Design of Search Based Testing Infrastructure

7L
November 26, 2010

Contents

1 Introduction 2

2 Terminology 2

3 Use Cases 3
3.1 Explore all states in the given state space and find optimum . . . 3
3.2 Explore all states in the given state space and find cummulative optimum of n states 4
3.3 Search for an optimum in the given state space . . .. ... ... 4

3.4 Search for a cummulative optimum over n states in the given state space 5

3.5 Search for a cummulative optimum of n states and probabilities of their usage in mixed strategy
3.6 Search for an overall cummulative optimum in the given state space 6

3.7 Search for optimal combination of tests which may be used during limited time 6

4 Testing Infrastructure Overview 7
4.1 Manager . . . ... e 7
4.2 Search . . . . ... 8
4.3 Executor. . . . . . . ... e 8
4.4 State Space Storage . . . . ... e 8

5 Input Specification 9
5.1 Set of Parameters. . . . . . . .. ... .. .. .. ... ... 9
52 Setof Tests . . . . . . . . 9
5.3 Constraints for Search Procedure . . . . . . . ... ... ... .. 11
5.4 Constraints for Exploring a State Procedure . . . . . . ... ... 11
5.5 Search Technique . . . . . .. ... ... ... .. ......... 11
5.6 Knowledge Obtained from Previous Exploration . .. ... ... 11

6 Output Specification 12
6.1 State . . . . . ... 12

7 Related Work 12



1 Introduction

The aim of the proposed infrastructure is to allow experimenting with applying
search techniques and evolutionary algorithms in the field of program testing.

Consider situation that there are multiple tests of a given software, each has
multiple parameters of different type that somehow affect test execution and
you want to find best (whatever best means for you) combination of tests and
their parameters with respect to a given time constraint. Moreover, if a software
containing concurrency is tested, multiple executions of the same test executed
with the same parameters can lead to slightly different executions because of
a non-determinism of concurrent software execution. One of successful tech-
niques for testing concurret software is noise injection which affects execution
of concurrent software by adding various type of noise at specified places. Pa-
rameters of noise maker again increase number of parameters that influence test
execution.

This infrastructure provides an environment where such situation can be
studied. One can then experiment with different search and evolution algo-
rithms used for finding best combinations of tests and parameters, and ask in-
teresting questions concerning combination of tests, number of their execution,
and parameters to be used in different testing strategies.

Infrastructure design presented in this document was created with respect to
requirements of testing concurrent programs using IBM concurrency testing tool
(ConTest) [2] and collecting coverage information from tests. This influences
use cases presented in the next section and also induces some design decisions.

The document is organized as follows. In the next section, a few use cases
are presented so one can get an idea what are interesting questions for the
infrathatstructure. Next, a high level modular structure of the infrastructure is
presented together with a high level description of functionality of each module.
Then, infrastructure inputs and outputs are enumerated. Finally, a related work
is very briefly commented (more less a few links which can be used as a starting
point for studying related work are given).

2 Terminology

In terminology of evolutionary algorithms, tests and their parameters represent
n-dimensional state space where number of dimensions is number of test param-
eters plus one dimension of tests. A state in such state space represents a test
with specific parameters (or a test configuration). Fitness function is used for
estimating quality of a state being explored and is represented by particular
test results. A search or evolutionary algorithm is used to choose a state which
should be explored in the next step of exploring the state space.

Use cases listed in the next section concern fitness function computed from
a problem of coverage. Coverage is defined as any metric of completeness with
respect to a test selection criterion. Coverage analysis consists of two steps.
At first, a list of tasks to be covered is prepared. Coverage task is a boolean
function on a test (e.g. method XY was executed). A cohesive set of coverage
tasks is called coverage model. Then, analysis checks what tasks were covered
during testing. Usually, the goal is to cover as many tasks as possible — ideally
all tasks (which are feasible).



Common situation for a concurrency coverage model is that repeated ex-
ecution of the same test with the same parameters gives different coverage.
Therefore, there is reason to execute one test repeatedly to get more covered
tasks. Lets call such execution of the same test repeatedly pure testing strategy
and repeated execution of the same test but with different parameters mized
strategy. Experiments done by Shmuel Ur and his colleagues show that for a
concurency coverage model and testing using noise maker there usually exist
a mixed strategy where only parameters of noise maker are changing that is
better than any pure strategy. One can also consider stochastic mized strategy
where for each test and its parameters a probability is given such that the sum
of all probabilities of tests and parameters used in mixed strategy is 1. The
probability represents likelihood that the next test to be executed will use those
parameters.

One of considered usages of the tool is to identify tests and their parameters
for regression testing. So called regression sets are compact sets of tests run after
each code modification or at certain intervals. It is very important for these tests
to be as comprehensive as possible to increase the likelihood of finding new bugs
but still with respect to bounded time devoted to execution of these tests (e.g.
one night). One way to create such a set of tests is to sort the tests by degree
of coverage achieved. Given a fixed amount of time for running the tests, the
subset with the highest degree of coverage is selected.

Since keyword cummulative is overloaded in the next sections, lets describe
all possible usages here to avoid misunderstanding. There are three concerned
dimensions over which evaluation function (e.g. set of covered tasks) can be
cummulated. The first is number of executions of one test configuration (see
pure testing strategy above) — called simply cummulative value. The second
is number of different test configurations (see mixed testing strategy above) —
called cummulative value over n tests. This value is comuputed over chosen set
of n configurations. Note that these two cummulative values can be combined
since we can claim cummulative value of evaluation function of a single test to
be just value of evaluation function of particular test and then cummulate over
multiple tests. And finally, one can also consider cummulating values over all
test configurations executed during state space exploration — overall cummula-
tive value.

3 Use Cases

This section describes considered use cases of the infrastructure.

3.1 Explore all states in the given state space and find
optimum

There is no need for a search technique in this use case because all states in the
state space must be explored. The given state space could be a representative
subspace of a real state space. Optimum is a state that provides maximal (best)
value of a given fitness function. If more states have maximal value of the given
fitness function, one of them is randomly chosen.

e Inputs:



— Set of tests and set of parameters

— Constraints for exploring a state procedure

e Outputs:

— State with the best value of fitness function
— For the best state and each execution of a particular test configura-
tion:
x Counter identifying the execution
+x Cummulative value of fitness function
* Cummulative set of covered tasks
Execution time

*

*

Test status (pass, fail, ...)

3.2 Explore all states in the given state space and find
cummulative optimum of n states

There is no need for a search technique in this use case because all states in the
state space must be explored. The given state space could be a representative
subspace of a real state space. After all states in a state space are explored,
further analysis identify n states that are best candidates for mixed testing
strategy.

e Inputs:

— Set of tests and set of parameters
— Constraints for exploring a state procedure

— Number of states n that gives optimal cummulative value of fitness
function

e Outputs:

— n states with the best cummulative value of fitness function

— For each chosen state and each execution of particular test configu-
ration:

*

Counter identifying the execution
Cummulative value of fitness function
Cummulative set of covered tasks
Execution time

* X X X

Test status (pass, fail, ...)

3.3 Search for an optimum in the given state space

Search technique is used to choose state which is going to be explored in the
next step. Searching is finished when constraints for search procedure applies.

e Inputs:

— Set of tests and set of parameters



— Constraints for exploring a state procedure

— Constraints for search procedure

e Outputs:

— State with the best value of fitness function

— For the best state and each execution of a particular test configura-
tion:

*

Counter identifying the execution
Cummulative value of fitness function

*

Cummulative set of covered tasks
Execution time

* % X

Test status (pass, fail, ...)

3.4 Search for a cummulative optimum over n states in
the given state space

Search technique is used to choose state which is going to be explored in the
next step. Searching is finished when constraints for search procedure applies.

e Inputs:

— Set of tests and set of parameters
— Constraints for exploring a state procedure
— Constraints for search procedure

— Number of states n that gives optimal cummulative value of fitness
function

e Outputs:

— n states with the best cummulative value of fitness function

— For each chosen state and each execution of particular test configu-
ration:

Counter identifying the execution

Cummulative value of fitness function

Cummulative set of covered tasks

Execution time

o R G

Test status (pass, fail, ...)

3.5 Search for a cummulative optimum of n states and
probabilities of their usage in mixed strategy

Search technique is used to choose state which is going to be explored in the
next step. Searching is finished when constraints for search procedure applies.
Search finds best cummulative optimum and probabilities for a stochastic mixed
strategy.

e Inputs:



Set of tests and set of parameters
— Constraints for exploring a state procedure

— Constraints for search procedure

Number of states n that gives optimal cummulative value of fitness
function

e Outputs:

— n states with the best cummulative value of fitness function
— A probability for mixed strategy for each choosen state

— For each chosen state and each execution of particular test configu-
ration:

Counter identifying the execution

Cummulative value of fitness function

Cummulative set of covered tasks

Execution time

EE . R G

Test status (pass, fail, ...)

3.6 Search for an overall cummulative optimum in the
given state space

Search technique is used to choose state which is going to be explored in the
next step. Searching is finished when constraints for search procedure applies.

e Inputs:

— Set of tests and set of parameters
— Constraints for exploring a state procedure

— Constraints for search procedure
e Outputs:

— States with the best overall cummulative value of fitness function
— For each explored state of state space and each execution of particular
test configuration:
Counter identifying the execution
Cummulative value of fitness function

*
*
x Cummulative set of covered tasks
x Execution time

*

Test status (pass, fail, ...)

3.7 Search for optimal combination of tests which may be
used during limited time

Search technique is used to choose state which is going to be explored in the next
step. Searching is finished when constraints for search procedure applies. Search
technique considers execution time of each state. Further analysis then choose
what tests to use when limited time for testing is available (e.g. regression
testing during one night).



e Inputs:

— Set of tests and set of parameters

Constraints for exploring a state procedure

Constraints for search procedure

Time limitation for execution of chosen tests

e Outputs:

— n states with the best cummulative value of fitness function
— Expected time of running chosen tests

— For each chosen state and each execution of particular test configu-
ration:
x Counter identifying the execution
x Cummulative value of fitness function
+x Cummulative set of covered tasks
*

Execution time

*

Test status (pass, fail, ...)

4 Testing Infrastructure Overview

Infrastructure is divided into 4 cooperating modules called Manager, Search,
Ezxecutor, and State space storage. Modules, their communication, and tasks
are shortly described in the following subsections.

There will be also other modules of the infrastructure for instance GUI
and log producer which are not described in this document since they are not
involved in the main functionality of the infrastructure.

4.1 Manager

The main module called Manager controls entire execution process. At first, it
processes input data (parameters, test specifications, etc.). Then, the manager
initializes all other modules. The state space storage module is initialized as
empty an n-dimensional matrix. Subsequently, the manager enters the testing
loop which consists of the following steps:

1. Ask the search module for the next state to be explored. The state iden-
tifies a test and its parameters.

2. The chosen state is passed to the Executor which is responsible for explor-
ing the state by executing a test with the given parameters.

3. Manager checks results and if termination conditions are not fulfilled con-
tinues with step 1.

After the testing loop, if needed, Manager initiates a further analysis of the
obtained results which are stored in State space storage module (e.g. compute
some interesting statistics etc.).



4.2 Search

Search module consists of an interface which is used to cooperate with the rest
of the infrastructure and pluggable search engine which actually does search.
Search module is called to provide the next state that should be explored. Search
engine can via interface access the state space storage module in order to get
information concerning the state space (dimensions, values of already explored
states, etc.). Search module provides a list of parameters which identify test
configuration to be executed in the next step.

4.3 Executor

Ezecutor module consist of an interface which is used to cooperate with the
rest of the infrastructure, execution manager, and several pluggable engines.
Execution manager controls state exploration which consists of the following
steps:

1. Execution of engine that does initialization of state exploration (e.g. Con-
Test instrumentation).

2. Execution of enginen that does initialization of test execution. This step
is used to prepare test execution.

3. Execution of engine that execute particular test. Execution manager
checks constraints for exploring a state and if needed interrupts execu-
tion.

4. Execution of engine that does gathering of results and computation of
fitness function. Execution manager get result of fitness function and
stores it in state space storage.

5. Execution of engine that does finalization of execution (e.g. cleaning after
execution).

6. Execution manager checks if termination conditions of state exploration
are fulfilled and if not continue with step 2.

7. Execution of engine that does finalization of state exploration (e.g. clean
temporal directories).

Pluggable engines are implemented as Java classes. Currently, three types
of plug-ins are considered: an empty plug-in that does nothing, a simple Java
plug-in (just invocation of a method), a plug-in that runs a new Java process
and waits till its end, and a plug-in that runs a new process and waits till its
end.

4.4 State Space Storage

State space storage module is a service which can be used by search engine
and executor to store and analyze test results. This module provides uniform
storage of results and some statistical data concerning state space exploration.
Results are stored in sparse n-dimensional matrices where each cell represents
one state in a state space. The number of dimensions is set according to number



of parameters search engine must determine. Parameters are specified in the
input file.

Storage should be attached to some analysis engine which is able to compute
different statistics, summaries and views. This is an object of a future work.

5 Input Specification

Inputs are given to the infrastructure in an XML file (chosen due to its tree
structure). Inputs described in this section refer to use cases listed in Section 3.

Set of parameters (include ConTest parameters) and set of tests describe
state space for a search algorithm. Constraints for search procedure specify
restrictions used by Manager to stop exploring state space. Constraints for ex-
ploring a state procedure specify restrictions used by Execution manager during
execution of a test.

5.1 Set of Parameters

Parameter is value that influences test execution. There are several types of pa-
rameters according to place they are used. JVM parameters influences behavior
of Java Virtual Machine, test parameters are passed to the main method of the
test, and ConTest parameters influences ConTest behaviour (noise injection,
etc.).

e Inputs:

— For each parameter:
* Parameter type (e.g. JVM, program, ConTest, ...— used by
infrastructure and plug-ins)
* Identifier (e.g. name of parameter)

* Domain of parameter (one fixed value (parameter is constant),
boolean, enumeration (list of possible values), integer(min, max))

* Ordering if exist (ordinal, not ordinal)

* Value(s) of parameter (according to domain — e.g. list of possible
values, integer min, max, ...)

— Set of parameter combinations that doesn’t make sense to explore
provided as a set of Java expressions (e.g. ((paraml < 0)&&(param2 >
100))) (optional, future work)

— Set of parameter combinations that are equal — leads to the same
state in the state space — provided as set of tuples (a,b) where a
and b are Java expressions (e.g. [((paraml < 0)&&(param?2 >
100))], [(paraml > 100)&& (param2 < 0)]) (optional, future work)

5.2 Set of Tests

Test is considered to be fitness function that is used to explore the chosen state.

e Inputs:

— For each test:



Identifier (e.g. name)

Exploration intitialization plug-in and its parameters (optional)
Preprocessing plug-in and its parameters (optional)

Execution plug-in and its parameters

LR SR S

Evaluation plug-in and its parameters (returns value used as fit-
ness function)

*

Postprocessing plug-in and its parameters (optional)
* Exploration finalization plug-in and its parameters (optional)

* Liveness constraints for the test (timeout, timeout of producing
output)

— Class name that will be used to represent result of the test
Initialization and finalization of exploration, preprocessing, postprocessing,

and execution plug-ins are of the same type (impleplement the same interface).
Currently, only three types are considered:

1. Execution of a new Java process

e Inputs:

— JVM executable to be used

— JVM parameters (classpath, etc.)

— Class representing test to be executed
— Parameters passed to main method

2. Execution of a new process

e Inputs:

— Command to be executed
3. General Java class implementing appropriate interface

e Inputs:

— Full java class name to be used
— List of parameters (name, value)

Evaluation plug-in is of different type (implement different interface). Cur-
rently, only one type of plug-in is considered:

1. General Java class implementing appropriate interface

e Inputs:

— Full java class name to be used

Class used for representing exploration result contains general results (e.g.
execution time) and also analysis domain specific results (e.g. set of covered
tasks).

10



5.3 Constraints for Search Procedure

These constraits determine when to stop searching and are checked by Manager.
If no constraint is given, state space exploration continues until either the entire
state space is explored or user terminates the program.

Q: Should we allow to reexplore already explored state? What
happens than — the old result will be rewrited or the new result will
be somehow merged with the old one?

Currently considered constraints for search procedure are:

e Inputs:

— Timeout (optional)

— Number of states to be explored (limits number of steps the search
technique can do) (optional)

5.4 Constraints for Exploring a State Procedure

These constraints applies when a particular state in the state space is being
explored and are checked by Execution manager. At least one constraint must
be set.

Currently considered constraints are:

e Inputs:

— Timeout
— Number of iterations for each test

— Treshold of improvement of a last executions (a, treshold)

5.5 Search Technique

Search technique is responsible for choosing the next state to be processed.

e Inputs:

— Class that implements appropriate interface

— Parameters for a search technique (name = value) (optional)

5.6 Knowledge Obtained from Previous Exploration

This is also part of a future work. Search technique can be provided by some
interesting information concerning each state (or subset) of a state space. This
information can be obtained e.g. from previous executions. Interesting infor-
mation can be one of follows:

e Inputs:

— For each state (test + parameters):

*x Expected run time
* Previous state exploration result

11



6 Output Specification

Besides outputs described in this section, log file production and export of state
space storage are considered. In the future, a GUI is planned to be implemented
for processing outputs.

6.1 State

Considered output can be in a form of one selected state or a set of selected
states. Output of a state is controlled by class representing result obtained by
state exploration. The class representing result is part of input information and
therefore can be influenced by user. The following example describes output of
default result format of a coverage task described in Section 5.2.

e Outputs:

— For each state (test + parameters):

Test identification (name)

List of parameters and their values used with test
Execution plug-in parameters (JVM, ...)
Cummulative value of fitness function
Cummulative list of covered tasks

Execution time

* K X X X X X

Test status (pass, fail, ...)

7 Related Work

There is a lot of work done in the area of evolutionary testing [3] and more
general area of search based software engeneering [5]. There are research groups
which focus on the combination of search techniques and testing e.g. CREST [1].
There is also a tool which provides similar functionality — EvoTest — product of
an European Union funded research project IST-33472 [4] (the tool is still being
developed).

References

[1] Centre for Research on Evolution Search & Testing
http : / /erest.des.kcl.acuk/

[2] Concurrency Testing Tool (ConTest)
http : / Jwww.alphaworks.ibm.com/tech/contest/

[3] Evolutionary Testing
hitp : | Jwww.systematic — testing.com/evolutionary_testing

[4] EvoTest — Evolutionary Testing for Complex Systems
http : / Jwww.evotest.eu/

[5] Repository of Publications on Search Based Software Engineering
http : | Jwww.sebase.org/

12



