
Coverage Metrics for Saturation-based and
Search-based Testing of Concurrent Software

Bohuslav Křena, Zdeněk Letko, and Tomáš Vojnar

FIT, Brno University of Technology, Czech Republic
{krena, iletko, vojnar}@fit.vutbr.cz

Abstract. Coverage metrics play a crucial role in testing. They allow one to es-
timate how well a program has been tested and/or to control the testing process.
Several concurrency-related coverage metrics have been proposed, but most of
them do not reflect concurrent behaviour accurately enough. In this paper, we
propose several new metrics that are suitable primarily for saturation-based or
search-based testing of concurrent software. Their distinguishing feature is that
they are derived from various dynamic analyses designed for detecting synchro-
nisation errors in concurrent software. In fact, the way these metrics are obtained
is generic, and further metrics can be obtained in a similar way from other analy-
ses. The underlying motivation is that, within such analyses, behavioural aspects
crucial for occurrence of various bugs are identified, and hence it makes sense to
track how well the occurrence of such phenomena is covered by testing. Next,
coverage tasks of the proposed as well as some existing metrics are combined
with an abstract identification of the threads participating in generation of the
phenomena captured in the concerned tasks. This way, further, more precise met-
rics are obtained. Finally, an empirical evaluation of the proposed metrics, which
confirms that several of them are indeed more suitable for saturation-based and
search-based testing than the previously known metrics, is presented.

1 Introduction

Despite the constant development of various approaches to verification and bug finding
based on formal roots, software testing still belongs among the most common ways
of discovering errors in programs. However, it has to face new challenges related to
the changes in programming paradigms commonly used in practice. In particular, in
the past years, concurrent programming has become much more common than before.
Testing concurrent software is much more difficult due to the non-determinism present
in scheduling executions of concurrent threads. Various ways how to improve testing of
concurrent software have been proposed, including, e.g., the use of noise injection or
various dynamic analyses.

In testing, a crucial role is played by the so-called coverage metrics. A coverage
metric is based on a coverage domain that is a set of coverage tasks representing dif-
ferent phenomena (such as reachability of a certain line, reachability of a situation in
which a certain variable has a certain value, etc.) whose occurrence in the behaviour
of a tested program is considered to be of interest. One can then measure how many
of the phenomena corresponding to the coverage tasks have been seen in the witnessed
behaviours of the tested program. Such a measurement can be used to asses how well
the program has been tested. Moreover, in the so-called saturation-based testing [16],
one looks for the moment when the obtained coverage stops growing, and hence the

testing can be stopped. Further, in search-based testing [12], a fitness function driving
an optimisation algorithm used to control the testing process can be based on the values
of a coverage metric.

For metrics used in saturation-based or search-based testing, one can identify sev-
eral specific properties that they should exhibit. First, within the testing process, the ob-
tained coverage should as often as possible grow for a while and then stabilise. Hence,
it should not immediately jump to some value and stabilise on it. On the other hand, it
should not take too much time for the coverage to stabilise. Also, to enable a reliable de-
tection of stabilisation, the coverage should grow as smoothly as possible, i.e., without
growing through a series of distinctive shoulders. Next, in case of testing an erroneous
program, the stabilisation should ideally not happen before an error is detected. Finally,
the increase in coverage should be linked with witnessing more and more behaviours
that differ in their potential of exhibiting a bug.

In this paper, we propose several new coverage metrics suitable for saturation-
based or search-based testing of concurrent programs. These metrics are based on cov-
erage tasks derived from the information about program behaviour that is gathered
or computed by various dynamic analyses that have been proposed for discovering
synchronisation-related errors in concurrent programs. In fact, the idea of inferring
new metrics from these analyses is rather generic and can be applied to other dynamic
as well as static analyses (even those that will appear in the future) too. The proposal is
motivated by the idea that within the development of such analyses, behavioural aspects
of concurrent programs that are highly relevant for the existence of synchronisation-
related errors have been identified. Hence, it makes sense to measure how well the
aspects of the behaviour tracked by such analyses have been covered during testing.

Further, we also combine coverage tasks of the newly proposed as well as some
existing metrics with abstract identifiers of the threads involved in generating the phe-
nomena reflected in the concerned tasks. The identifiers abstract away the concrete nu-
merical identifiers of the threads, but preserve information on their type, the history of
their creation, etc. This way, an increased number of coverage tasks is obtained, forming
a new, more precise variant of the original metric.

We have performed an empirical comparison of the use of the newly proposed met-
rics against three common concurrency-related metrics. We show that several of the
newly proposed metrics indeed meet the criteria of suitability for saturation-based and
search-based testing in a significantly better way than the previously known metrics.

Plan of the paper. In Section 2, we discuss the related work. Section 3 details the pro-
posed way of deriving new coverage metrics and presents several concrete new metrics.
For comparison purposes, the section then also presents in a uniform way several ex-
isting metrics (one of these metrics is slightly extended too). Section 4 describes our
experimental setting and the techniques we use for an abstract identification of objects
and threads. Section 5 provides our experimental results. Finally, Section 6 concludes
the paper and provides some notes on the possible future work.

2 Related Work

As said already in the previous section, testing is one of the most common approaches
used for discovering concurrency bugs. The testing process is typically empowered in

2

some way to cope with the fact that concurrency bugs often appear only under very
special scheduling circumstances. To increase chances of spotting a concurrency bug,
various ways of influencing the scheduling are often used. An example of this approach
is random or heuristic noise injection used in the IBM Concurrency Testing Tool (Con-
Test) [4] or a systematic exploration of all schedules up to some number of context
switches as used in the Microsoft CHESS tool [13].

Another way to improve traditional concurrency testing is to try to extrapolate the
behaviour seen within a testing run and to warn about a possible error even if such an
error was not in fact seen in the test execution. Such approaches are called dynamic
analyses. Many dynamic analyses have been proposed for detecting special classes of
bugs, such as data races [2, 5, 14, 15], atomicity violations [10], or deadlocks [1, 7].
These techniques may find more bugs than classical testing, but on the other hand, their
computational complexity is usually higher, and they can also produce false alarms.

An alternative to testing and dynamic analyses is the use of static analyses. They
avoid execution of the given program or execute it on a highly abstract level only.
Various static analyses of concurrent software exist, including light-weight analyses
that look for specific patterns in the code that might lead to a bug [6] or, e.g., various
dataflow-based analyses that try to identify bugs like data races [8] or deadlocks [20].
Model checking [3] (sometimes viewed as a heavy-weight static analysis too) tries to
systematically analyse all possible interleavings of threads in a given program (the
CHESS approach can, in fact, be seen as a form of bounded model checking). Light-
weight static analyses may produce many false alarms and heavy-weight approaches
may have troubles with scalability. There also exist approaches that combine static and
dynamic analyses in an attempt to suppress their deficiencies.

We build our new coverage metrics on the information that is gathered or com-
puted by several different dynamic analyses mentioned above, namely, Eraser [15],
GoldiLocks [5], AVIO [10], and GoodLock [1]. In our experiments with these metrics,
we use ConTest and its noise injection mechanisms to generate different legal interleav-
ing scenarios in repeated executions of the considered test cases. Although not explored
in this paper, new coverage metrics could be derived from various static analyses too.

Many different coverage metrics have been proposed targeting probably all areas of
testing in the past decades. Testing of concurrent software is not an exception. Out of
the existing concurrency-related metrics, among the ones that we find as the probably
most promising from the point of view of their practical applicability there is the metric
based on du-pairs proposed in [21], the metric based on concurrent pairs of events from
[2], and the synchronisation coverage [18]. We discuss these metrics in more detail in
Section 3.3, and we experimentally compare our metrics with them in Section 5.

The idea of extending coverage tasks of metrics by further information has also been
presented in [16] where saturation-based testing of concurrent programs is introduced.
The authors propose three types of context information which can be used to refine
existing metrics. The pair context handles situations where two events in the concurrent
programs interact and makes this information explicit for the metric. The group context
makes explicit the type of thread that performed an event (this is a special case of our
abstract thread identifiers). Finally, the thread context explicitly identifies the thread
which performed the event.

3

3 Concurrency Coverage Metrics
Our goal is to create metrics that are suitable for saturation-based and search-based
testing of concurrent software. As we have already said in the introduction, metrics to
be used in this context should have some special properties. In particular, during testing,
the coverage should as often as possible first increase for some reasonable amount of
time and then stabilise. The stabilisation should not happen too early nor too late. This
typically implies that the number of coverage tasks should not be too small nor too
large. The growth should not generate distinctive shoulders so that saturation can be
reasonably detected. In case of testing an erroneous program, the stabilisation should as
often as possible happen after the error is detected. Finally, a growth of coverage should
be in some relation to witnessing more and more behaviours distinct from the point of
view of their potential for generating some concurrency error. In addition, one should
also consider a generic requirement for the metrics not to be too costly to use

We now first discuss a methodology how metrics satisfying the above can be ob-
tained, and then propose several new concrete metrics. Finally, for comparison pur-
poses, we describe (and in one case also extend) some existing metrics too.

3.1 Methodology of Deriving Suitable Coverage Metrics
To derive metrics satisfying the criteria set up above, we propose to get inspired by vari-
ous existing dynamic (and possibly even static) concurrency error detection techniques.
This is motivated by two observations: (1) These detection techniques focus on those
events occurring in runs of the analysed programs that appear relevant for detection of
various concurrency-related errors. (2) The techniques build and maintain a represen-
tation of the context of such events that is important for detection of possible bugs in
the program. Hence, trying to measure how many of such events have been seen, and
possibly in how many different contexts, seems promising from the point of view of
relating the growth of a metric to an increasing likelihood of spotting an error.

The described idea is very generic, and we can speak about a new class of concur-
rency coverage metrics that can be obtained in the described manner. A crucial step in
the creation of a new coverage metric based on some error detection algorithm is to
choose suitable pieces of information available to or computed by the detection algo-
rithm, which are then used to construct the domain of the new coverage metric such that
the other, above mentioned criteria are met. This leads to a trade off among the preci-
sion of the metric and the amount of information tracked, the associated computational
complexity, and speed of saturation. One extreme is to build a coverage metric directly
on warnings about concurrency errors issued by the detection algorithm. In this case, we
need to implement the detection algorithm entirely. Another extreme is to build a cov-
erage metric counting just the events tracked by the detection algorithm, without their
context. In such a case, we often obtain very similar metrics to already existing metrics.
Within this process—which can hardly be made algorithmic and which requires cer-
tain ingenuity and also experimental evidence, it can also of course turn out that some
detection algorithms are not suitable as a basis of a coverage metric at all.

Let us demonstrate the described problem on an example of two dynamic data race
detection algorithms. The vector-clock-based algorithms, e.g., [14], maintain for each
thread an internal clock which is an integer value representing the number of synchro-
nisation events that the thread executed so far. The algorithm then also maintains for

4

each thread, each lock, and each variable vectors of clocks representing synchronisa-
tion bindings among events performed on these program elements. The goal is to obtain
the so-called happens-before relation that says which events are guaranteed to happen
before other events, meaning that such events cannot participate on a data race (where
the order of the events must not be fixed). Nevertheless, vectors of clocks are not suit-
able for our purposes because they encode the history context using a too large number
of values. This would lead to a huge number of coverage tasks, a slow progress towards
saturation, and also a high cost of measuring the obtained coverage.

On the other hand, the Eraser algorithm [15] computes the so-called locksets. For
each thread, the algorithm computes a set of locks currently held by the thread, and
for each variable access, the algorithm uses these sets to derive the set of locks that
were held by each thread that had so far accessed the variable. These so-called locksets
are maintained according to a state assigned to each variable which represents how
the variable has been operated so far (e.g., exclusively within one thread, shared among
threads, for reading only, etc.). This algorithm is more suitable for our purposes because
the history context used by it gives rise to a reasonable number of coverage tasks (as we
show below).

Finally, we note that, according to our experimental evidence mentioned later on, the
precision of the constructed metrics can further be suitably adjusted by combining their
coverage tasks with some abstract identification of the threads involved in generating
the phenomena reflected in the concerned tasks. The identification should of course not
be based on the unique thread identifiers, but it can preserve information on their type,
the history of their creation, etc. A similar identification can then also be used whenever
the coverage tasks contain some dynamically instantiated objects (e.g., locks).

3.2 New Coverage Metrics
Table 1. The considered coverage metrics

metric coverage task note
Avio (pl1, pl2, pl3) N
Avio∗ (pl1, pl2, pl3, var, t1, t2) N
Eraser (pl1, state, lockset) N
Eraser∗ (pl1, var, state, lockset, t1) N
GoldiLock (pl1, goldiLockSetSC) N
GoldiLock∗ (pl1, var, goldiLockSetSC, t1) N
GoodLock (pl1, pl2, l1, l2) N
GoodLock∗ (pl1, pl2, l1, l2, t1) N
HBPair (pl1, pl2, syncObj) N
HBPair∗ (pl1, pl2, syncObj, t1, t2) N
ConcurPairs (pl1, pl2, switch) E
DUPairs (pl1, pl2, var) E
DUPairs∗ (pl1, pl2, var, t1, t2) M
Sync (pl1,mode) E

We are now going to derive sev-
eral new concrete coverage metrics.
As we have already said, they are
all based on some dynamic analyses
used for detecting errors in synchro-
nisation of concurrent programs. In
order to allow for a quick com-
parison among the metrics, Table 1
presents an overview of all the pro-
posed metrics, together with some
other metrics that we will consider
in our experiments. For each met-
ric, the second column shows a tuple
defining coverage tasks of the met-
ric, and the third column contains in-
formation whether the metric is new
(N), already existing (E), or whether it is our modification of some already known met-
ric (M). The first item of each of the tuples representing a coverage task (denoted as
pl1) gives a primary program location which generates the given task when reached by
some thread. The rest of the tuples can then be viewed as a context under which the
location is reached. For most of the metrics, we provide two versions: a basic version

5

and a version with an extended context, denoted by ∗. In the following paragraphs, the
versions with the extended context are described only. The basic versions can easily be
derived from them by dropping some elements of the context.

In order to make the description more concrete, in the rest of the paper, we assume
the Java memory model [11]. In the text below, we use the following notation. V is a set
of identifiers of instances of non-volatile variables (i.e., non-volatile fields of objects)
that may be used in the tested program at hand, O is a set of identifiers of instances
of volatile variables used in the program, L is a set of identifiers of locks used in the
program, T is a set of identifiers of all threads that may be created by the program, and
P is a set of all program locations in the program. We discuss one possible concrete
way how the needed identifiers may be obtained in Section 4.1.

A coverage metric based on Eraser. The coverage metric Eraser∗ is based on the Eraser
algorithm [15] whose basics have been sketched above. Its coverage tasks have the form
of a tuple (pl1, var, state, lockset, t1) where pl1 ∈ P identifies the program location
of an instruction accessing a shared variable var ∈ V , state ∈ {virgin, exclusive,
exclusive′, shared,modified, race} gives the state in which the Eraser’s finite con-
trol automaton is when the given location is reached (we consider the extended version
of Eraser using the exclusive′ state as introduced in [19], which is more suitable for
the Java memory model), and lockset ⊆ L denotes a set of locks currently guarding
the variable var. Finally, t1 ∈ T represents the thread performing the access operation.

A coverage metric based on GoldiLocks. GoldiLocks [5] is one of the most advanced
lockset-based algorithms. The main idea of this algorithm is that it combines the use
of locksets with computing the happens-before relation. In GoldiLocks, locksets are al-
lowed to contain not only locks but also volatile variables and threads. If a thread t ap-
pears in the lockset of a shared variable when the variable is accessed, it means that t is
properly synchronised for using the given variable because all other accesses that might
cause a data race are guaranteed to happen before the current access. The algorithm uses
a limited number of elements placed in the lockset to represent an important part of the
synchronisation history preceding an access to a shared variable. This is in contrast with
the vector-clocks-based algorithms mentioned above. The basic GoldiLocks algorithm
is still relatively expensive but can be optimised by the so-called short circuit checks
(SC) which are three cheap checks that are sufficient for deciding race freedom be-
tween the two last accesses to a variable. The original algorithm is then used only when
SC cannot prove race freedom. Our GoldiLock-based metric GoldiLock∗ is based on
coverage tasks having the form of tuples (pl1, var, goldiLockSet, t1) where pl1 ∈ P
gives the location of an instruction accessing a variable var ∈ V within a thread t1 ∈ T ,
and goldiLockSet ⊆ O ∪ L ∪ T represents the lockset computed by GoldiLocks.

A coverage metric based on Avio. The Avio algorithm that detects atomicity violation
over one variable is presented in [10]. We choose this algorithm because it does not
require any additional information from the user about instructions that should be exe-
cuted atomically. The algorithm considers any two consecutive accesses a1 and a2 from
one thread to a shared variable var to form an atomic block B. Serialisability is then
defined based on an analysis of what can happen when B is interleaved with some read
or write access a3 from another thread to the variable var. Out of the eight total cases
arising in this way, four (namely, r/w/r, w/w/r, w/r/w, r/w/w) are considered to lead to

6

an unserialisable execution. Tracking of all accesses that occur concurrently to a block
B can be very expensive. Therefore, we define our criterion to consider only the last
interleaving access to the concerned variable from a different thread. Our Avio∗ met-
ric uses coverage tasks in the form of tuples (pl1, pl2, pl3, var, t1, t2) where var ∈ V ,
pl1, pl2, pl3 ∈ P , and t1, t2 ∈ T . The considered atomic block B spans between pl1
and pl2, and it is executed by a thread t1. Finally, pl3 gives a location of an instruction
executed in a thread t2 that interferes with the block B.

A coverage metric based on GoodLock. GoodLock is a popular deadlock detection
algorithm that exists in several modifications—we, in particular, build on its modifi-
cation published in [1]. The algorithm builds the so-called guarded lock graph which
is a labelled oriented graph where nodes represent locks, and edges represent nested
locking within which a thread that already has some lock asks for another one. Labels
over edges provide additional information about the thread that creates the edge. The
algorithm searches for cycles in the graph wrt. the edge labels in order to detect dead-
locks. Our metric focuses on occurrence of nested locking that is considered interesting
by GoodLock. We omit collection of the locksets of the threads which the original al-
gorithm uses as one element of the edge label because this information is used in the
algorithm to suppress certain false alarms only. Our GoodLock∗ metric is therefore
based on coverage tasks in the form of tuples (pl1, pl2, l1, l2, t1) where pl1, pl2 ∈ P ,
l1, l2 ∈ L, and t1 ∈ T . Such a task is covered when the thread t1 has obtained the lock
l1 at pl1, and now the same thread is obtaining the lock l2 at pl2.

A coverage metric based on happens-before pairs. This coverage metric is motivated
by observations we get from the GoldiLocks algorithm and the vector-clock algorithms,
both of them depending on computation of the happens-before relation. In order to get
rid of the possibly huge number of coverage tasks produced by the vector-clock al-
gorithms and trying to decrease the computational complexity needed when the full
GoldiLocks algorithm is used, we focus on pieces of information the algorithms use
for creating their representations of the analysed program behaviours (without actually
computing and using these representations). All of these algorithms rely on synchro-
nisation events observed along the execution path. Inspired by this, we propose the
HBPair∗ metric that tracks successful synchronisation events based on locks, volatile
variables, wait-notify operations, and thread start and join operations used in Java.
A coverage task is defined as a tuple (pl1, pl2, syncObj, t1, t2) where pl1 ∈ P is a pro-
gram location in a thread t1 ∈ T that was synchronised with the location pl2 ∈ P of
the thread t2 ∈ T using the synchronisation objects syncObj ∈ L∪O ∪ {⊥}. Here, ⊥
represents a thread start or a successful join synchronisation where no synchronisation
object is needed.

3.3 Existing Metrics

In order to compare our metrics with already existing metrics, we further consider—and
in one case also extend—the following metrics.

Coverage based on concurrently executing instructions (ConcurPairs). The coverage
of concurrent pairs of events proposed in [2] is a metric in which each coverage task is
composed of a pair of program locations that are assumed to be encountered consecu-
tively in a run and a third item that is true or false. It is false iff the two locations are

7

visited by the same thread and true otherwise—that is, true means that there occurred a
context switch between the two program locations. This metric provides statement cov-
erage information (using the false flag) and interleaving information (using the true
flag) at once. In our notation, each task of the metric is a tuple (pl1, pl2, switch) where
pl1, pl2 ∈ P represent the consecutive program locations (only concurrency primitives
and variable accesses are monitored), and switch ∈ {true, false} denotes whether the
context switch occurs in between of them. Since this metric produces a large number
of coverage tasks even for small programs, we decided not to enrich it with any further
context information.

Definition-use coverage. This coverage metric is based on the all-du-path coverage
metric for parallel programs described in [21]. This metric considers coverage tasks in
the form of triples (var, d, u) where var is a shared variable, d is a node in the parallel
program flow graph (PPFG) where the value of var is defined, and u is a node in the
PPFG where the value is read. The du-pair therefore denotes an existing path in the
PPFG from a node d to a node u where the value of var from d is still available, i.e.,
there is no node redefining the value of var on the path between d and u. We consider
the original all-du-pair coverage metric (denoted as DUPairs), and we also extend it
to a metric which adds more context information to the coverage tasks. Our metric
DUPairs∗ is based on coverage tasks in the form of tuples (pl1, pl2, var, t1, t2) where
pl1, pl2 ∈ P represent program locations where the value of the variable var ∈ V is
defined and used, respectively, t1 ∈ T denotes the thread that performed the definition
of var at pl1, and t2 ∈ T denotes the thread that subsequently uses the value at pl2.

Synchronisation coverage (Sync). The synchronisation coverage [18] focuses on the
use of synchronisation primitives and does not directly consider thread interleavings.
Coverage tasks of the metric are defined based on various distinctive situations that can
occur when using each specific type of synchronisation primitives. For instance, in the
case of a synchronised block (defined using the Java keyword synchronised), the
obtained tasks are: synchronisation visited, synchronisation blocking, and synchronisa-
tion blocked. The synchronisation visited task is basically just a code coverage task.
The other two are reported when there is an actual contention between synchronised
blocks—when a thread t1 reaches a synchronised block A and stops because another
thread t2 is inside a block B synchronised on the same lock. In this case, A is reported
as blocked, and B as blocking (both, in addition, as visited). In our notation, the metric
is defined using tuples of the form (pl1,mode) where pl1 ∈ P represents the program
location of a synchronisation primitive, and mode represents an element from the set of
the distinctive situations relevant for the given type of synchronisation.

4 The Infrastructure Used for Experiments

Our architecture for collecting concurrency related coverage is built upon the IBM Java
Concurrency Testing Tool (ConTest) [4]—an advanced tool for testing, debugging, and
measuring test coverage for concurrent Java programs. The tool provides a facility for
bytecode instrumentation and a listeners infrastructure allowing one to create plug-ins
for collecting various pieces of information about the multi-threaded Java programs
being executed as well as to easily implement various algorithms for dynamic analyses.
The tool is itself able to collect structural coverage metrics (basic blocks, methods) and

8

some concurrency-related metrics (ConcurPairs, Sync) too. ConTest further provides a
noise injection facility which injects the so-called noise into the execution of a tested
application and so allows us to observe different legal interleavings if the test is executed
repeatedly. We use our platform called SearchBestie [9] to set up and execute tests with
ConTest, and to collect, maintain, and export results produced by ConTest and its plug-
ins from multiple executions of a test.

4.1 Abstract Object and Thread Identification

Our coverage metrics introduced in Section 3 are based on tasks that include identifi-
cation of threads and instances of variables and locks. The Java virtual machine (JVM)
generates identifiers of objects and threads dynamically. Such identifiers are, however,
not suitable for our purposes: (1) In long runs, too many of them may be generated.
(2) We would like to be able to match semantically equivalent tasks generated in dif-
ferent runs (may be not precisely, but at least with a reasonable precision), and the
identifiers generated by JVM for the same threads (from the semantical point of view)
in different runs will quite likely be different.

Previous works, such as [16], used Java types to identify threads. We consider this
type-based identification of elements as too rough. Our goal is to create identifiers
which distinguish behaviour of objects and threads within the program more accurately,
but still keeping a reasonable level of abstraction so the set of such abstract identifiers
remains of a moderate size.

Our abstract object identification (used to identify locks as well as instances of
variables1) is based on the observation that, usually, objects created in the same place
in the program are used in a similar way. For instance, there are usually many instances
of the class String in an average Java program, but all strings that are created within
invocations of the same method will probably be manipulated similarly. Therefore, we
define an object identifier as a tuple (type, loc) where type refers to the type of the
object, and loc refers to the top of the stack (excluding calls to constructors) when the
object is created. The record at top of the stack contains a method, source file, and line
of code.

Our abstract thread identification is based on an observation that the type and place
of creation are not sufficient to build a thread identifier. Several threads created at the
same program location (e.g., in a loop) can subsequently process different data and
therefore behave differently. We need more information concerning the thread execu-
tion trace to better capture the behaviour of threads. Therefore, we use as the identifier a
tuple (type, hash) where type denotes the type of the object implementing the thread,
and hash contains a hash value computed over a sequence of n first method identi-
fiers that the thread executed after its creation (if the thread terminates sooner, then all
methods it executed are taken into account). The value of n influences precision of the
abstraction. Of course, when a pool of threads (a set of threads started once and used for
several tasks) is used, the computation of the hash value must be restarted immediately
after picking the thread up from the pool.

1 Instances of variables are identified by an object identifier and the appropriate field of the
object.

9

5 Experiments

We have evaluated our metrics on four small test cases (Dining philosophers, Airlines,
Crawler, and FtpServer) and one big test case (TIDOrbj).

The Dining philosophers test case is an implementation of the well-known syn-
chronisation problem of dining philosophers. Our implementation is taken from the
distribution of the Java PathFinder model checker. The program generates a set of 6
philosophers (each represented by a thread) and the same number of shared objects
representing forks. A deadlock can occur when executing the test case.

The Airlines test case is a simple artificial program simulating an air ticket reser-
vation system. It generates a database of air tickets and then allows 2 resellers (each
represented by a separate thread) to sell tickets to 4 sets of 10 customers (each set is
represented by a separate thread). Finally, a check whether the number of customers
with tickets is equal to the number of sold tickets is done. The program contains a high-
level atomicity violation whose occurrence makes the final check fail.

The three other considered programs are real-life case studies. WebCrawler is a part
of an older version of a major IBM production software. It demonstrates a tricky con-
currency bug detected in this software. The crawler creates a set of threads waiting for
a connection. If a connection simulated by a testing environment is established, a worker
thread serves it. There is a bug in a method that is called when the crawler shuts down.
The bug causes an exception sometimes leading to a deadlock. The trickiness of the bug
can be seen from its very low error probability shown in Table 2.

Our second real-life case study is an early development version of an open-source
FTPServer produced by Apache. This case study has 120 classes. The server creates
a new worker thread for each new incoming connection to serve it. The version of the
server we used contains several data races that can cause exceptions during the shut
down process when there is still an active connection. The probability of spotting an
error when noise injection is enabled is quite high in this example because there are
multiple places in the test where an exception can be generated.

Our biggest test case is TIDorbJ—a CORBA-compliant ORB (Object Request Bro-
ker) product that is a part of the MORFEO Community Middleware Platform [17]. The
instrumented part of the middleware has 1399 classes. We have used the Echo con-
current test which checks how the infrastructure handles multiple concurrent simple
requests. The test starts an instrumented server and then 10 clients, each sending 5
requests to the server. There was originally no error in this test, and therefore we intro-
duced one by commenting one synchronised statement in the part of code that is
executed by the test. This way we introduced a high-level atomicity violation that leads
to a null pointer exception.

We used our infrastructure introduced in Section 4 to collect relevant data from
10,000 executions of the small test cases and 4,000 executions of TIDOrbj. In order
to see as many different legal interleaving scenarios as possible, we set up ConTest
to randomly inject noise into the executions. We have implemented ConTest plug-ins
to collect coverage information and set up SearchBestie to detect occurrences of er-
rors (deadlocks were detected using a timeout, other errors by detection of unhandled
exceptions). All further studies of the metrics were done using the collection of execu-
tions obtained this way. For instance, we often needed to evaluate the behaviour of the
metrics on series of executions. To generate the needed series of executions, we used

10

Table 2. Test cases and abstract identifiers
Error ObjectAbstraction ThreadAbstraction

Classes Ratio Real Type Abs Real Type Abs10 Abs20
Dining phil. 2 0.4151 130 3 3 7 2 2 2
Airlines 8 0.0333 15210 6 6 60 3 3 4
Crawler 19 0.0006 1828 13 14 180 4 9 12
FtpServer 120 0.4032 26110 27 29 1641 5 5 6
TIDOrbJ echo 1399 0.017 180320 98 129 79 5 9 11

SearchBestie to randomly select a needed number of executions out of the recorded
collection and to compute accumulated values of the chosen metrics on such series. All
tests were executed on a computer with an Intel 6600 processor and 2 GB of memory,
running Sun Java version 1.6 under GNU Linux.

Table 2 gives some statistics about our test cases. The second column of the table
shows the number of instrumented classes for each test case. The following column
shows the probability of spotting an error during a test execution when random noise
injection is used (computed as the number of executions where an error occurs divided
by the total number of executions). The rest of the columns provide information about
the size of the case studies in terms of the numbers of threads and objects created in
them. These columns also illustrate how our abstract identifiers of objects and threads
work. The Real column contains the total number of distinct objects (or threads) we
encountered in 10 performed executions of the tests. The Type column shows the total
number of distinct object (or thread) types we have spot, and the Abs columns show the
total number of distinct abstract objects (or threads) we distinguish using our abstract
identifiers introduced in Section 4.1. For the thread abstraction, two values are given
showing the influence of the length n of the considered sequence of methods called by
the threads.

5.1 Results of Experiments

A typical behaviour of the considered coverage metrics can be seen in Figure 5.1. All
four sub-figures show the cumulative number of coverage tasks of the metrics covered
during one randomly chosen series of the Crawler test case executions (with the thread
abstraction variable n set to 20).

Figure 1(a) shows the behaviour of the metrics that, according to our opinion, do
not capture the concurrent behaviour accurately enough. One coverage metric for non-
concurrent code measuring the number of basic blocks covered during tests is added to
demonstrate the difference between classical and concurrency-related coverage metrics.
The coverage obtained under the metric based on basic blocks is nearly constant all the
time because we are repeatedly executing the same code with the same inputs. For the
rest of the metrics shown in Figure 1(a), the cumulative number of tasks covered during
test executions increases only within approximately the 200 first executions, and then
a saturation is reached. The only metrics which slightly differ from the others in this
group are Eraser and DUPairs. The Eraser metric has a similar behaviour to the Avio
metric (and the metrics close to it) but approximately four times higher numbers of
covered tasks. This is caused by the fact that the tracked shared variables usually get to

11

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Avio
DUPairs

Eraser

GoodLock
HBPair

Sync

BasicBlock

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 20 40 60 80 100 120 140 160 180 200

Avio
DUPairs

GoodLock
HBPair

Sync

(b)

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Avio*
DUPairs*

Eraser*
GoldiLock

GoodLock*
HBPair*

(c)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2000 4000 6000 8000 10000

ConcurPairs GoldiLock*

(d)

Fig. 1. Saturation of different metrics on the Crawler test case (the horizontal axis gives the num-
ber of executions, the vertical axis gives the cumulative number of covered tasks)

four Eraser states. The DUPairs metric has also higher numbers of covered tasks but it
is almost all the time stabilised.

The most interesting part of Figure 1(a) between 0 and 200 executions is zoomed
in Figure 1(b). One can see that the saturation effect occurs earlier (at about 100 execu-
tions) for the HBPair and Sync metrics which both focus on synchronisation events only.
The Avio metric (and also the Eraser metric which is not shown) that focus on accesses
to shared variables saturate a bit later. The depicted curves demonstrate one further dis-
advantage of the concerned metrics—a presence of distinctive shoulders. A repeated
execution of the test case does examine different concurrent behaviours (which is indi-
cated by the later discussed metrics) but the metrics concerned in the figure are not able
to distinguish differences in these behaviours, and therefore we can see clear shoulders
in the curves (i.e., sequences of constant values). The presence of such shoulders makes
automatic saturation detection harder.

Figure 1(c) demonstrates a positive effect of considering an extended context of
the tracked events as proposed in Section 3. The metrics concerned in this sub-figure
(i.e., Avio∗, Eraser∗, DUPairs∗, HBPair∗, GoodLock∗, and GoldiLock) are able to dis-
tinguish differences in the behaviour of the executed tests more accurately, leading to
shorter shoulders, bigger differences in the cumulated values, and a later occurrence
of the saturation effect—indicating that the concerned metrics behave in a way much
better for saturation-based testing. As can be seen from a similar jump in the obtained
coverage of the HBPair∗, Eraser∗, and Avio∗ metrics at around 1300 executions, the

12

extended context can sometimes have a dramatic influence. The jump is caused by the
abstract thread identifiers. At the given point, a thread with a new abstract identifier
appears, and all tasks involving this thread are different to those already known. This
leads to a much more significant increase in the cumulative coverage. On the other
hand, a special attention should be paid to the GoldiLock metric. This metric does not
suffer from shoulders nor sudden, dramatic increases of the obtained coverage, and it
reaches saturation near the saturation points of the other metrics. This is a very positive
behaviour, and the GoldiLock metric is clearly winning here.

Figure 1(d) shows problems of metrics that are too accurate, namely, ConcurPairs
and GoldiLock∗. These metrics work fine for small test cases but when used on a bigger
test case they tend to saturate late and produce enormous numbers of covered tasks.

Quantitative properties of the considered metrics in all our test cases can be seen in
Table 3. The table shows for each metric and each test case three values computed from
a set of 100 different random series consisting of 2,000 test executions. The columns
labelled as Total show the average total number of distinct tasks produced by the met-
ric. This number demonstrates a big disadvantage of the ConcurPairs coverage metric,
namely, its problem with scalability. The metric produced nearly 5 million of distinct
tasks for 2,000 executions of the TIDOrbJ test case which makes further analyses quite
time demanding.

The columns of Table 3 labelled as Average percentage represent the ratio between
the Total and average number of tasks covered within one execution. A high number in
this column means that most of the total number of covered tasks were covered within
one execution. The cumulative coverage under such metrics (for DUPairs, Eraser, and
Sync) usually stabilises early or grows very slowly. In both of these cases, the detec-
tion of saturation is problematic. Contrary, if the average percentage is too low (for
ConcurPairs and GoldiLock∗), the cumulative coverage grows for a very long time.

Finally, the columns of Table 3 labelled Smooth percentage give an insight in how
smooth the growth of the accumulated coverage is. The column contains the ratio be-
tween the average number of the distinct cumulative coverage values reached under a
metric when going through the considered executions and the number of test execu-
tions (2,000). High values (for ConcurPairs and GoldiLock∗) mean that the cumulated
coverage under the metric changed many times, and therefore there was contiguously
growing. Low values (for Avio, DUPairs, Eraser, GoodLock, and Sync) mean that the
cumulated coverage changed only a few times, and therefore there either occurred a fast
saturation or there appeared long shoulders. Both of these phenomena are problematic
for a good metric to be used in saturation-based testing.

The table also shows a disadvantage of the GoodLock∗ metric. The metric focuses
on nested locking as was described in Section 3.2. If such a phenomenon does not occur
in the tested program, the metric provides no information as can be seen in the Airlines
and FtpServer test cases. On the other hand, the metric can provide additional infor-
mation which cannot be directly inferred by other metrics in programs which contains
this phenomenon. In total, the evaluation in Table 3 gives similar champions for a good
metric to be used in saturation-based testing as what we saw in Figure 1(c). Namely,
this is the case of the Avio∗, Eraser∗, DUPairs∗, HBPair∗, and GoldiLock metrics.

13

Table 3. A quantitative comparison of the metrics

Dining phil. Airlines Crawler FtpServer TIDOrbJ echo

To
ta

l

A
ve

ra
ge

%

Sm
oo

th
%

To
ta

l

A
ve

ra
ge

%
Sm

oo
th

%

To
ta

l

A
ve

ra
ge

%
Sm

oo
th

%

To
ta

l

A
ve

ra
ge

%

Sm
oo

th
%

To
ta

l

A
ve

ra
ge

%

Sm
oo

th
%

Avio 6 47 0 17 60 1 40 22 1 529 45 10 822 50 8
Avio∗ 30 10 0 490 2 10 418 3 9 1023 33 16 3280 29 22
ConcurP. 4059 6 38 16730 6 85 20866 3 83 526280 6 100 4908100 2 100
DUPairs 18 76 0 43 97 0 105 81 1 330 92 2 1933 98 2
DUPair∗ 72 19 0 1401 3 9 921 11 8 646 82 3 3092 90 4
Eraser 29 76 0 73 96 0 217 64 2 684 88 4 2978 90 4
Eraser∗ 89 25 0 1429 5 8 861 19 5 1086 79 4 4886 83 6
GoldiLock 26 73 0 102 64 2 384 20 12 1091 61 9 6265 51 29
GoldiLock∗ 119 16 0 4217 1 20 3335 3 26 2210 47 12 10434 41 46
GoodLock 9 56 0 0 - 0 57 52 1 0 - 0 321 63 3
GoodLock∗ 22 23 0 0 - 0 258 17 4 0 - 0 915 34 6
HBPair 6 62 0 25 79 0 61 39 1 13 73 0 131 70 2
HBPair∗ 29 13 0 1013 2 13 984 4 12 28 49 0 420 46 5
Sync 8 56 0 27 78 0 49 46 1 22 66 0 172 79 2

6 Conclusions and Future Work

We have proposed a methodology of deriving new coverage metrics to be used in testing
of concurrent software from dynamic (and possibly also static) analyses designed for
discovering bugs in concurrent programs. Using this idea, we have derived several new
concrete metrics. We have performed an empirical evaluation of these metrics, which
has shown that several of them are indeed better for use in saturation-based and search-
based testing than various previously known metrics.

As an additional advantage of the metrics that we have proposed, we can mention
their better applicability in debugging. For debugging, understandability of each cover-
age task is important. We believe that tasks generated by our metrics provide much more
problem-related information to the tester than existing metrics such as ConcurPairs or
DUPairs. The tester can track the threads and objects that appear in the covered tasks
to their place of creation or use some additional information (e.g., a lockset) present in
the tasks to better understand what happened during the witnessed executions.

In the future, more experimental evidence about the proposed metrics should be
obtained to further explore their properties. Metrics based on other dynamic as well as
static analyses could be considered too. Finally, an evaluation of the metrics within the
entire framework of search-based testing should be done.

Acknowledgement. This work was supported by the Czech Science Foundation (projects
no. P103/10/0306 and 102/09/H042), the Czech Ministry of Education (projects COST
OC10009 and MSM 0021630528), and the internal BUT project FIT-11-1.

14

References

1. S. Bensalem and K. Havelund. Dynamic Deadlock Analysis of Multi-threaded Programs. In
Proc. of HVC’05, LNCS 3875, Springer-Verlag, 2005.

2. A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur. Applications of Synchronization Coverage.
In Proc. of PPoPP’05, ACM Press, 2005.

3. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
4. O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby, and S. Ur. Framework for Testing

Multi-threaded Java Programs. Concurrency and Computation: Practice and Experience,
15(3-5):485–499, 2003.

5. T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and Transaction-aware Java Run-
time. In Proc. of PLDI’07, ACM Press, 2007.

6. D. Hovemeyer and W. Pugh. Finding Concurrency Bugs in Java. In Proc. of PODC’04,
ACM Press, 2004.

7. P. Joshi, C.-S. Park, K. Sen, and M. Naik. A Randomized Dynamic Program Analysis Tech-
nique for Detecting Real Deadlocks. In Proc. of PLDI’09, ACM Press, 2009.

8. V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta. Fast and Accurate Static Data-race
Detection for Concurrent Programs. In Proc. of CAV’07, LNCS 4590, Springer-Verlag, 2007.

9. B. Křena, Z. Letko, T. Vojnar, and S. Ur. A Platform for Search-based Testing of Concurrent
Software. In Proc. of PADTAD’10, ACM Press, 2010.

10. S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: Detecting Atomicity Violations via Access
Interleaving Invariants. In Proc. of ASPLOS’06, ACM Press, 2006.

11. J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In Proc. of POPL’05, ACM
Press, 2005.

12. P. McMinn. Search-based Software Test Data Generation: A Survey: Research Articles.
Software Testing, Verification, and Reliability, 14(2):105–156, 2004.

13. M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu. Finding and Re-
producing Heisenbugs in Concurrent Programs. In Proc. of OSDI’08, USENIX Association,
2008.

14. E. Pozniansky and A. Schuster. Efficient On-the-fly Data Race Detection in Multithreaded
C++ Programs. In Proc. of PPoPP’03, ACM Press, 2003.

15. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic Data
Race Detector for Multi-threaded Programs. In Proc. of SOSP’97, ACM Press, 1997.

16. E. Sherman, M. B. Dwyer, and S. Elbaum. Saturation-based Testing of Concurrent Programs.
In Proc. of ESEC/FSE’09, ACM Press, 2009.

17. J. Soriano, M. Jimenez, J. M. Cantera, and J. J. Hierro. Delivering Mobile Enterprise Services
on Morfeo’s MC Open Source Platform. In Proc. of MDM’06, IEEE CS, 2006.

18. E. Trainin, Y. Nir-Buchbinder, R. Tzoref-Brill, A. Zlotnick, S. Ur, and E. Farchi. Forcing
Small Models of Conditions on Program Interleaving for Detection of Concurrent Bugs. In
Proc. of PADTAD’09, ACM Press, 2009.

19. C. von Praun and T. R. Gross. Object Race Detection. In Proc. of OOPSLA’01, ACM Press,
2001.

20. A. Williams, W. Thies, and M. D. Ernst. Static Deadlock Detection for Java Libraries. In
Proc. of ECOOP’05, LNCS 3586, Springer-Verlag, 2005.

21. C.-S. D. Yang, A. L. Souter, and L. L. Pollock. All-du-path Coverage for Parallel Programs.
In Proc. of ISSTA’98, ACM Press, 1998.

15

