ S.

A reduced ordered binary decision diagram (ROBDD) [8] r over n Boolean vari-
ables x1, . . . ,xn is a connected directed acyclic graph with a single source node (de-
noted as r.root) and at least one of the two sink nodes 0 and 1. We call internal the
nodes which are not sink nodes. A function var assigns each internal node a Boolean
variable from the set X = {x1, . . . ,xn}, which is assumed to be ordered by the ordering
x1 < x2 < · · ·< xn. For every internal node v there exist 2 outgoing edges labelled low
and high. We denote by v.low a node w and by v.high a node z such that there exists
a directed edge from v to w labelled by low and a directed edge from v to z labelled
by high, respectively. For each internal node v, it must hold that var(v) < var(v.low)
and var(v)< var(v.high) and also v.low 6= v.high. A node v represents an n-ary Boolean
function JvK : Bn → B that assigns to each assignment to the Boolean variables in X
a corresponding Boolean value defined in the following way (using x as an abbreviation
for x1 . . .xn):

J0K = λ x . 0
J1K = λ x . 1
JvK = λ x . (¬xi∧ Jv.lowK(x))∨ (xi∧ Jv.highK(x)) for var(v) = xi

(10)

For every two nodes v and w, it holds that v 6=w =⇒ JvK 6= JwK. We say that an ROBDD
r represents the Boolean function JrK = Jr.rootK. Dually, for a Boolean function f , we
use 〈 f 〉 to denote the ROBDD representing f , i.e., f = J〈 f 〉K.

We generalise the standard Apply operation for manipulation of Boolean functions
represented by ROBDDs in the following way: let op1, op2, and op3 be in turn arbitrary
unary, binary, and ternary Boolean functions. Then the functions Apply1, Apply2, and
Apply3 produce a new ROBDD which is defined as follows for ROBDDs f , g, and h:

Apply1(f ,op1) = 〈λ x . op1(J f (x)K)〉
Apply2(f ,g,op2) = 〈λ x . op2(J f (x)K,Jg(x)K)〉

Apply3(f ,g,h,op3) = 〈λ x . op3(J f (x)K,Jg(x)K,Jh(x)K)〉.
(11)

In practice, one can also use Apply operations with side-effects.
The notion of ROBDDs is further generalised to multi-terminal binary decision di-

agrams (MTBDDs) [9]. MTBDDs are essentially the same data structures as ROBDDs,
the only difference being the fact that the set of sink nodes is not restricted to two nodes.
Instead, it can contain an arbitrary number of nodes labelled uniquely by elements of
an arbitrary domain set S. All standard notions for ROBDDs can naturally be extended
to MTBDDs. An MTBDD m then represents a Boolean function extended to S, i.e.,
JmK : Bn→ S. Further, the concept of shared MTBDDs is used. A shared MTBDD s is
an MTBDD with multiple source nodes (or roots) that represents a mapping of every
element of the set of roots R to a function induced by the MTBDD corresponding to the
the given root, i.e., JsK : R→ (Bn→ S).

11

4.2 Encoding The Transition Function of a TA Using Shared MTBDDs

We fix a tree automaton A = (Q,Σ,∆,F) for the rest of the section. We consider both
a top-down and a bottom-up representation of its transition function. This is because
some operations on A are easier to do on the former representation while others on the
latter. We assume w.l.o.g. that the input alphabet Σ of A is represented in binary using
n bits. We assign each bit in the binary encoding of Σ a Boolean variable from the set
{x1, . . . ,xn}. We can then use shared MTBDDs with a set of roots R and a domain set S
for encoding the various functions of the form R→ (Σ→ S) that we will need.

Bottom-up Representation. Our bottom-up representation of the transition function ∆

of A uses a shared MTBDD ∆bu over Σ where the set of root nodes is Q#, and the domain
of labels of sink nodes is 2Q. The MTBDD ∆bu represents the following function J∆buK:

J∆
buK : Q#→ (Σ→ 2Q)

J∆
buK = λ (q1, . . . ,qp) a . {q | (q1, . . . ,qp)

a−→ q}.
(12)

It clearly holds that J∆bu((q1, . . . ,qp),a)K = upa((q1, . . . ,qp)).

Top-down Representation. Our top-down representation of the transition function ∆

of A uses a shared MTBDD ∆td over Σ where the set of root nodes is Q, and the domain
of labels of sink nodes is 2Q#

. The MTBDD ∆td represents the following function J∆tdK:

J∆
tdK : Q→ (Σ→ 2Q#

)

J∆
tdK = λ q a . {(q1, . . . ,qp) | q

a−→ (q1, . . . ,qp)}.
(13)

It clearly holds that J∆td(q,a)K = downa(q).

4.3 Union

An algorithm for computing the union of TA using the bottom-up representation follows
as Algorithm 1. The presented algorithm simply unites the sets of states Q1 and Q2, and
the sets of final states F1 and F2. We slightly abuse the notation and use ∆bu

1 ∪∆bu
2 to

denote the union of the concerned MTBDDs, i.e., 〈J∆bu
1 K∪ J∆bu

2 K〉. In order to carry out
the union operation on the leaf rules of the automaton, a single Apply operation needs
to be performed. The Apply operation is given the lambda expression λ X Y . X ∪Y as
the function to perform on the sink nodes of the MTBDD. Correspondingly, when the
Apply operation is evaluated, X and Y are mapped to the sets of states which are the
values of the corresponding sink nodes of the first and second argument of the Apply
operation, producing new sink nodes with the value of X ∪Y .

Performing the union on TA represented top-down is more straight-forward since,
in this case, A∪ = (Q1∪Q2,Σ,∆

td
1 ∪∆td

2 ,F1∪F2) provided Q1∩Q2 = /0.

12

Algorithm 1: Union of TA represented bottom-up
Input: A1 = (Q1,Σ,∆

bu
1 ,F1) and A2 = (Q2,Σ,∆

bu
2 ,F2), Q1∩Q2 = /0

Output: A∪ = (Q∪,Σ,∆bu
∪ ,F∪) such that L(A∪) = L(A1)∪L(A2)

1 ∆bu
∪ := ∆bu

1 ∪∆bu
2 ;

2 ∆bu
∪ (()) := Apply2(∆

bu
1 (()),∆bu

2 (()),(λ X Y . X ∪Y));
3 return A = (Q1∪Q2,Σ,∆

bu
∪ ,F1∪F2);

4.4 Intersection

An algorithm for intersection of two TA A1 = (Q1,Σ,∆1,F1) and A2 = (Q2,Σ,∆2,F2),
using the bottom-up representation of their transition functions, is presented as Algo-
rithm 2. It constructs the intersection of A1 and A2 by creating a product automaton
A∩ = (Q1×Q2,Σ,∆∩,F1×F2) where

∆∩ =
{
((qa1,qb1), . . . ,(qan,qbn))

f−→ (qa,qb) | f ∈ Σ,(qa1, . . . ,qan)
f−→ qa ∈ ∆1,

(qb1, . . . ,qbn)
f−→ qb ∈ ∆2,∀1≤ i≤ n : (qai,qbi) is reachable

}
,

(14)

where a product state (qa,qb) is called reachable iff there exists a symbol f ∈ Σ such

that (qa1, . . . ,qan)
f−→ qa∧ (qb1, . . . ,qbn)

f−→ qb and ∀1≤ i≤ n : (qai,qbi) is reachable.
The transitions in ∆∩ basically run the two automata in parallel such that A∩ con-

tains only reachable states and transitions. The algorithm detects reachable states by
starting from leaf rules of A1 and A2, analysing all transitions over leaf symbols and col-
lecting product states that may be reached into the set newStates. Then until newStates
is empty, a new pair (qa,qb) is removed from newStates and for all pairs of tuples
((qa1, . . . ,qan),(qb1, . . . ,qbn)) such that qa = qai and qb = qbi for some i, and at all posi-
tions j : j 6= i it holds that (qai,qbi)∈Q∩, the set of reachable product states is computed
and added to the newStates set. The construction process is described in Algorithm 2.

4.5 Conversion Between Bottom-up and Top-down Representation

Sometimes it is necessary to convert between the bottom-up and top-down representa-
tion of a TA. For instance, when computing downward simulations (as explained later
in the text), one needs to switch between the bottom-up and top-down representation.
This can be done using the generic algorithm given in Algorithm 2 for conversion of
a shared MTBDD f : R→ (Bn → 2S) over n Boolean variables to a shared MTBDD
g : S→ (Bn→ 2R). The algorithm first initialises g to map all elements of S and all val-
uations of the Boolean variables to the empty set. Then, for each element of s ∈ S and
r ∈ R and for each valuation of the Boolean variables, which are implicitly traversed by
the Apply2 function, if s is in the sink node of f (r) for some valuation of the Boolean
variables, r is added to the sink node of g(s) for this valuation of the Boolean variables.

13

Algorithm 2: Inversion of non-deterministic MTBDDs
Input: Shared MTBDD f such that J f K : R→ (Bn→ 2S)
Output: Shared MTBDD g such that JgK : S→ (Bn→ 2R)

1 g := 〈λ r x . /0〉; /* JgK : S→ (Bn→ 2R) */
2 foreach s ∈ S such that ∃r ∈ R∃x ∈ Bn : s ∈ f (r,x) do
3 foreach r ∈ R such that f (r) 6= 〈λ x . /0〉 do
4 g(s) := Apply2(f (r),g(s),(λ X Y . if s ∈ X then Y ∪{r} else Y));
5 return g;

4.6 Downward Simulation on Semi-Symbolically Encoded TA

We next give an algorithm for computing the maximum downward simulation rela-
tion on the states of the TA A whose transition function is encoded using our semi-
symbolic representation. The algorithm is inspired by the algorithm from [13] proposed
for computing simulations on finite (word) automata. For use in the algorithm, we ex-
tend the notion of downward simulation to tuples of states by defining (q1, . . . ,qn) �D
(r1, . . . ,rn) to hold iff ∀1≤ i≤ n : qi �D ri.

Our algorithm for computing downward simulations, shown as Algorithm 3, starts
with a gross over-approximation of the maximum downward simulation, which is then
pruned until the maximum downward simulation is obtained. The algorithm uses the
following main data structures:

– For each q ∈ Q, sim(q)⊆ Q is the set of states that are considered to simulate q at
the current step of the computation. Its value is gradually pruned during the compu-
tation. At the end, it encodes the maximum downward simulation being computed.

– The set remove ⊆ Q# ×Q# contains pairs ((q1, . . . ,qn),(r1, . . . ,rn)) of tuples of
states for which it is known that (q1, . . . ,qn) 6�D (r1, . . . ,rn), for processing.

– Finally, cnt is a shared MTBDD encoding a function JcntK : Q#→ (Σ→ (Q→N))
that for each (q1, . . . ,qn) ∈ Q#, a ∈ Σ, and q ∈ Q, gives a value h ∈ N such that
(q1, . . . ,qn) can make a bottom-up transition over a to h distinct states r ∈ sim(q).

The algorithm works in two phases. We assume that we start with a TA whose tran-
sition function is represented bottom-up. In the initialisation phase, the dual top-down
representation of the transition function is first computed (note that we can also start
with a top-down representation and compute the bottom-up representation as both are
needed in the algorithm). The three main data structures are then initialised as follows:

– For each q ∈ Q, the set sim(q) is initialised as the set of states that can make top-
down transitions over the same symbols as q, which is determined using the Apply
operation on line 9. This is, when starting the main computation loop on line 18,
the value of sim for each q ∈ Q is sim(q) = {r | ∀a ∈ Σ : q a−→ (q1, . . . ,qn) =⇒
r a−→ (r1, . . . ,rn)}.

– The remove set is initialised to contain each pair of tuples of states ((q1, . . . ,qn),
(r1, . . . ,rn)) for which it holds that the relation (q1, . . . ,qn)�D (r1, . . . ,rn) is broken
even for the initial approximation of �D, i.e., for some position 1 ≤ i ≤ n there is
a pair qi,ri ∈ Q such that ri /∈ sim(qi).

14

– To initialise the shared MTBDD cnt, the algorithm constructs an auxiliary MTBDD
initCnt representing a function JinitCntK : Σ→ (Q→ N). Via the Apply operation
on line 6, this MTBDD gradually collects, for each symbol a ∈ Σ, the set of pairs
(q,h) such that q can make a top-down transition to h distinct tuples over the symbol
a. This MTBDD is then copied to the shared MTBDD cnt for each tuple of states
(q1, . . . ,qn) ∈ Q#. This is justified by the fact that we start by assuming that the
simulation relation is equal to Q×Q, which for a symbol a ∈ Σ and a pair (q,h) ∈
cnt((q1, . . . ,qn)) means that (q1, . . . ,qn) can make a bottom-up transition over a to
h distinct states r ∈ sim(q).

The main computation phase gradually restricts the initial over-approximation of
the maximum downward simulation being computed. As we have said, the remove
set contains pairs ((q1, . . . ,qn),(r1, . . . ,rn)) for which it holds that (q1, . . . ,qn) can-
not be simulated by (r1, . . . ,rn), i.e., (q1, . . . ,qn) 6�D (r1, . . . ,rn). When such a pair
is processed, the algorithm decrements the counter Jcnt((q1, . . . ,qn),a,s)K for each
state s for which there exists a bottom-up transition over a symbol a ∈ Σ such that
(r1, . . . ,rn)

a−→ s. The meaning is that s can make one less top-down transition over a
to some (t1, . . . , tn) such that (q1, . . . ,qn)�D (t1, . . . , tn). If Jcnt((q1, . . . ,qn),a,s)K drops
to zero, it means that s cannot make a top-down transition over a to any (t1, . . . , tn) such
that (q1, . . . ,qn) �D (t1, . . . , tn). This means, for all p ∈ Q such that p can make a top-
down transition over a to (q1, . . . ,qn), that s no longer simulates p, i.e., p 6�D s. When
the simulation relation between p and s, p�D s, is broken, then the simulation relation
between all m-tuples (p1, . . . , pm) and (s1, . . . ,sm) such that ∃1≤ j≤m : p j = p∧s j = s
must also be broken, therefore the pair ((p1, . . . , pm),(s1, . . . ,sm)) is put to the remove
set (unless the simulation relation between some other states in the tuples has already
been broken before).

Correctness of the algorithm is summarised in the below theorem, which can be
proven analogically as correctness of the algorithm proposed in [13], taking into ac-
count the meaning of the above described MTBDD-based structures and the operations
performed on them.

Theorem 5. When applied on a TA A = (Q,Σ,∆,F) whose transition function is en-
coded semi-symbolically in the bottom-up way as ∆bu, Algorithm 3 terminates and re-
turns the maximum downward simulation on Q.

4.7 Downward Inclusion Checking on Semi-Symbolically Encoded TA

We now proceed to an algorithm of efficient downward inclusion checking on semi-
symbolically represented TA. The algorithm we propose for this purpose is derived from
Algorithm 1 by plugging the expand3 function instead of the expand2 function. It is
based on the same basic principle as expand2, but it has to cope with the symbolically
encoded transition relation. In particular, in order to inspect whether for a pair (pS,PB)
and all symbols a ∈ Σ the inclusion between each tuple from downa(pS) and the set of
tuples downa(PB) holds, the doesInclusionHold parameter initialised to true is passed
to the Apply operation on line 12 of the expand3 function. If the algorithm finds out that
the inclusion does not hold in some execution of the procDown function in the context

15

of a single Apply, doesInclusionHold is assigned the false value, which is later returned
by expand3. Otherwise expand3 returns its original true value.

4.8 Upward Inclusion Checking

We next present an algorithm for upward inclusion checking on semi-symbolically en-
coded TA. We present a version that is not combined with a use of simulation since
the experiments that we have done with explicitly represented automata were not very
favourable for upward inclusion checking combined with a use of simulation. We note,
however, that for the future, providing such an algorithm and testing it on a broader set
of experiments is still useful.

Our upward inclusion checking algorithm is based on the algorithm proposed in [4].
The intuition behind this algorithm is that when checking inclusion of languages of two
automata AS = (QS,Σ,∆

bu
S ,FS) and AB = (QB,Σ,∆

bu
B ,FB), the algorithm works with

a set antichain ⊆ QS × 2QB such that (q,D) ∈ antichain if q is a state reachable in
AS over some sequence of transitions, and D is the set of all states in AB accessible
over the same sequence of transitions. If it holds that q ∈ FS and D∩FB = /0, then AS
can accept a tree that AB cannot accept, and therefore the inclusion L(AS) ⊆ L(AB)
does not hold. Also, when a pair (q,E) is reached such that D ⊆ E for some (q,D) ∈
antichain, then (q,E) is dropped and not added into antichain. This is justified by the
fact that if a counterexample to inclusion can be shown from (q,E), it can be found
from (q,D) too (since the possible moves of AB from D are even more limited than
from E).Furthermore, when a pair (q,F) is reached such that F ⊂ D for some (q,D) ∈
antichain, then (q,D) is removed from antichain and (q,F) is added into antichain.
Hence, the set antichain is indeed an antichain in the poset (QS, ι)× (2QB ,⊆), i.e., for
given qS ∈ QS there are no two distinct sets G,H ∈ 2QB such that G⊆ H or H ⊆ G.

Our algorithm for upward inclusion checking is shown as Algorithm 2. In the al-
gorithm, the Apply operation on line 3 first collects pairs (q,D) ∈ QS×2QB consisting
of states accessible through equilabelled leaf rules in AS and AB into the sets antichain
and notProcessed. Then, until the notProcessed set is empty or a counterexample to
inclusion is found, a pair (q,D) is removed from the set notProcessed, and it is pro-
cessed. The processing consists of finding a tuple (q1, . . . ,qn) ∈Q#

S containing q, where
all other states also appear in some pair of antichain, and all tuples (s1, . . . ,sn) ∈ Qn

B
such that si ∈ D and the states s j, i 6= j, are from some set R j for which it holds that
(q j,R j) ∈ antichain. The transition functions of those tuples are united by the Apply
operation on line 11. Then, the Apply operation on line 12 collects the reachable pairs,
and the loop continues.

4.9 Experimental Results

We have implemented a prototype of a library for working with TA encoded semi-
symbolically as described above. We have used the CUDD library [16] as an imple-
mentation of shared MTBDDs. The prototype contains the algorithms presented in this
section. The results on downward inclusion checking that we have obtained with the
explicitly represented TA encouraged us to also compare performance of the upward

16

inclusion checking and downward inclusion checking on automata with large alphabets
using our prototype.

We have compared the upward inclusion checking algorithm from [4] adapted for
semi-symbolically represented tree automata, which is given as Algorithm 2 in Sec-
tion 4.8 (and marked as UpSym in the following), with the downward inclusion checking
algorithm presented above. In the latter case, we let the algorithm use either the identity
relation, which corresponds to downward inclusion checking without using any simu-
lation (this case is marked as DownSym below), or the maximum downward simulation
(which is marked as DownSym+s in the results). We have not considered upward inclu-
sion checking with upward simulation due to its negative results in our experiments
with explicitly encoded automata7. For the comparison, we used 97 pairs of tree au-
tomata with a large alphabet which we encoded into 12 bits. The size of the automata
was between 50 and 150 states and the timeout was set to 300 s. The automata were ob-
tained by taking the automata considered in Section 3.4 and labelling their transitions
by randomly generated sets of symbols from the considered large alphabet.

The results that we have obtained are presented in the following tables. Table 4
compares the methods according to the percentage of the cases in which they were the
fastest when checking inclusion on the same automata pair. This table also presents the
average speedup of the upward approach compared to the fastest downward approach
in case the upward computation was faster than the downward one (and vice versa).
Table 5 summarises how often each of the methods was successful in the testing runs.

When we compare the above experimental results with the results obtained on the
explicitly represented automata presented in Section 3.4, we may note that (1) down-
ward inclusion checking is again significantly dominating, but (2) the advantage of ex-
ploiting downward simulation has decreased. According to the information we gathered
from code profiling of our implementation, this is due to the overhead of the CUDD li-
brary which is used as the underlying layer for storage of shared MTBDDs of several
data structures (which indicates a need of a different MTBDD library to be used or
perhaps of a specialised MTBDD library to be developed).

We also evaluated performance of the implementation of the described algorithms
using a semi-symbolic encoding of TA with performance of the algorithms using an
explicit encoding of TA considered in Section 3 on the automata with the large alphabet.
The symbolic version was in average 8676 times faster than the explicit one as expected
when using a large alphabet.

5 Conclusion

We have proposed a new algorithm for checking language inclusion over non-determi-
nistic TA (based on the one from [12]) that traverses automata in the downward manner
and uses both antichains and simulations to optimise its computation. This algorithm
is, according to our experimental results, mostly superior to the known upward algo-
rithms. We have further presented a semi symbolic MTBDD-based representation of

7 We, however, note that possibilities of implementing upward inclusion checking combined
with upward simulations over semi-symbolically encoded TA and a further evaluation of this
algorithm are still interesting subjects for the future.

17

non-deterministic TA generalising the one used by MONA, together with important
tree automata algorithms working over this representation, most notably an algorithm
for computing downward simulations over TA inspired by [13] and the downward lan-
guage inclusion algorithm improved by simulations and antichains proposed in this
paper. We have experimentally justified usefulness of the symbolic encoding for non-
deterministic TA with large alphabets.

Our experimental results suggest that the MTBDD package CUDD is not very ef-
ficient for our purposes and that better results could probably be achieved using a spe-
cialised MTBDD package whose design is an interesting subject for further work. Apart
from that, it would be interesting to encode antichains used within the language inclu-
sion checking algorithms symbolically as, e.g., in [17]. An interesting problem here is
how to efficiently encode antichains based not on the subset inclusion but on a sim-
ulation relation. Finally, as a general target, we plan to continue in our work towards
obtaining a really efficient TA library which could ultimately replace the one of MONA.

Acknowledgements This work was supported by the Czech Science Foundation (projects
P103/10/0306 and 102/09/H042), the Czech Ministry of Education (projects COST
OC10009 and MSM 0021630528), the BUT FIT project FIT-S-11-1, and the Swedish
UPMARC project.

References

1. P. A. Abdulla, A. Bouajjani, L. Holı́k, L. Kaati, and T. Vojnar. Computing Simulations over
Tree Automata: Efficient Techniques for Reducing Tree Automata. In Proc. of TACAS’08,
LNCS 5148, Springer, 2008.

2. P. A. Abdulla, L. Holı́k, Y.-F. Chen, R. Mayr, and T. Vojnar. When Simulation Meets An-
tichains (On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata). In
Proc. of TACAS’10, LNCS 6015, Springer, 2010.

3. P. A. Abdulla, B. Jonsson, P. Mahata, and J. d’Orso. Regular Tree Model Checking. In Proc.
of CAV’02, LNCS 2404, Springer, 2002.

4. A. Bouajjani, P. Habermehl, L. Holı́k, T. Touili, and T. Vojnar. Antichain-based Universality
and Inclusion Testing over Nondeterministic Finite Tree Automata. In Proc. of CIAA’08,
LNCS 5148, Springer, 2008.

5. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model
Checking. ENTCS, 149, Elsevier, 2006.

6. A. Bouajjani, P. Habermehl, A. Rogalewicz, T. Vojnar. Abstract Regular Tree Model Check-
ing of Complex Dynamic Data Structures. In Proc. of SAS’06, LNCS 4134, Springer, 2006.

7. T. Bourdier. Tree Automata-based Semantics of Firewalls. In Proc. of SAR-SSI’11, IEEE,
2011.

8. R. E. Bryant. Graph-based Algorithms for Boolean Function Manipulation. IEEE Trans.
Computers, 1986.

9. E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spectral Transforms for Large
Boolean Functions with Applications to Technology Mapping. FMSD, 10, Springer, 1997.

10. L. Doyen and J. F. Raskin. Antichain Algorithms for Finite Automata. In Proc. of TACAS’10,
LNCS 6015, Springer, 2010.

11. P. Habermehl, L. Holı́k, A. Rogalewicz, J. Šimáček, and T. Vojnar. Forest Automata for
Verification of Heap Manipulation. Tech. Rep. FIT-TR-2011-01, FIT BUT, 2011. In Proc.
of CAV’11, LNCS 6806, Springer, 2011

12. H. Hosoya, J. Vouillon, and B. C. Pierce. Regular Expression Types for XML. ACM Trans.
Program. Lang. Syst., 27, 2005.

18

13. L. Ilie, G. Navarro, and S. Yu. On NFA Reductions. In Proc. of Theory is Forever, LNCS
3113, Springer, 2004.

14. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA Implementation Secrets. Interna-
tional Journal of Foundations of Computer Science, 13(4), 2002.

15. P. Madhusudan, G. Parlato, and X. Qiu. Decidable Logics Combining Heap Structures and
Data. SIGPLAN Not., 46, 2011.

16. F. Somenzi. CUDD: CU Decision Diagram Package Release 2.4.2, May 2011.
17. A. Tozawa and M. Hagiya. XML Schema Containment Checking Based on Semi-implicit

Techniques. In Proc. of CIAA’03, LNCS 2759, Springer, 2003.
18. M. De Wulf, L. Doyen, T. A. Henzinger, J.-F. Raskin. Antichains: A New Algorithm for

Checking Universality of Finite Automata. In Proc. of CAV’06, LNCS 4144, Springer, 2006.

19

Algorithm 1: Downward inclusion (antichains + preorder)
Input: TA AS = (QS,Σ,∆S,FS),AB = (QB,Σ,∆B,FB),�⊆ (QS ∪QB)

2

Output: true if L(AS)⊆ L(AB), false otherwise
Data: NN := /0

1 foreach qS ∈ FS do
2 if ¬expand2(qS,FB, /0) then return false;
3 ;
4 return true;

Function expand2(pS, PB, workset)
/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS×2QB */

1 if ∃(p′S,P
′
B) ∈ workset : pS � p′S ∧P′B �∀∃ PB then return true;

2 ;
3 if ∃(p′S,P

′
B) ∈ NN : p′S � pS ∧PB �∀∃ P′B then return false ;

4 ;
5 if ∃p ∈ PB : pS � p then return true;
6 ;
7 workset := workset∪{(pS,PB)};
8 foreach a ∈ Σ do
9 if #a = 0 then

10 if downa(pS) 6= /0∧downa(PB) = /0 then return false;
11 ;
12 else
13 W := downa(PB);
14 foreach (r1, . . . ,r#a) ∈ downa(pS) do /* pS

a−→ (r1, . . . ,r#a) */
15 foreach f ∈ {W →{1, . . . ,#a}} do
16 found := false;
17 foreach 1≤ i≤ #a do
18 S := {qi | (q1, . . . ,q#a) ∈W, f ((q1, . . . ,q#a)) = i};
19 if expand2(ri,S,workset) then
20 found := true;
21 break;
22 if 6 ∃(r′,H) ∈ NN : r′ � ri∧S�∀∃ H then
23 NN := (NN \{(r′,H) | H �∀∃ S,ri � r′})∪{(ri,S)};
24 if ¬found then return false;
25 ;
26 return true;

20

Algorithm 1: Downward inclusion (antichains + preorder + IN)
Input: TA AS = (QS,Σ,∆S,FS),AB = (QB,Σ,∆B,FB),�⊆ (QS ∪QB)

2

Output: true if L(AS)⊆ L(AB), false otherwise
Data: IN := NN := /0

1 foreach qS ∈ FS do
2 if expand2e(qS,FB, /0) = (false, ,) then return false;
3 ;
4 return true;

Function expand2e(pS, PB, workset)
/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS×2QB */

1 if ∃(p′S,P
′
B) ∈ IN : pS � p′S ∧P′B �∀∃ PB then return (true, /0, /0);

2 ;
3 if ∃(p′S,P

′
B) ∈ NN : p′S � pS ∧PB �∀∃ P′B then return (false, /0, /0);

4 ;
5 if ∃p ∈ PB : pS � p then return (true, /0, /0);
6 ;
7 if ∃(p′S,P

′
B) ∈ workset : pS � p′S ∧P′B �∀∃ PB then return (true,{(p′S,P

′
B)}, /0);

8 ;
9 workset := workset∪{(pS,PB)};

10 Ant := Con := /0;
11 foreach a ∈ Σ do
12 if #a = 0 then
13 if downa(pS) 6= /0∧downa(PB) = /0 then return (false, /0, /0);
14 ;
15 else
16 W := downa(PB);
17 foreach (r1, . . . ,r#a) ∈ downa(pS) do /* pS

a−→ (r1, . . . ,r#a) */
18 foreach f ∈ {W →{1, . . . ,#a}} do
19 found := false;
20 foreach 1≤ i≤ #a do
21 S := {qi | (q1, . . . ,q#a) ∈W, f ((q1, . . . ,q#a)) = i};
22 (x,Ant′,Con′) := expand2e(ri,S,workset);
23 if x then
24 found := true; Ant := Ant∪Ant′; Con := Con∪Con′;
25 break;
26 if 6 ∃(r′,H) ∈ NN : r′ � ri∧S�∀∃ H then
27 NN := (NN \{(r′,H) | H �∀∃ S,ri � r′})∪{(ri,S)};
28 if ¬found then return (false, /0, /0);
29 ;
30 Ant := Ant \{(pS,PB)}; Con := Con∪{(pS,PB)};
31 if Ant = /0 then
32 foreach (x,Y) ∈ Con do
33 if 6 ∃(p′S,P

′
B) ∈ IN : x� p′S ∧P′B �∀∃ Y then

34 IN := (IN \{(r′,H) | Y �∀∃ H,r′ � x})∪{(x,Y)};
35 Con := /0;
36 return (true,Ant,Con);

21

Table 1. Percentages of cases in which the respective methods were the fastest

Size Pairs Timeout Up Up+s Down Down+s Down Down+s Avg up Avg down
opt opt speedup speedup

50–250 323 20 s 25.52 % 0.00 % 16.21 % 3.45 % 42.07 % 12.76 % 1.66 3.77
400–600 64 60 s 3.13 % 0.00 % 39.06 % 14.06 % 0.00 % 43.75 % 0.34 46.59

Table 2. Percentages of cases in which the methods were the fastest when not counting the time
for computing the simulation

Size Pairs Timeout Up+s Down+s Avg up Avg down
speedup speedup

50–250 323 20 s 81.82 % 18.18 % 1.33 3.60
400–600 64 60 s 20.31 % 79.69 % 9.92 2116.29

Table 3. Successful runs that did not timeout (%)

Size Pairs Timeout Up Up+s Down Down+s
50–250 323 20 s 100.00 % 100.00 % 74.92 % 99.07 %

400–600 64 60 s 51.56 % 51.56 % 39.06 % 90.62 %

Algorithm 2: Intersection of TA represented bottom-up
Input: Input automata A1 = (Q1,Σ,∆

bu
1 ,F1) and A2 = (Q2,Σ,∆

bu
2 ,F2)

Output: A∩ = (Q∩,Σ,∆bu
∩ ,F∩) such that L(A∩) = L(A1)∩L(A2)

1 Q∩ := F∩ := newStates := /0;
2 ∆bu
∩ := 〈λ (q1, . . . ,qn) a . /0〉;

3 ∆bu
∩ (()) := Apply2(∆

bu
1 (()),∆bu

2 (()),(iSect newStates));
4 while ∃(qa,qb) ∈ newStates do
5 newStates := newStates\{(qa,qb)};
6 if (qa,qb) ∈ Q∩ then continue;
7 ;
8 Q∩ := Q∩∪{(qa,qb)};
9 if qa ∈ F1∧qb ∈ F2 then F∩ := F∩∪{(qa,qb)};

10 ;
11 foreach (qa1, . . . ,qan) ∈ Q#

1 such that ∃1≤ i≤ n : qa = qai do
12 foreach (qb1, . . . ,qbn) ∈ Q#

2 such that ∃1≤ i≤ n : qb = qbi do
13 if ∀1≤ i≤ n : (qai,qbi) ∈ Q∩ then
14 ∆bu

∩ ((qa1,qb1), . . . ,(qan,qbn)) :=
Apply2(∆

bu
1 ((qa1, . . . ,qan)),∆

bu
2 ((qb1, . . . ,qbn)),(iSect newStates));

15 return A∩ = (Q∩,Σ,∆bu
∩ ,F∩);

Function iSect(&newStates, up1, up2)
1 productSet := up1×up2;
2 newStates := newStates∪productSet;
3 return productSet;

22

Algorithm 3: Computing downward simulation on semi-symbolic TA
Input: Tree automaton A = (Q,Σ,∆bu,F)
Output: Maximum downward simulation �D⊆ Q2

/* initialisation */

1 ∆td := invertMTBDD(∆bu);
2 remove := /0;
3 initCnt := 〈λ a . /0〉 ; /* JinitCntK : Σ→ (Q→ N) */
4 foreach q ∈ Q do
5 sim(q) := /0;
6 initCnt := Apply2(∆

td(q), initCnt,(λ X Y . Y ∪{(q, |X |)});
7 foreach r ∈ Q do
8 isSim := true;
9 Apply2(∆

td(q),∆td(r),(λ X Y . if (X 6= /0∧Y = /0) then isSim := false)) ;
10 if isSim then
11 sim(q) := sim(q)∪{r};
12 else
13 foreach (q1, . . . ,qn) ∈ Q#,(r1, . . . ,rn) ∈ Q# : ∃1≤ i≤ n : qi = q∧ ri = r do
14 remove := remove∪{((q1, . . . ,qn),(r1, . . . ,rn))};
15 cnt := 〈λ (q1, . . . ,qn) a . /0〉 ; /* JcntK : Q#→ (Σ→ (Q→ N)) */

16 foreach (q1, . . . ,qn) ∈ Q# do cnt((q1, . . . ,qn)) := initCnt;
17 ;

/* computation */
18 while ∃((q1, . . . ,qn),(r1, . . . ,rn)) ∈ remove do
19 remove := remove\{((q1, . . . ,qn),(r1, . . . ,rn))};
20 cnt((q1, . . . ,qn)) :=

Apply3(∆
bu((r1, . . . ,rn)),∆

bu((q1, . . . ,qn)),cnt((q1, . . . ,qn)),(refine sim remove));
21 return {(q,r) | q ∈ Q,r ∈ sim(q)};

Function refine(&sim, &remove, upaR, upaQ, cntaQ)
1 newCntaQ := cntaQ;
2 foreach s ∈ upaR do
3 newCntaQ(s) := newCntaQ(s)−1;
4 if newCntaQ(s) = 0 then
5 foreach p ∈ upaQ : s ∈ sim(p) do
6 foreach (p1, . . . , pn) ∈ Q#,(s1, . . . ,sn) ∈ Q# : ∃1≤ i≤ n : pi = p∧ si = s do
7 if ∀1≤ j ≤ n : s j ∈ sim(p j) then
8 remove := remove∪{((p1, . . . , pn),(s1, . . . ,sn))};
9 sim(p) := sim(p)\{s};

10 return newCntaQ;

23

Function expand3(pS, PB, workset)
/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS×2QB */

1 if ∃(p′S,P
′
B) ∈ workset : pS � p′S ∧P′B �∀∃ PB then return true;

2 ;
3 if ∃(p′S,P

′
B) ∈ NN : p′S � pS ∧PB �∀∃ P′B then return false ;

4 ;
5 if ∃p ∈ PB : pS � p then return true;
6 ;
7 workset := workset∪{(pS,PB)};
8 tmp := 〈λ a . /0〉;
9 foreach pB ∈ PB do

10 tmp := Apply2(tmp,∆td
B (pB),(λ X Y . X ∪Y));

11 doesInclusionHold := true;
12 Apply2(∆

td
S (pS), tmp,(procDown doesInclusionHold workset));

13 return doesInclusionHold;

Function procDown(&doesInclusionHold, &workset, downa pS, downaPB)
1 if () ∈ downa pS ∧ () /∈ downaPB then
2 doesInclusionHold := false;
3 else
4 W := downaPB;
5 foreach (r1, . . . ,rn) ∈ downa pS do /* pS

a−→ (r1, . . . ,rn) */
6 foreach f ∈ {W →{1, . . . ,n}} do
7 found := false;
8 foreach 1≤ i≤ n do
9 S := {qi | (q1, . . . ,qn) ∈W, f ((q1, . . . ,qn)) = i};

10 if expand3(ri,S,workset) then
11 found := true;
12 break;
13 if 6 ∃(r′,H) ∈ NN : r′ � ri∧S�∀∃ H then
14 NN := (NN \{(r′,H) | H �∀∃ S,ri � r′})∪{(ri,S)};
15 if ¬found then
16 doesInclusionHold := false;
17 return;

24

Algorithm 2: Upward antichain-based inclusion
Input: Tree automata AS = (QS,Σ,∆

bu
S ,FS) and AB = (QB,Σ,∆

bu
B ,FB)

Output: true if L(AS)⊆ L(AB), false otherwise
1 notProcessed := /0;
2 antichain := /0;
3 Apply2(∆

bu
S (()),∆bu

B (()),(collectProducts antichain notProcessed)) ;
4 while ∃(q,D) ∈ notProcessed do
5 notProcessed := notProcessed \{(q,D)};
6 if q ∈ FS ∧D∩FB = /0 then return false;
7 ;
8 foreach (q1, . . . ,qn) ∈ Q#

S such that
∃1≤ i≤ n : qi = q∧∀1≤ j ≤ n : ∃R j ⊆ QB : (q j,R j) ∈ antichain do

9 tmp := 〈λ a . /0〉;
10 foreach (s1, . . . ,sn) ∈ Qn

B such that si ∈ D∧∀1≤ j ≤ n : s j ∈ R j do
11 tmp := Apply2(tmp,∆B((s1, . . . ,sn)),(λ X Y . X ∪Y));
12 Apply2(∆S((q1, . . . ,qn)), tmp,(collectProducts antichain notProcessed)) ;
13 return true;

Function collectProducts(&antichain, ¬Processed, upS, upB)
1 foreach q ∈ upS do
2 if @(q,E) ∈ antichain such that E ⊆ upB then
3 antichain := (antichain\{(q,F) | upB ⊂ F})∪{(q,upB)};
4 notProcessed := (notProcessed \{(q,F) | upB ⊂ F})∪{(q,upB)};

Table 4. Percentages of cases in which the respective methods were the fastest

UpSym DownSym DownSym+s Avg up Avg down
speedup speedup

6.67 % 90.67 % 2.67 % 24.39 4389.76

Table 5. Successful runs that did not timeout (in %)

UpSym DownSym DownSym+s
77.32 % 77.32 % 26.08 %

25

A Proof of Theorem 1

Theorem 1. Let AS = (QS,Σ,∆S,FS) and AB = (QB,Σ,∆B,FB) be tree automata. For
sets PS ⊆ QS and PB ⊆ QB it holds that L(PS)⊆ L(PB) if and only if ∀pS ∈ PS ∀a ∈ Σ :
if pS

a−→ (r1, . . . ,r#a),

then

downa(PB) = {()} if #a = 0,

∀ f ∈ cf (PB,a) ∃1≤ i≤ #a : L(ri)⊆
⋃

u∈downa(PB)
f (u)=i

L(ui) if #a > 0.

Proof. For two sets PS ⊆ QS,PB ⊆ QB, it clearly holds that L(PS)⊆ L(PB) if and only
if ∀pS ∈ PS ∀a ∈ Σ :

pS
a−→ (r1, . . . ,rn) =⇒ L((r1, . . . ,rn))⊆

⋃
(u1,...,un)∈downa(PB)

L((u1, . . . ,un)) (15)

For the case when #a = 0, the above formula collapses to pS
a−→ () =⇒ L() ⊆

∪()∈downa(PB)L(()). Since downa(PB) ⊆ {()} for #a = 0, the first part of the theorem
is proven. We prove the second part (when #a > 0) in the following steps. Let us fix
n = #a, u = (u1, . . . ,un), r = (r1, . . . ,rn):

L((r1, . . . ,rn))⊆
⋃

u∈downa(PB)

L((u1, . . . ,un)) ⇐⇒

n

∏
i=1

L(ri)⊆
⋃

u∈downa(PB)

n

∏
i=1

L(ui),
(16)

where ∏
n
i=1 Si denotes the Cartesian product of a family of sets {S1, . . . ,Sn}. We can

further observe that for a set U and a family of sets {S1, . . . ,Sn} : ∀1≤ i≤ n : Si ⊆U it
holds that

n

∏
i=1

Si =
n⋂

i=1

Ui−1×Si×Un−i. (17)

Given the family of sets {L(u1), . . . ,L(un)} and the decomposition from Equation 17
we can modify the formula from Equation 16 in the following way:

n

∏
i=1

L(ri)⊆
⋃

u∈downa(PB)

n

∏
i=1

L(ui) ⇐⇒

n

∏
i=1

L(ri)⊆
⋃

u∈downa(PB)

n⋂
i=1

T i−1
Σ
×L(ui)×T n−i

Σ
.

(18)

Since the power set lattice (2QB ,⊆) is a completely distributive lattice, we can exploit
the fact that for any doubly indexed family {x j,k ∈ 2QB | j ∈ J,k ∈ K j} it holds that⋃

j∈J

⋂
k∈K j

x j,k =
⋂
f∈F

⋃
j∈J

x j, f (j) (19)

26

where F is the set of choice functions f choosing for each index j ∈ J some index
f (j) ∈ K j. For our purpose, we introduce the set of choice functions:

F = { f : downa(PB)→{1, . . . ,n}}. (20)

Therefore,
n

∏
i=1

L(ri)⊆
⋃

u∈downa(PB)

n⋂
i=1

T i−1
Σ
×L(ui)×T n−i

Σ
⇐⇒

n

∏
i=1

L(ri)⊆
⋂
f∈F

⋃
u∈downa(PB)

T f (u)−1
Σ

×L(u f (u))×T n− f (u)
Σ

.

(21)

Due to the fact that for a set S, its subset T ⊆ S and a family of its subsets R ⊆ 2S it
holds that

T ⊆
⋂

U∈R

U ⇐⇒ ∀U ∈ R : T ⊆U, (22)

we can simplify our case in the following way:
n

∏
i=1

L(ri)⊆
⋂
f∈F

⋃
u∈downa(PB)

T f (u)−1
Σ

×L(u f (u))×T n− f (u)
Σ

⇐⇒

∀ f ∈ F :
n

∏
i=1

L(ri)⊆
⋃

u∈downa(PB)

T f (u)−1
Σ

×L(u f (u))×T n− f (u)
Σ

(23)

For some fixed f , we can further rewrite the right-hand side of the inclusion query to
the following: ⋃

u∈downa(PB)

T f (u)−1
Σ

×L(u f (u))×T n− f (u)
Σ

=

n⋃
i=1

⋃
u∈downa(PB)

f (u)=i

T i−1
Σ
×L(ui)×T n−i

Σ
=

n⋃
i=1

T i−1
Σ
×

 ⋃
u∈downa(PB)

f (u)=i

L(ui)

×T n−i
Σ

(24)

It can be observed that for a set U and two families of sets {S1, . . . ,Sn} and {S′1, . . . ,S′n}
such that ∀1≤ i≤ n : Si,S′i ⊆U it holds that

n

∏
i=1

Si ⊆
n⋃

i=1

Ui−1×S′i×Un−i ⇐⇒ ∃1≤ i≤ n : Si ⊆ S′i. (25)

We can now finally deduce that

∀ f ∈ F :
n

∏
i=1

L(ri)⊆
n⋃

i=1

T i−1
Σ
×

 ⋃
u∈downa(PB)

f (u)=i

L(ui)

×T n−i
Σ

 ⇐⇒
∀ f ∈ F ∃1≤ i≤ n : L(ri)⊆

⋃
u∈downa(PB)

f (u)=i

L(ui),

(26)

which concludes the proof. ut

27

