Forest Automata for Verification of
Heap Manipulation

FIT BUT Technical Report Series

Peter Habermehl, Lukas Holik, Adam Rogalewicz,
Jifi Simacéek, and Tomas Vojnar

Technical Report No. FIT-TR-2011-001
Faculty of Information Technology, Brno University of Technology

Last modified: December 15, 2011

Forest Automata for Verification of Heap Manipulation

Peter Habermehl', Luk4s Holik?*, Adam Rogalewicz?, Jiii Sima¢ek?>, and Tomas Vojnar?

I LIAFA, Université Paris Diderot—Paris 7/CNRS, France
2 FIT, Brno University of Technology, Czech Republic
3 VERIMAG, UJF/CNRS/INPG, Gieres, France
4 Uppsala University, Sweden

Abstract. We consider verification of programs manipulating dynamic linked
data structures such as various forms of singly and doubly-linked lists or trees.
We consider important properties for this kind of systems like no null-pointer
dereferences, absence of garbage, shape properties, etc. We develop a verifica-
tion method based on a novel use of tree automata to represent heap configura-
tions. A heap is split into several “separated” parts such that each of them can be
represented by a tree automaton. The automata can refer to each other allowing
the different parts of the heaps to mutually refer to their boundaries. Moreover,
we allow for a hierarchical representation of heaps by allowing alphabets of the
tree automata to contain other, nested tree automata. Program instructions can
be easily encoded as operations on our representation structure. This allows ver-
ification of programs based on a symbolic state-space exploration together with
refinable abstraction within the so-called abstract regular tree model checking.
A motivation for the approach is to combine advantages of automata-based ap-
proaches (higher generality and flexibility of the abstraction) with some advan-
tages of separation-logic-based approaches (efficiency). We have implemented
our approach and tested it successfully on multiple non-trivial case studies.

1 Introduction

We address verification of sequential programs with complex dynamic linked data
structures such as various forms of singly- and doubly-linked lists (SLL/DLL), possi-
bly cyclic, shared, hierarchical, and/or having different additional (head, tail, data, and
the like) pointers, as well as various forms of trees. We in particular consider C pointer
manipulation, but our approach can easily be applied to any other similar language.
We concentrate on safety properties of the considered programs which includes generic
properties like absence of null dereferences, double free operations, dealing with dan-
gling pointers, or memory leakage. Furthermore, to check various shape properties of
the involved data structures one can use testers, i.e., parts of code which, in case some
desired property is broken, lead the control flow to a designated error location.

For the above purpose, we propose a novel approach of representing sets of heaps
via tree automata (TA). In our representation, a heap is split in a canonical way into
several tree components whose roots are the so-called cut-points that are nodes pointed
to by a program variable or having several incoming edges. The tree components can
refer to the boundaries of each other and hence they are “separated” much like heaps
described by formulae joined by the separating conjunction in separation logic [14].
Sets of heaps with a bounded number of cut-points are then represented by the newly

1

proposed forest automata (FA) that are basically tuples of TA accepting trees whose
leaves can refer back to the roots of any of the trees accepted by these automata. More-
over, we allow alphabets of FA to contain nested FA, leading to a hierarchical encoding
of heaps, allowing us to represent even sets of heaps with an unbounded number of
cut-points (e.g., sets of DLL). Intuitively, a nested FA can describe a part of a heap with
a bounded number of cut-points (e.g., a DLL segment), and by using such an automaton
as an alphabet symbol an unbounded number of times, heaps with an unbounded num-
ber of cut-points are described. Finally, as FA are not closed under union, we work with
sets of forest automata, corresponding to, e.g., disjunctive separation logic formulae.

As a nice theoretical feature of our representation, we show that inclusion of sets
of heaps represented by finite sets of non-nested FA (i.e., having a bounded number of
cut-points) is decidable. This covers sets of complex structures like SLL with head/tail
pointers. Moreover, we show how inclusion can be safely approximated for the case
of nested FA. Further, C program statements manipulating pointers can be easily en-
coded as operations modifying FA. Consequently, the symbolic verification framework
of abstract regular tree model checking [6, 7], which comes with automatically refinable
abstractions, can be applied.

The proposed approach brings the principle of local heap manipulation (i.e., deal-
ing with separated parts of heaps) from separation logic into the world of automata. The
motivation is to combine some advantages of using automata and separation logic. Au-
tomata provide higher generality and flexibility of the abstraction (see also below) and
allow us to leverage the recent advances of efficient use of non-deterministic automata
[2,3]. As further discussed below, the use of separation allows for a further increase in
efficiency compared to a monolithic automata-based encoding proposed in [7].

We have implemented our approach in a prototype tool called Forester as a gcc
plug-in. In our current implementation, if nested FA are used, they are provided manu-
ally (similar to the use of pre-defined inductive predicates common in works on sepa-
ration logic). However, we show that Forester can already successfully handle multiple
interesting case studies, proving the proposed approach to be very promising.

Related work. The area of verifying programs with dynamic linked data structures has
been a subject of intense research for quite some time. Many different approaches based
on logics, e.g., [12, 15, 14,4, 10, 13, 18,17, 8, 11], automata [7, 5, 9], upward closed sets
[1], and other formalisms have been proposed. These approaches differ in their general-
ity, efficiency, and degree of automation. Due to space restrictions, we cannot discuss all
of them here. Therefore, we concentrate on a comparison with the two closest lines of
work, namely, the use of automata as described in [7] and the use of separation logic in
the works [4, 17] linked with the Space Invader tool. In fact, as is clear from the above,
the approach we propose combines some features from these two lines of research.

Compared to [4, 17], our approach is more general in that it allows one to deal with
tree-like structures, too. We note that there are other works on separation logic, e.g.,
[13], that consider tree manipulation, but these are usually semi-automated only. An
exception is [10] which automatically handles even tree structures, but its mechanism
of synthesising inductive predicates seems quite dependent on the fact that the dynamic

2

linked data structures are built in a “nice” way conforming to the structure of the predi-
cate to be learnt (meaning, e.g., that lists are built by adding elements at the end only>).

Further, compared to [4, 17], our approach comes with a more flexible abstraction.
We are not building on just using some inductive predicates, but we combine a use of
our nested FA with an automatically refinable abstraction on the TA that appear in our
representation. Thus our analysis can more easily adjust to various cases arising in the
programs being verified. An example is dealing with lists of lists where the sublists are
of length O or 1, which is a quite practical situation [16]. In such cases, the abstrac-
tion used in [4, 17] can fail, leading to an infinite computation (e.g., when, by chance,
a list of regularly interleaved lists of length O or 1 appears) or generate false alarms
(when modified to abstract even pointer links of length 1 to a list segment). For us, such
a situation is easy to handle without any need to fine-tune the abstraction manually.

On the other hand, compared with the approach of [7], the newly proposed approach
is a bit less general (we cannot, e.g., handle structures such as trees with linked 1eaV€SG),
but on the other hand more scalable. The latter comes from the fact that the represen-
tation in [7] is monolithic, i.e., the whole heap is represented by one tree-like structure
whereas our new representation is not monolithic anymore. Therefore, the different
operations on the heap, e.g., corresponding to a symbolic execution of the verified pro-
gram, influence only small parts of the encoding (unlike in [7], where the transducers
used for this purpose are always operating on the entire automata). Also, the mono-
lithic encoding of [7], based on a fixed tree skeleton over which additional pointer links
were expressed using the so-called routing expressions, had problems with deletion of
elements inside data structures and with detection of memory leakage (which was in
theory possible, but it was so complex that it was never implemented).

2 From Heaps to Forests

In this section, we outline how sets of heaps can be represented by hierarchical forest
automata. These automata are tuples of tree automata which accept trees that may refer
to each other through the alphabet symbols. Furthermore their alphabet can contain
strictly hierarchically nested forest automata. For the purpose of the explanation, heaps
may be viewed as oriented graphs whose nodes correspond to allocated memory cells
and edges to pointer links between these cells. The nodes may be labelled by non-
pointer data stored in them (assumed to be from a finite data domain) and by program
variables pointing to the nodes. Edges may be labelled by the corresponding selectors.
In what follows, we are representing sets of garbage free heaps only, i.e., all memory
cells are reachable from pointer variables by following pointer links. However, practi-
cally this is not a restriction since the emergence of garbage can be checked for each
program statement to be fired and if garbage arises, an error message can be be issued
and the computation stopped or the garbage removed and the computation continued.
Now, note that each heap graph may be canonically decomposed into a tuple of
trees as follows. We first identify the cut-points, i.e. nodes that are either pointed to by

5 We did not find an available implementation of [10], and so we could not try it out ourselves.
6 Unless a generalisation to FA nested not just strictly hierarchically, but in an arbitrary recursive
way, is considered, which is an interesting subject for future research.

X y X y

1 2 1 2 i
data data
next next data next next data next data .
next | | prev
data data
next next data next next data next data .
3 3
| next rev
data data 3 P
next next ~
4) ®
data
data /T oxt next next 4 next | | prev
data data 4 I

() (b) (©) (@

Fig. 1. (a) A heap graph with cut-points highlighted in red, (b) the canonical tree decomposition
of the heap with x ordered before y, (c) a part of a DLL, (d) a hierarchical encoding of the DLL

a program variable or that have several incoming edges. Then, we totally order program
variables and selectors. Next, cut-points are canonically numbered using a depth-first
traversal of the heap graph starting from nodes pointed to by program variables, taking
them in accordance with their order, and exploring the graph according to the order
of selectors. Finally, we split the heap graph into tree components rooted at particular
cut-points. These components contain all the nodes reachable from their root while not
passing through any cut-point, plus a copy of each reachable cut-point, labelled by its
number. The tree components are then canonically ordered according to the numbers of
their root cut-points. For an illustration of the decomposition, see Figure 1 (a) and (b).

Now, tuples of tree automata (TA), called forest automata (FA), accepting tuples of
trees whose leaves may refer to the root of any tree out of a given tuple, may be viewed
as representing a set of heaps as follows. We simply take a tree from the language of
each of the TA and obtain a heap by gluing the tree roots corresponding to cut-points
with the leaves referring to them.

Further, we consider in particular canonicity respecting forest automata (CFA) which
encode sets of heaps represented in a canonical way: if we select a tuple of trees from
the languages of the given TA, construct a heap from them, and then canonically de-
compose it, we get the tuple of trees we started with. The canonicity respecting form
allows us to test inclusion on the sets of heaps represented by CFA by component-wise
testing inclusion on the languages of the TA constituting the given CFA.

Note, however, that FA are not closed under union. Clearly, even if we consider FA
having the same number of components, uniting the TA component-wise may yield an
FA overapproximating the union of the sets of heaps represented by the original FA (cf.
Section 3). Hence, we will have to represent unions of FA explicitly as sets of FA (SFA),
which is similar to dealing with disjunctions of separation logic formulae. However, as
we shall see, inclusion on the sets of heaps represented by SFA is still easily decidable.

The described encoding allows one to represent sets of heaps with a bounded num-
ber of cut-points. However, to handle many common dynamic data structures one needs
to represent sets of heaps with an unbounded number of cut-points. Indeed, in doubly-
linked lists (DLLs) for instance, every node is a cut-point. We solve this problem by
representing heaps in a hierarchical way. In particular, we collect sets of repeated sub-
graphs (called components) in the so-called boxes. Every occurrence of such compo-
nents can then be replaced by a single hyperedge labelled by the appropriate box’.
In this way, a set of heap graphs with an unbounded number of cut-points can be
transformed into a set of hierarchical heap hypergraphs with a bounded number of
cut-points at each level of the hierarchy. Figures 1 (c) and (d) illustrate how this ap-
proach can reduce DLLs into singly-linked lists (with a DLL segment used as a kind
of meta-selector). Sets of heap hypergraphs corresponding either to the top level of the
representation or to boxes of different levels can then be decomposed into (hyper)tree
components and represented using FA whose alphabet can contain nested FA.® Intu-
itively, FA that appear in the alphabet of some superior FA play a role similar (but not
equal) to that of inductive predicates in separation logic.’

The question of deciding inclusion on sets of heaps represented by hierarchical FA
remains open. However, we propose a canonical decomposition of hierarchical hyper-
graphs allowing inclusion to be decided for sets of heap hypergraphs represented by
FA in the case when the nested FA labelling hyperedges are taken as atomic alphabet
symbols. Note that this decomposition is by far not the same as for non-hierarchical
heap graphs due to a need to deal with nodes that are not reachable on the top level,
but are reachable through edges hidden in some boxes. This result allows one to safely
approximate inclusion checking on hierarchically represented heaps, which appears to
work quite well in practice.

3 Hypergraphs and Their Representation

We now formalise the notion of hypergraphs and forest automata.

3.1 Hypergraphs

Given a set A and n € N, let A" denote the n'"-Cartesian power of A and let AS" =
UOSiSnAi~ For an n-tuple @ = (ay,...,a,) €A™, n>1,weleta.i=aq; forany 1 <i<n.
We call a set A ranked if there is a function # : A — N. The value #(a) is called the rank

7 We may obtain hyperedges here since we allow components to have a single designated input
node, but possibly several output nodes.

8 Since graphs are a special case of hypergraphs, in the following, we will work with hyper-
graphs only. Moreover, to simplify the definitions, we will work with hyperedge-labelled hy-
pergraphs only. Node labels mentioned above will be put at specially introduced nullary hy-
peredges leaving from the nodes whose label is to be represented.

9 For instance, we use a nested FA encoding a DLL segment of length 1, not of length 1 or
more as in separation logic: the repetition of the segment is encoded in the structure of the
top-level FA.

of a € A. We call #(A) = max({#(a) | a € A}) the maximum rank of an element in the
given set. For any n > 0, we denote by A,, the set of all elements of rank n from A.
Given a finite ranked set I called a hyperedge alphabet, a I"-labelled oriented hy-
pergraph with designated input and output ports—denoted simply as a hypergraph if
no confusion may arise—is a tuple G = (V,E,I,0) where V is a finite set of vertices,
E CV xT x V=*I) is a set of hyperedges such that V(v,a,7) € E : v € V¥@ and
1,0 C V are sets of input and output ports, respectively!?. We assume that there is a
total ordering =<,C P x P on the set P =1U O of all ports of G. The sets /, O of in-
put/output ports may be empty in which case we may drop them from the hypergraph.
For symbols a € " with #(a) = 0, we write (v,a) € E to denote that (v,a, ()) € E.
Given a hyperedge ¢ = (v,a,(v1,...,v,)) € E of a hypergraph G = (V,E,I,0), v
is the source of e and vy,...,v, are a-successors of v in G. An (oriented) path in G is
a sequence (vy,dj, Vi,...,dn,Vy), n > 0, where for all 1 <i < n, v; is an ag;-successor
of vi_1 in G. G is called deterministic iff ¥(v,a,v),(v,d',V) €E:a=d — v=7.
A hypergraph G is well-connected if each node v € V' is reachable through some path
from some input port of G. Figure 1 (a) shows a (hyper)graph with two input ports
corresponding to the two variables. Edges are labelled by selectors data and next.

3.2 A Forest Representation of Hypergraphs

A T-labelled hypergraph T = (V,E) without input and output ports is an unordered,
oriented I'-labelled free (denoted simply as a tree below) iff (1) it has a single node with
no incoming hyperedge (called the root of T, denoted root(T)), (2) all other nodes of T
are reachable from root(T') via some path, and (3) each node has at most one incoming
hyperedge. Nodes with no successors are called leaves.

Given a finite ranked hyperedge alphabet I" such that 'NN = @, we call a tuple F =
(Th,...,T,,1,0), n > 1, an ordered I'-labelled forest with designated input and output
ports (or just a forest) iff (1) for every i € {1,...,n}, T; = (V;,E;) isaTU{l,...,n}-
labelled tree where Vi € {1,...,n}, #(i) = 0 and a vertex v with (v,i) € E is not a source
of any other edge (hence itis a leaf), (2) V1 <ij <ip <n: V; NV, =0,and (3) 1,0 C
{1,...,n} denote the input and output ports, respectively.

We call the sources of edges labelled by {1,...,n} root references and denote by
rr(T;) the set of all root references in T;, i.e., rr(T;) = {ve V| (vk) € E;,ke {1,...,n}}
for each i € {1,...,n}. A forest F = (T1,...,T,,Ir,OF), n > 1, represents the hyper-
graph ®F that is obtained by first uniting the trees 77,...,7, and then removing every
root reference v € V;, 1 <i < n, and redirecting the hyperedges leading to v to the root
of T; where (v,k) € E;. Formally, F = (V,E,I,O) where:

-V=ULVi\rr(T), E=UL{(v,a,V) |la € T AI(v,a,7) € E; V1 < j < #(a) :
if 3(v.j,k) € E; withk € {1,...,n}, thenV.j = root(T}), else V.j = v.j},

- I={root(T;) |i € Ir}, O = {root(T;) | i € OF},

— the ordering of the set of ports P =1UQ is defined by : Vi, j € (Ir UOF) : root(T;) =,
root(T;) <= i< j.

10 Intuitively, in hypergraphs representing heaps, input ports correspond to nodes pointed to by
program variables or to input nodes of components, and output ports correspond to output
nodes of components.

Figure 1 (b) shows a forest decomposition of the graph of Figure 1 (a). It is decom-
posed into four trees which have designated roots which are referred to in the trees. The
decomposition respects the ordering of the two ports corresponding to the variables.

3.3 Minimal and Canonical Forests

We call a forest F = (T,...,T,,Ir,OF) representing the well-connected hypergraph
G = (V,E,I,0) = QF minimal iff the roots of the trees T1,...,T, correspond to the
cut-points of G which are those nodes that are either ports or that have more than one
incoming hyperedge in G. A minimal forest representation of a hypergraph is unique up
to permutations of 7,...,7,. In order to get a canonical forest representation of a well-
connected deterministic hypergraph G = (V,E,I,0), we need to canonically order the
trees in its minimal forest representation. We do this as follows: First, we assume the
set of hyperedge labels I" to be totally ordered via some ordering <r. Then, a depth-first
traversal (DFT) on G is performed starting with the DFT stack containing the set /U O
in the given order <, the smallest node being on top of the stack. We now call a forest
representation F = (T1,...,T,,Ir,OF) of G canonical iff it is minimal and the trees
Ti,...,T, appear in F in the following order: First, the trees whose roots correspond
to ports appear in the order given by =<, and then the rest of the trees appears in the
same order in which their roots are visited in the described DFT of G. A canonical
representation is obtained this way since we consider G to be deterministic. Clearly the
forest of Figure 1 (b) is a canonical representation of the graph of Figure 1 (a).

3.4 Forest Automata

We now define forest automata as tuples of tree automata encoding sets of forests and
hence sets of hypergraphs. To be able to use classical tree automata, we will need to
work with trees that are ordered, node-labelled, with the node labels being ranked.

Ordered Trees. Let € denote the empty sequence. An ordered tree t over a ranked al-
phabet X is a partial mapping 7 : N* — X satisfying the following conditions: (1) dom(r)
is a finite, prefix-closed subset of N*, and (2) for each p € dom(t), if #(¢t(p)) =n >0,
then {i | pi € dom(t)} ={1,...,n}. Each sequence p € dom(t) is called a node of t. For
anode p, the i’ child of p is the node pi, and the i subtree of p is the tree ¢’ such that
t'(p') =t(pip') for all p’ € N*. A leaf of t is a node p with no children, i.e., there is no
i € N with pi € dom(t). Let T(X) be the set of all ordered trees over L.

For an <r-ordered hyperedge alphabet T, it is easy to convert I'-labelled trees into
node-labelled ordered trees and back (up to isomorphism). We label a node of an or-
dered tree by the set of labels of the hyperedges leading from the corresponding node
in the original tree, and we order the successors of the node w.r.t. the hyperedge la-
bels through which they are reachable (while always keeping tuples of nodes reachable
via the same hyperedge together). The rank of the new node label is then given by the
sum of the original hyperedge labels embedded into it. Below, we use the notion Xr to
denote the ranked node alphabet obtained from I" as described above (w.r.t. a total or-
dering <r that we will from now on assume to be always associated with I') and o#(T')
to denote the ordered tree obtained from a I'-labelled tree 7. For a formal description,
see Appendix A.l.

Tree Automata. A (finite, non-deterministic, bottom-up) tree automaton (abbreviated
as TA in the following) is a quadruple 4 = (Q,X,A, F) where Q is a finite set of states,
F C Q is a set of final states, X is a ranked alphabet, and A is a set of transition rules.
Each transition rule is a triple of the form ((g1,...,gx), f,q) wheren >0, q1,...,qn,q €

0, feX, and #(f) =n. We use (q1,---,qn) tho denote that ((q1,--.,9n),f,q) € A.
In the special case where n = 0, we speak about the so called leaf rules, which we

sometimes abbreviate as L> q.
A run of 4 over atreer € T(X) is a mapping 7 : dom(t) — Q such that, for each node

p € dom(t) where g =7t(p), if ¢; = m(pi) for 1 <i<n, then Ahasarule (qi,...,qn) ﬂ

q. We write ¢ = ¢ to denote that T is a run of 4 over ¢ such that (e) = ¢q. We use

t = ¢ to denote that ¢ St q for some run ©. The language of a state g is defined by
L(q) = {t |t == q}, and the language of A is defined by L(A) = U,cr L(q)-

Forest Automata. Let I be a ranked hyperedge alphabet ordered by <r. We call an
n-tuple F = (4y,...,4,,1,0), n > 1, a forest automaton with designated input/output
ports (called also FA) over ' iff for all 1 <i<n, 4, = (Q;,X,A;,F;) is a TA with £ =
Lrui,....ny Where V1 <i<n: #(i) = 0. The sets /,0 C {1,...,n} are sets of input/output
ports, respectively. F defines the forest language Lr(F) = {(T1,...,T,1,0) | (V1 <
i<n:ot(T)e L(A) AN VI<i<j<n:Ti=Vi,E)ANTi=(V,Ej) = VNV, =
0)}. The hypergraph language of F is then the set L(F) ={®F |F € Lr(F)}. AnFA
F respects canonicity iff each forest F € Lg(F) is a canonical representation of some
well-connected hypergraph, namely, the hypergraph G = ®F. We abbreviate canonicity
respecting FA as CFA. It is easy to see that comparing sets of hypergraphs represented
by CFA can be done component-wise as described in the below lemma.

Lemma 1. Let 1 = (4{,..., 4} ,11,01) and F» = (A},..., 4%, 1,01) be two CFA.
Then, L(F) C L(F) iff (1) n1 =na, (2) I} = b, (3) O1 = 0y, and (4) V1 < i <
n: L(A]) C L(A).

Sets of Forest Automata. The class of languages of forest automata is not closed under
union. The reason is that a forest language of an FA is the Cartesian product of the lan-
guages of all its components and that not every union of Cartesian products may be ex-
pressed as a single Cartesian product. For instance, consider two CFA ¥ = (4, B,1,0)
and F' = (4',B,1,0) such that Lp(F) = {(a,b,1,0)} and Lr(F') = {(c,d,1,0)}
where a, b, c,d are distinct trees. The forest language of the FA (AU 4", BUB',1,0) is
{(x,»,1,0) | (x,y) € {a,c} x {b,d}}) and thus there is no CFA with the hypergraph lan-
guage equal to L(F)U L(F'). Therefore, we will work with finite sets of (canonicity-
respecting) forest automata, S(C)FA for short, where the language £(S) of a finite set
S of FA is defined as the union of the languages of its elements. In particular, we will
restrict ourselves to working with non-empty SFA consisting of FA with non-empty
languages only.

Note that any FA can be transformed (split) into an SCFA S. Each CFA of S repre-
sents hypergraphs having the same interconnection of the cut-points (see Appendix A.2
for details).

Testing Inclusion on SFA. The problem of checking inclusion on SFA, this is, checking
whether £(S) C L(S') where S, S’ are SFA, can be reduced to a problem of checking
inclusion on tree automata. We may w.l.o.g. assume that S and S" are SCFA.

For an FA F = (4y,...,4,,1,0) where 4; = (£,0;,A;,F;) for each 1 <i <n,
we define the TA 47 = (SU{A5°},0,A, {¢"?}) where ALC ¢ ¥ is a symbol with
#(AE0) =n.q? ¢ UL, 01 @ =, 0;U{q""}, and A = U, A; UAP_ The set AP
contains the rule AL’O(ql yeeesqn) — q'°P foreach (qy,...,qu) € Fi X --- X F,. Intuitively,
A7 accepts the trees where n-tuples of ordered trees representing hypergraphs from
L£(A) are topped by a designated root node labelled by Af,’O. It is now easy to see that
the following lemma holds (in the lemma, “U” stands for the usual tree automata union).

Lemma 2. Fortwo SCFASand ', L(S) € L(S') <= LU, ;A7) S LU,y a™.

4 Hierarchical Hypergraphs

We inductively define hierarchical hypergraphs as hypergraphs with hyperedges possi-
bly labelled by hierarchical hypergraphs of a lower level. Let I be a ranked alphabet.

4.1 Hierarchical Hypergraphs, Components, and Boxes

A T-labelled (hierarchical) hypergraph of level O is any I'-labelled hypergraph. For
J €N, a hypergraph of level j+ 1 is defined as a hypergraph over the alphabet T'UB;.

To define the set B ;, we first define a I'-labelled component of level j as a hypergraph
C = (V,E,I,0) of level j which satisfies the requirement that |/| = 1 and /N O = 0.

Then, B; is the set of I-labelled boxes of level j where each box B € B is a set of
I"-labelled components of level j which all have the same number of output ports. We
call this number the rank of B, require that ' B; = 0 and call boxes over I that appear
as labels of hyperedges of a hierarchical hypergraph H over I nested boxes of H.

Semantics of hierarchical hypergraphs and boxes. We are going to define the semantics
of a hierarchical hypergraph H as a set of hypergraphs [H]. If H is of level 0, then
[H] = {H}. The semantics of a box B, denoted [B], is the union of semantics of its
elements (i.e., it is a set of components of level 0). In the semantics of a hypergraph
H = (V,E,I,0) of level j > 0, each hyperedge labelled by a box B € B;_; is substituted
in all possible ways by components from the semantics of B. To define this formally,
we use an auxiliary operation plug. Let e = (v,a,7V) € E be a hyperedge with #(a) =k
and let C = (V' E’,I',0") be a component of level j— 1 to be plugged into H instead of
e. Let (o1,...,0r) be the set O’ ordered according to <p. W.Lo.g., assume VNV’ = 0.
For any w € V’, we define an auxiliary port matching function p(w) such that (1) if
wel,pw)=v, (2)if w=0;,1<i<k, p(w)="7., and (3) p(w) = w otherwise.
We define plug(H,e,C) = (V" ,E" 1,0) by setting V' =V U (V'\ (I'U0’)) and E" =
(E\{e}) U{(V",d V") |3V, d V)€ E": p(v/) =V AVI<i<k: p(¥.i)=7V"i}
Now, the semantics of a hypergraph H = (V,E,I,0) of level j is defined recursively
as follows: Let Plug(H) = {plug(H,e,C) |e= (v,B,v) €E AN B€B;_; A C € [B]}.
If Plug(H) = 0, [H] = {H}, otherwise [H] = Upcpiuge)[H']. Figure 1 (d) shows

a hierarchical hypergraph of level 1 whose semantics is the (hyper)graph of Figure 1 (c)
obtained using Plug. The only box used represents a DLL segment.

4.2 Hierarchical Forest Automata

To represent sets of deterministic hierarchical hypergraphs, we propose to use (hier-
archical) FA whose alphabet contains SFA representing the needed nested boxes. For
a hierarchical FA F, we will denote by Ly (F) the set of hierarchical hypergraphs rep-
resented by it. Likewise, for a hierarchical SFA S, we let L (S) = Ugres Lu(F).

Let I" be a finite ranked alphabet. Formally, an FA F over I of level O is an ordinary
FA over I, and we let Ly (F) = L(F).For j € N, F is an FA over I" of level j+ 1 iff
F is an ordinary FA over an alphabet I'UX where X is a finite set of SFA of level j
(called nested SFA of F) such that for every S € X, Ly(S) is a box over I of level j.
The rank #(S) of S equals the rank of the box Lg(S).

For FA of level j+ 1, Ly(F) is defined as the set of hierarchical hypergraphs that
arise from the hypergraphs in L(F) by replacing SFA on their edges by the boxes
they represent. Formally, Ly (F) is the set of hypergraphs of level j+ 1 such that
(V,E,1,0) € Ly(F) iff there is a hypergraph (V,E’,I,0) € L(F) where E = {(v,a,V) |
(v,a,v) € E'NaeT}HU{(v,Ly(S),v) | (v,S,v) e E'ANS € X }.

Notice that a hierarchical SFA of any level has finitely many nested SFA of a lower
level only, and the number of levels if finite. Therefore, a hierarchical SFA is a finitely
representable object. Notice also that even though the maximum number of cut-points
of hypergraphs from Ly (S) (and L(S)) is fixed (SFA always accept hypergraphs with
a fixed maximum number of cut-points), the number of cut-points of hypergraphs in
[Ly (S)] may be unbounded. The reason is that hypergraphs from £ (S) may contain
an unbounded number of hyperedges labelled by boxes B such that hypergraphs from
[B] contain cut-points too. These cut-points then appear in hypergraphs from [Lg(S)],
but they are not visible at the level of hypergraphs from £(S) and Ly (S).

Hierarchical SFA are therefore finite representations of sets of hypergraphs with
possibly unbounded numbers of cut-points.

4.3 Inclusion and Well-Connectedness on Hierarchical SFA

In this section, we aim at checking well-connectedness and inclusion of sets of hyper-
graphs represented by hierarchical FA. Since considering the full class of hierarchical
hypergraphs would unnecessarily complicate our task, we introduce restrictions of hier-
archical automata that rule out some rather artificial scenarios and that allow us to han-
dle the automata hierarchically (i.e., using some pre-computed information for nested
FA rather than having to unfold the entire hierarchy all the time). In particular, we en-
force that for a hierarchical hypergraph H, well-connectedness of hypergraphs in [H]
is equivalent to the so-called box-connectedness of H introduced below, and, further,
determinism of graphs from [H] is equivalent to determinism of H.!!

T Notice that for a general hierarchical hypergraph H, well-connectedness of H is nor implied
neither implies well-connectedness of hypergraphs from [H]. This holds also for determinism.

10

Proper boxes and well-formed hypergraphs. Given a component C over I', we denote
by br(C) the set of indices i such that there is a path from the i-th output port of C to the
input port of C—intuitively, i € br(C) means that the input port is backward reachable
from the i-th output port. Given a box B over I', we inductively define B to be proper iff
all its nested boxes are proper, br(C;) = br(C,) for any Cy,C; € [B] (we use br(B) to
denote br(C) for C € [B]), and the following holds for all components C € [B]: (1) Cis
well-connected.(2) If there is a path from the i-th to the j-th output port of C, i # j, then
i € br(C)."> A hierarchical hypergraph H is called well-formed if all its nested boxes
are proper. In that case, the conditions above imply that either all or no graphs from [H]
are well-connected and that well-connectedness of graphs in [H] may be judged based
only on the knowledge of br(B) for each nested box B of H, without a need to reason
about the semantics of B (in particular, Condition 2 guarantees that we do not have to
take into account paths that interconnect output ports of B). This is formalised below.

Box-connectedness. Let H= (V,E,I,O) be a well-formed hierarchical hypergraph over
I" with a set X of nested boxes. We define the backward reachability graph of H as the
hypergraph H”" = (V,E UE"",1,0) over TUX UX"" where X" = {(B,i) |[BEX Ni €
br(B)} and E*" = {(v;,(B,i),(v)) | BEX A(v,B,(v1,...,vs)) € EAi € br(B)}. Then we
say that H is box-connected iff H”" is well-connected. The below lemma clearly holds.

Lemma 3. If H is a well-formed hierarchical hypergraph, then the hypergraphs from
[H] are well-connected iff H is box-connected. Moreover, if hypergraphs from [H] are
deterministic, then both H and H" are deterministic hypergraphs.

We straightforwardly extend the above notions to hypergraphs with hyperedges la-
belled by hierarchical SFA, treating these SFA-labels as if they were the boxes they
represent. Particularly, we call a hierarchical SFA S proper iff it represents a proper
box, we let br(S) = br([Lu(S)]), and for a hypergraph H over 'UY where Y is a set
of proper SFA, its backward reachability hypergraph H”" is defined based on br in the
same way as backward reachability hypergraph of a hierarchical hypergraph above (just
instead of boxes, we deal with their SFA representations). We also say that H is box-
connected iff H”" is well-connected.

Given an FA ¥ over I with proper nested SFA, we can check well-connectedness
of graphs from [Ly ()] as follows: (1) for each nested SFA S of ¥, we compute
(and cache for further use) the value br(S), and (2) using this value, we check box-
connectedness of graphs in £(F) without a need of reasoning about the inner structure
of the nested SFA. This computation may easily be done by inspecting rules of the
component TA of ¥ . Likewise, properness of nested SFA may be checked on the level
of TA too—see Appendix A.3 for more details.

Checking inclusion on hierarchical automata over I" with nested boxes from X, i.e.,
given two hierarchical FA F and ¥, checking whether [Ly (F)] C [La(F)], is a hard

The reason is that a component C in a nested box of H may interconnect its ports in an arbitrary
way. It may contain paths from output ports to both input and output ports, but it may be
missing paths from the input port to some of the output ports.

12 Notice that this definition is correct since boxes of level 0 have no nested boxes, and the
recursion stops at them.

11

problem, even under the assumption that nested SFA of F and ' are proper. We have
not even answered the question of its decidability yet. In this paper, we choose a prag-
matic approach and give only a semialgorithm that is efficient and works well in prac-
tical cases. The idea is simple. Since the implications L(F) C L(F') = Ly(F) C
Ly(F) = [Lu(F)] C [Lu(F')] obviously hold, we may safely approximate the
solution of the inclusion problem by deciding whether L(F) C L(F') (i.e., we abstract
away the semantics of nested SFA of F and ¥’ and treat them as ordinary labels).

From now on, assume that our hierarchical FA represent only deterministic well-
connected hypergraphs, i.e., that [Ly ()] and [Ly (F')] contain only well-connected
deterministic hypergraphs. Note that this assumption is in particular fulfilled for hierar-
chical FA representing garbage-free heaps.

We cannot directly use the results on inclusion checking of Section 3.4, based on
a canonical forest representation and canonicity respecting FA, since they rely on well-
connectedness of hypergraphs from £(F) and £L(F"), which is now not necessarily the
case. However, by Lemma 3, every graph H from L(F) or L(F') is box-connected
and both H and H”" are deterministic. As we show below, these properties are still suf-
ficient to define a canonical forest representation of H, which in turn yields a canonicity
respecting form of hierarchical FA.

Canonicity respecting hierarchical FA. LetY be a set of proper SFA over I'. We aim
at a canonical forest representation F = (T1,...,T,,1,0) of a'UY-labelled hypergraph
H = @©F which is box-connected and such that both H and H”" are deterministic. By
extending the approach used in Section 3.4, this will be achieved via an unambiguous
definition of the root-points of H, i.e., the nodes of H that correspond to the roots of the
trees 11, ..., T, and their ordering.

The root-points of H are defined as follows. First, every cut-point (port or a node
with more than one incoming edge) is a root-point of Type 1. Then, every node with
no incoming edge is a root-point of Type 2. Root-points of Type 2 are entry points of
parts of H that are not reachable from root-points of Type 1 (they are only backward
reachable). However, not every such part of H has a unique entry point which is a root-
point of Type 2. Instead, there might be a simple loop such that there are no edges
leading into the loop from outside. To cover a part of H that is reachable from such
a loop, we have to choose exactly one node of the loop to be a root-point. To choose
one of them unambiguously, we define a total ordering <g on nodes of H and choose
the smallest node wrt. this ordering to be a root-point of Type 3. After unambiguously
determining all root-points of H, we may order them according to <y and we are done.

A suitable total ordering <z on V can be defined taking an advantage of the fact that
H"" is well-connected and deterministic. Therefore, it is obviously possible to define
=g as the order in which the nodes are visited by a deterministic depth-first traversal
that starts at input ports. More details on how <y may be defined and used when dealing
with sets of hypergraphs represented by hierarchical FA are a part of Appendix A.4.

We say that a hierarchical FA F over I' with proper nested SFA and such that
hypergraphs from [Ly ()] are deterministic and well-connected respects canonicity
iff each forest F € Lp(F) is a canonical representation of the hypergraph ®F. We
abbreviate canonicity respecting hierarchical FA as hierarchical CFA. Analogically as

12

for ordinary CFA, respecting canonicity allows us to compare languages of hierarchical
CFA component-wise as described in the below lemma.

Lemmad4. Let F; = (541],...,!2!,}1711,01) and F = (43,..., 22,12,02) be two hier-
archical CFA. Then, L(F1) C L(F) iff (1) n1 =ny, (2) I = D, (3) 01 = Oy, and
(HV1<i<n: L(A)C L(A?).

Language inclusion of sets of hierarchical CFA is handled in the same way as inclu-
sion of ordinary SFA. Hierarchical FA that do not respect canonicity may be algorithmi-
cally split into several hierarchical CFA, similarly as ordinary CFA (see Appendix A.4
for more details).

Finally, note that despite we have not provided a way of precise inclusion checking
for hierarchical SFA, it turns out that the described way of approximate inclusion check-
ing is precise at least in some cases as discussed in Appendix A.5 (and the precision
turns out to be sufficient for our case studies too).

5 The Verification Procedure Based on Forest Automata

We now briefly describe our verification procedure. As already said, we consider se-
quential, non-recursive C programs manipulating dynamic linked data structures. Each
allocated cell may have several next pointer selectors and contain data from some finite
domain (below, Sel denotes the set of all selectors and Data denotes the data domain).
The cells may be pointed by program variables (whose set is denoted as Var below).

Heap Representation. As discussed in Section 2, we encode a single heap configura-
tion as a deterministic (Sel/UDataU Var)-labelled hypergraph with the ranking function
being such that #(x) = 1 < x € Sel and #(x) = 0 < x € Data U Var, in which nodes
represent allocated memory cells, unary hyperedges (labelled by symbols from Sel)
represent selectors, and the nullary hyperedges (labelled by symbols from Data U Var)
represent data values and program variables!3. Input ports of the hypergraphs are nodes
pointed to by program variables. Null and undefined values are modelled as two spe-
cial nodes null and undef. We represent sets of heap configurations as hierarchical
(Sel U Data U Var)-labelled SCFA.

Symbolic Execution. The symbolic computation of reachable heap configurations is
done over a control flow graph (CFG) obtained from the source program. A control flow
action a applied to a hypergraph H (i.e., to a single configuration) returns a hypergraph
a(H) that is obtained from H by the following simple manipulation (we consider only
the basic actions to which all the rest can be reduced). Nondestructive actions x =y,
X =y->s, or x =null remove the x-label from its current position and label with it
the node pointed by y, the s-successor of that node, or the null node, respectively. The
destructive action x->s = y replaces the edge (vx,s,v) by the edge (vx,s,vy) where vy
and vy are the nodes pointed to by x and y, respectively. Further, malloc(x) moves the

13 Below, to simplify the informal description, we say that a node is labelled by a variable instead
of saying that the variable labels a nullary hyperedge leaving from that node.

13

x-label to a newly created node, free(x) removes the node pointed to by x (and links x
and all aliased variables with undef), and x->data = d,,,, replaces the edge (vy,dou)
by the edge (vx,dyew). Evaluating a guard g applied on H amounts to a simple test of
equality of nodes or equality of data fields of nodes. Dereferences of null and undef
are of course detected (as an attempt to follow a non-existing hyperedge) and an error
is announced. Emergence of garbage is detected iff a(H) is not well-connected.'*

We, however, compute not on single hypergraphs representing particular heaps but
on sets of them represented by hierarchical SCFA. For now, we assume the nested SCFA
used to be provided by the user. For a given control flow action (or guard) x and a hierar-
chical SCFA S, we need to symbolically compute an SCFA x(S) s.t. [Lg (x(S))] equals
{x(H) | H € [Lu(S)]} if x is an action and {H € [Lg(S)] | x(H)} if x is a guard.

Derivation of the SCFA x(S) from S involves several steps. The first phase is ma-
terialisation, where we unfold nested SFA representing boxes that hide data values or
pointers referred to by x. We note that we are unfolding only SFA in the closest neigh-
bourhood of the involved pointer variables; thus, on the level of TA, we touch only
nested SFA appearing on transitions adjacent with states accepting root-points. In the
next phase, by splitting some of the component TA, we make every node referred to by
x in the represented heaps an additional root-point every time such a node is currently
not a root-point (cf. Appendix B for some more details). Third, we perform the ac-
tual update, which due to the previous step amounts to manipulation with TA transition
rules adjacent with the states accepting root-points only (see Appendix B for details).
Last, we repeatedly fold (apply) boxes and normalise (transform the obtained SFA into
a canonicity respecting form) until no further box can be applied, so that we end up
with an SCFA. We note that like unfolding, folding is also done only in the closest
neighbourhood of root-points.

Unfolding is, loosely speaking, done by replacing a TA rule labelled by a nested
SFA by the nested SFA itself (plus the proper binding of states of the top-level SFA to
ports of the nested SFA). Folding is currently based on detecting isomorphism of a part
of the top-level SFA and a nested SFA. The part of the top-level SFA is then replaced
by a single rule labelled by the nested SFA. We note that this may be further improved
by using language inclusion instead of isomorphism of automata.

The Fixpoint Computation. The verification procedure performs a classical (forward)
control-flow fixpoint computation over the CFG, where flow values are hierarchical
SCFA that represent sets of possible heap configurations at particular program locations.
We start from the input location with the SCFA representing an empty heap with all
variables undefined. The join operator is the union of SCFA. With every edge from
a source location / labelled by x (an action or a guard), we associate the flow transfer
function f,. Function f, takes the flow value (SCFA) § at [as its input and (1) computes
the SCFA x(S), (2) applies abstraction to x(S), and returns the result.

14 Further, we note that we also handle a restricted pointer arithmetic. This is basically done by
indexing elements of Sel/ by integers to express that the target of a pointer is an address of
a memory cell plus or minus a certain offset. The formalism described in the paper may be
easily adapted to support this feature.

14

Abstraction may be done by applying the general techniques described in [6] to the
individual TA inside FA. Particularly, the abstraction collapses states with similar lan-
guages (based on their languages up-to certain tree depth or using predicate languages).

To detect spurious counterexamples and to refine the abstraction, we use a backward
symbolic execution like in [6]. This is possible since the steps of the symbolic execution
may be reversed, and it is also possible to compute almost precise intersections of hier-
archical SFA. More precisely, given SCFA S and S, we can compute an SCFA § such
that [Ly (S)] € [La(S1)] N [La(S2)]. This underapproximation is safe since it can lead
neither to false positives nor to false negatives (it could only cause the computation not
to terminate). Moreover, for the SCFA that appear in the case studies in this paper, the
intersection we compute actually is precise. More details can be found in Appendix C.

6 Implementation and Experimental Results

We have implemented the proposed approach in a prototype tool called Forester, having
the form of a gcc plug-in. The core of the tool is our own library of TA that uses
the recent technology for handling nondeterministic automata (particularly, methods
for reducing size and testing language inclusion [2,3]). The fixpoint computation is
accelerated by the so-called finite height abstraction that is based on collapsing states
of TA that have the same languages up to certain depth [6].

Although our implementation is an early prototype, the results are encouraging with
regard to the generality of structures the tool can handle, precision of the generated in-
variants as well as the running times. We tested the tool on sample programs with vari-
ous types of lists (singly, doubly linked, cyclic, nested), trees, and their combinations.

We have compared performance of our tool with the tool Space Invader [4] based
on separation logic and also with the tool ARTMC [7] based on abstract regular tree
model checking. The comparison with Space Invader was done against examples with
lists only since Invader does not handle trees. A higher flexibility of our automata ab-
straction manifests itself on several examples where Invader does not terminate. This is
particularly well visible at the test case with a list of sublists of lengths 0 or 1 (discussed
already in the introduction). Our technique handles this example smoothly (without any
need to add some special inductive predicates that could decrease the performance or
generate false alarms). The ARTMC tool can, in principle, handle more general struc-
tures than we can currently handle (such as trees with linked leaves). However, the
used representation of heap-configurations is much heavier which causes ARTMC not
to scale that well. (Since it is difficult to encode the input for ARTMC, we have tried
only some interesting cases.)

Table 1 summarises running times (in seconds) of the three tools on our case studies.
The value T means that the running time exceeded 30 minutes, 0.0.m. means that the
tool ran out of memory, and the value Err stands for a failure of symbolic execution.
The names of experiments in the table contain the name of the data structure handled
by the program, which ranges over “SLL” for singly-linked lists, “DLL” for doubly
linked lists (the prefix “C” means cyclic), “tree” for binary trees, “tree+parents” for
trees with parent pointers. Nested variants of SLL are named as “SLL of” and the type
of the nested list. In particular, “SLL of 0/1 SLLs” stands for SLL of nested SLL of

15

Table 1. Experimental results

[Example [Forester[Invader[ARTMC[[Example [Forester[Invader[ARTMC]|
SLL (delete) 0.04 0.1 0.5 ||SLL (reverse) 0.04 | 0.03

SLL (bubblesort) | 0.12 Err SLL (insertsort) 0.09 0.1

SLL (mergesort) | 0.12 Err SLL of CSLLs 0.11 T
SLL+head 0.04 | 0.06 SLL of 0/1 SLLs 0.13 T

SLLL inux 0.05 T DLL (insert) 0.07 | 0.08 04
DLL (reverse) 0.05 0.09 1.4 DLL (insertsort1) 0.35 0.18 1.4
DLL (insertsort2)| 0.16 Err CDLL 0.04 | 0.09

DLL of CDLLs 0.32 T SLL of 2CDLLSs} jpux| 0.11 T

tree 0.11 3 tree+stack 0.10

tree+parents 0.18 tree (DSW) 0.41 0.0.m.

length O or 1. “SLL+head” stands for a list where each element points to the head
of the list, “SLL of 2CDLLs” stands for SLL whose each node is a source of two
CDLLs. The flag “Linux” denotes the implementation of lists used in the Linux kernel
that uses a restricted pointer arithmetic which we can also handle. All experiments
start with a random creation and end with a disposal of the specified structure. An
indicated procedure (if any) is performed in between the creation and disposal phase. In
the experiment “tree+stack”, a randomly created tree is disposed using a stack in a top-
down manner such that we always dispose a root of a subtree and save its subtrees into
the stack. “DSW?” stands for the Deutsch-Schorr-Waite tree traversal (the Lindstrom
variant). We have run our tests on a machine with Intel T9600 (2.8 GHz) CPU and 4GiB
of RAM.

7 Conclusion

We have proposed hierarchically nested forest automata as a new means of encoding
sets of heap configurations when verifying programs with dynamic linked data struc-
tures. The proposal brings the principle of separation from separation logic into au-
tomata, allowing us to combine some advantages of automata (generality, less rigid
abstraction) with a better scalability stemming from local heap manipulation. We have
shown some interesting properties of our representation from the point of view of inclu-
sion checking. We have implemented the approach and tested it on multiple non-trivial
cases studies, demonstrating the approach to be really promising.

In the future, we would like to first improve the implementation of our tool Forester,
including support for predicate language abstraction within abstract regular tree model
checking [6] as well as implementation of automatic learning of nested FA. From a more
theoretical perspective, it is interesting to show whether inclusion checking is or is not
decidable for the full class of nested FA. Another interesting direction is then a possi-
bility of allowing truly recursive nesting of FA, which would allow us to handle very
general structures such as trees with linked leaves.

16

Acknowledgements This work was supported by the Czech Science Foundation (projects
P103/10/0306, P201/09/P531, and 102/09/H042), the Czech Ministry of Education (projects
COST OC10009 and MSM 0021630528), the Czech-French Barrande project 021023,

the BUT FIT project FIT-S-11-1, and the French ANR-09-SEGI project Veridyc.

References

1. P.A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, A. Rezine. Monotonic Abstraction for
Programs with Dynamic Memory Heaps. In Proc. of CAV’08, LNCS 5123, Springer, 2008.
2. P.A. Abdulla, A. Bouajjani, L. Holik, L. Kaati, T. Vojnar. Computing Simulations over Tree
Automata: Efficient Techniques for Reducing TA. In Proc. of TACAS 08, LNCS 4963, 2008.
3. P.A. Abdulla, Y.-F. Chen, L. Holik, R. Mayr, T. Vojnar. When Simulation Meets Antichains
(On Checking Language Inclusion of NFAs). In Proc. of TACAS’10, LNCS 6015.
4. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and H. Yang. Shape
Analysis for Composite Data Structures. In Proc. CAV’07, LNCS 4590, Springer, 2007.
5. A.Bouajjani, M. Bozga, P. Habermehl, R. losif, P. Moro, and T. Vojnar. Programs with Lists
are Counter Automata. In Proc. of CAV’06, LNCS 4144, Springer, 2006.
6. A. Bouajjani, P. Habermehl, A. Rogalewicz, T. Vojnar. Abstract Regular Tree Model Check-
ing. ENTCS 149(1), Elsevier, 2006.
7. A.Bouajjani, P. Habermehl, A. Rogalewicz, T. Vojnar. Abstract Regular Tree Model Check-
ing of Complex Dynamic Data Structures. In Proc. of SAS’06, LNCS 4134, Springer, 2006.
8. C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang. Compositional Shape Analysis by
Means of Bi-abduction. In Proc. of POPL’09, ACM Press, 2009.
9. J.V. Deshmukh, E.A. Emerson, and P. Gupta. Automatic Verification of Parameterized Data
Structures. In Proc. of TACAS 06, LNCS 3920, Springer, 2006.
10. B. Guo, N. Vachharajani, and D.I. August. Shape Analysis with Inductive Recursion Syn-
thesis. In Proc. of PLDI’07, ACM Press, 2007.
11. P. Madhusudan, G. Parlato, and X. Qiu. Decidable Logics Combining Heap Structures and
Data. In Proc. of POPL’11, ACM Press, 2011.
12. A. Mgller and M. Schwartzbach. The Pointer Assertion Logic Engine. In Proc. of PLDI’01,
ACM Press, 2001.
13. H. H. Nguyen, C. David, S. Qin and W. N. Chin Automated Verification of Shape and Size
Properties via Separation Logic. In Proc. of VMCAI'07, LNCS 4349, Springer, 2007.
14. J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02, IEEE CS, 2002.
15. S. Sagiv, T.W. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-valued Logic.
TOPLAS, 24(3), 2002.
16. H. Yang, O. Lee, C. Calcagno, D. Distefano, and P.W. O’Hearn. On Scalable Shape Analysis.
Technical report RR-07-10, Queen Mary, University of London, 2007.
17. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn. Scalable
Shape Analysis for Systems Code. In Proc. of CAV’08, LNCS 5123, Springer, 2008.
18. K. Zee, V. Kuncak, and M. Rinard. Full Functional Verification of Linked Data Structures.
In Proc. of PLDI’08, ACM Press, 2008.

17

A Forest Automata

A.1 Converting Unordered Trees to Ordered Trees

Let a I'-labelled tree T = (V,E) be given with <p C I' x I' being a total ordering on
I. For anode u € V, we let a(u) = {a € T'| Fa € V=*U) : (u,a,%) € E}, and for all
ie{l,...,|la(u)|}, weletai(u,i) =a ca(u) < |{d’ €a(u)|d =ra}| =i Intuitively,
a(u) is the set of labels of edges leaving a node u, and ai(u, i) gives the label of the i-th
edge leaving u w.r.t. <r. We define X to be the alphabet 2T ranked such that for A C T,
#(A) = L, catt(a). We say that an ordered tree ¢ : N* — Xr is an ordered representa-
tion of T iff there is a bijection of : V — dom(t) such that Vu € V ¥Vp € N*: ot(u) =
p = t(p)=a(u) AVic{l,... |a(u)|} Va € V=*O) . (u,ai(u,i),q) €E <= V1<
Jj <#(ai(u,i)): ot(u.j) = p(Xi_ #(ai(u,k))+ j—1). Note that, in fact, there is a unique
ordered representation of 7 which—referring to the appropriate bijection ot that is also
unique—we may denote of(T) with a slight abuse of the notation.

A.2 Transforming FA into Canonicity Respecting FA

For transforming an FA into an SCFA, we first label the states of the component TA of
the given FA by labels capturing in which possible orders root references appear in the
leaves of the trees accepted at these states (and which of the references appear multiple
times). Intuitively, following the first appearances of the root references in the leaves of
tree components is enough to see how a depth first traversal through the represented hy-
pergraph orders the roots of the tree components. The knowledge of multiple references
to the same root from a single tree is then useful for checking which nodes should re-
ally be the roots. The computed labels are subsequently used to possibly split the given
FA into several FA such that the accepting states of the component TA of each of the
obtained FA are labelled in a unique way. This guarantees that the obtained FA are
canonicity respecting up to the roots of some of the trees accepted by some component
TA need not be cut-points (and up to the ordering of the component TA). That is why,
subsequently, some of the TA may get merged. Finally, we order the remaining compo-
nent TA in a way consistent with the DFT ordering on the cut-points of the represented
hypergraphs (which after the splitting is the same for all the hypergraphs represented
by each obtained FA). For ordering the component TA, the labels of the accepting states
can be conveniently used.

To be more precise, consider a forest automaton ¥ = (4,...,4,,1,0),n > 1, and
any of its component tree automata 4; = (Q;,X,A;, F;), 1 < i < n. We can label each
state g € Q; by a set of labels (w,Y), w € {1,...,n}*, Y C{1,...,n}, for which there is
atree t € L(g) such that

— w is the string that records the order in which root references appear for the first
time in the leaves of ¢ (i.e., w is the concatenation of the labels of the leaves labelled
by root references, restricted to the first occurrence of each root reference) and

— Y is the set of the root references that appear more than once in the leaves of 7.

Such labelling can be obtained by first labelling states w.r.t. the leaf rules and then
propagating the so far obtained labels bottom-up. If the final states of 4; get labelled by

18

several different labels, we make a copy of the automaton for each of these labels, and in
each of them, we preserve only the transitions that allow trees with the appropriate label
of the root to be accepted. !> This way, all the component automata can be processed and
then new forest automata can be created by considering all possible combinations of the
transformed TA.

Clearly, each of the FA created above represents a set of hypergraphs that have the
same number of cut-points (corresponding either to ports, nodes referenced twice from
a single component tree, or referenced from several component trees) that get ordered in
the same way in the depth first traversal of the hypergraphs. However, it may be the case
that some roots need not correspond to cut-points. This is easy to detect by looking for
a root reference that does not appear in the set part of any label of some final state and
that does not appear in the labels of two different component tree automata. A useless
root can then be eliminated by adding transition rules of the appropriate component tree
automaton 4; to those of the tree automaton 4; that refers to that root and by gluing
final states of 4; with the states of 4; accepting the root reference i.

It remains to order the component TA within each of the obtained FA in a way con-
sistent with the DFT ordering of the cut-points of the represented hypergraphs (which
is now the same for all the hypergraphs represented by a single FA due to the performed
splitting). To order the component TA of any of the obtained FA, one can use the w-part
of the labels of its accepting states. One can then perform a DFT on the component TA,
considering the TA as atomic objects. One starts with the TA that accept trees whose
roots represent ports and processes them wrt. the ordering of ports. When processing
a TA A, one considers as its successors the TA that correspond to the root references
that appear in the w-part of the labels of the accepting states of 4. Moreover, the suc-
cessor TA are processed in the order in which they are referenced from the labels. When
the DFT is over, the component TA may get reordered according to the order in which
they were visited. This finally leads to a set of canonicity respecting FA.

Note that the above construction may sometimes unnecessarily split some compo-
nent TA. This may happen, e.g., if the first component TA accepts trees referring once
to the second component, and the second component TA accepts trees that refer either
once or twice to the first component and then to the second component. However, this
does not contradict with the fact that canonicity respecting forest automata representing
the original set of hypergraphs are obtained using the above construction.

Also note that, in practice, it is not necessary to tightly follow the above described
process. Instead, one can arrange the symbolic execution of statements in such a way
that when starting with a CFA, one obtains an FA which already meets some require-
ments for CFA. Most notably, the splitting of component TA—if needed—can be effi-
ciently done already during the symbolic execution of the particular statements (using
labelling of states that is stored with the component TA and incrementally updated

15 More technically, given a labelled TA, one can first make a separate copy of each state for
each of its labels, connect the states by transitions such that the obtained singleton labelling is
respected, then make a copy of the TA for each label of accepting states, and keep the accepting
status only for a single labelling of accepting states in each of the copies.

19

when computing new component TA from the existing ones).!® Therefore, transform-
ing an FA obtained this way into the corresponding CFA involves only the elimination
of redundant roots and the root reordering.

A.3 Checking Properness and Box-Connectedness

Properness of nested SFA may be checked relatively easily since we may take advantage
of the fact that nested SFA of a proper SFA must be proper as well. We start with nested
SFA of level 0 which contain no nested SFA, we check their properness and compute the
values of the backward reachability function br for them. Then, we iteratively increase
the level j and for each j, we check properness of the nested SFA of level j and compute
the values of the function br. For this, we use the values of br that we have computed
for the nested SFA of level j — 1 and we can also take the advantage of the fact that the
nested SFA of level j — 1 have been shown to be proper.

Let us have a canonicity respecting SFA S of some level such that its nested SFA
are proper and we know the value of the function br for all of them.!” We assume that
S contains at least one FA, and that the languages of all F € S are nonempty.

Moreover, to make the algorithms of checking properness and box-connectedness
faster and simpler, we exploit the fact that the algorithm we describe in Section A.4
in fact produces automata respecting canonicity in a somewhat stronger sense than de-
scribed in Section 4.3. We define the stronger notion of respecting canonicity below.

Given F = (4y,...,4,,1,0) € S, a path in a tree t € L(4;) from v to w, v,w €
dom(t), is a sequence v = vy, (ai,k1),v1 .., (@n,km),vm = w,0 < m, where for each
1 <i<m,v;isthe k;-th son of v;_; and #(v;) = a;. The path is backward passable iff for
each 1 <i <m, the label q; is backward passable at the k;-th position, which means that
there is a proper nested SFA S; € a; and j € br(S;) such that j+ Y (pcq,p=rs;b-25;) #(b) =
ki.

For each 1 <i < n and each r € L(4;), we define the reachability relation p'; C
{1,...,n} x{1,...,n} on the roots of F that contains a pair (j, k) iff one of the follow-
ing three conditions holds:

1. i = j and there is a leaf v of t with #(v) =k, or

2. i =k, there is a leaf v of ¢ with 7(v) = j, and the path from the root of # to v is
backward passable, or

3. there are nodes u, v, w of ¢ such that both v and w are leaves of the subtree rooted by
u, t(v) = j, t(w) = k, and the path from u to v is backward passable.

16 Moreover, note that the need to split automata appears only when some additional compo-
nent TA are introduced in the second step of the symbolic execution of pointer manipulating
statements (cf. Section 5 or Appendix B).

17 Notice that even though respecting canonicity assumes properness of nested SFA and we re-
quire here proper SFA to be respect canonicity, this is not a circular dependency. For an SFA
to respect canonicity, we only require its nested SFA to be proper. So, for an SFA of level j to
respect canonicity, we require properness of SFA of level j — 1 only. Respecting canonicity in
an SFA of level 0 does not depend on the notion of properness since SFA of level 0 have no
nested SFA. Properness on level j then depends on respecting canonicity on level j.

20

We say that F is an FA with uniform reachability iff for each 1 <i <n, p! is the
same for all r € L(4;). If it is the case, then we denote the reachability relation as p;. We
further say that an SFA S strongly respects canonicity iff it respects canonicity as defined
in Section 4.3 and all its elements are FA with uniform reachability. In Section A.4, we
show how to transform FA into SFA that strongly respect canonicity and we also show
how to compute the relation p;.

If ¥ is an FA with uniform reachability, we define the global reachability relation
p = (Uj<i<, Pi)* on roots of F.'® Notice that (i, j) € p iff for all H € [Ly(F)] there
are two nodes u and v that correspond to the i-th and j-th root of F, respectively, and
such that there is a path from u to v in H.

Properness of an SFA representing some box and computing br on it is then done
as follows. First, a singleton SFA { ¥ } with 1 being the only input port of ¥ is proper
iff (1) forall 1 <i<wn, (1,i) € p and (2) forall 0,0’ € O, (0,0') €p = (o',1) €p. If
{ ¥} is proper, then br({ F }) equals the set {o € O | (0,1) € p}. Finally, assuming that
an SFA § strongly respects canonicity, S is proper iff all its elements agree on the values
of I and O, and all the singleton SFA { ¥}, F € S, are proper and agree on the value of
br(F). This value then equals br(S).

Box-connectedness of an SFA S that strongly respects canonicity and that has proper
nested SFA for which we know the values of br can be checked similarly as properness,
i.e., using the relation p. Particularly, S is box-connected if and only if for all F =
(4,...,2,,1,0) € S and for all 1 < k < n there is some 1 € [such that (1,k) € p.

A.4 Transforming Hierarchical FA into Canonicity Respecting Hierarchical FA

The labelling considered in Section A.2 when transforming (non-hierarchical) FA into
sets of canonicity respecting FA does not cover the cases when the nodes which are the
roots of some tree components are reachable from nodes pointed by program variables
only when considering backward reachability through boxes. We solve this problem by
extending the labelling from Section A.2 as described below. Consider a hierarchical
forest automaton F = (4y,...,4,,1,0), n > 1, with a set X of nested SFA that are
proper and its component tree automaton 4; = (Q;, X, A;, F;), 1 < i < n. We label each
q € Q; by a set of extended labels (w,Y,Z;,2,), w e {1,...,n}*,Y C{l,...,n},Z; C
{1,...,n} xX xN,and Z, C{l,...,n} xX x Nx {l,...,n}* for which there is a tree
t € L(q) such that

— wand Y are as in the non-hierarchical case.

— (r,8,i) € Z; iff there is a backward passable'® path from a leaf labelled by the root
reference r to the root of the tree ¢, and this leaf is an S;-successor of some node in
the unordered tree ¢’ where ot(t') =1.

- (r,8,i,w") € Z, records the fact that in the tree ¢, there is a subtree ¢’ with the root
labelled by (w',Y’,Z},Z)) such that (r,S,i) € Z]. This labelling is used to resolve
cases where there is a backward passable path from a root reference into some
intermediate node in the tree, but not to the root of the tree .

18 Here, the * stands for the reflexive and transitive closure.
19 See A.3 for the definition of a backward passable path.

21

Such labelling can be obtained in a similar way as in the case of non-hierarchical
automata—i.e., by first labelling states w.r.t. the leaf rules and then propagating the so
far obtained labels bottom-up. Elements of the Z; sets are not propagated when a tran-
sition rule reads an edge without backward reachability at the concerned position. If
the final states of 4; get labelled by several different labels, we make a copy of the au-
tomaton for each of these labels, and in each of them, we preserve only the transitions
that allow accepting trees with the appropriate label of the root (in a similar way as in
Appendix A.2).

The extended labels guarantee that each FA F obtained above is an FA with uniform
reachability (see Appendix A.3). The relation p; can be derived directly from the label
of the final states of 4;. Particularly, if the label is (w,Y,Z;,Z5), then (j,k) € p; iff:

1. i= j and k appears in w, or
2. i=kand (j,8,l) € Z, for some S and /, or
3. (j,S,l,w') € Z, for some S and [such that k appears in w'.

Clearly, each of the FA created above represents a set of hierarchical hypergraphs
that have the same number of roots. However, as in the case of non-hierarchical hyper-
graphs, some roots need not correspond to root-points. This problem is solved in the
same way as in Appendix A.2.

In order to transform each obtained FA ¥ into the (strongly) canonicity respecting
form, its component TA are subsequently ordered according to the depth-first traver-
sal on the so-called root reference reachability graph. In this graph, nodes correspond
to the roots of the forest representation of the hypergraphs encoded by ¥, and edges
represent the reachability relation | J; <;<,, p;- The edges of the root reference reachabil-
ity graph are labelled by natural numbers using the extended labels as described below.
Successors of nodes in the root reference reachability graph are then explored according
to these numbers in the depth-first traversal on the graph.

Let us denote by x4 the node of the root reference reachability graph corresponding
to a component TA A4 (i.e., to the roots of the trees accepted by A4). For each component
TA 4, assuming that its final states are labelled by (w,Y,Z;,Z,), we label the edges lead-
ing from x4 to the nodes corresponding to TA referenced from w by natural numbers
assigned in the order given by w. Then, for each component TA 4 of F whose labelling
of final states contains a Z; triple (r,S,i) where r references a TA 4’, we label the edge
leading from x4 to x4 by a number assigned to the pair (S,i) in the lexicographic or-
dering on all such pairs that appear in the Z; triples of the labels of the component TA
of F. (We use numbers greater than those used in the previous phase of numbering).
Finally, for each label (r,S,i,w’) of the final states of some component TA 4, the TA
A’ referenced by r, and each TA A" referenced from w’, we label the edge leading from
Xg' 10 xgv by a number obtained from the lexicographic ordering of the triples (S,i,r)
where 7 ranges over references that appear in the w’ parts of the Z, labels. (We again
use numbers greater than those used in the previous phases of numbering.) If multiple
numbers are assigned to a single edge, the smallest is chosen.

The just described ordering of the component TA of a given FA based on the root
reference reachability graph orders the component TA in a way consistent with the
order =g that is induced on the root-points of the represented hypergraphs by the further
described deterministic depth-first traversal on the corresponding backward reachability

22

t

Fig. 2. Two tree components problematic for handling the order of roots

hypergraphs H?". In particular, the corresponding DFT on the backward reachability
hypergraphs starts from the input ports and it is driven by the fixed ordering on the input
ports and the labels of hyperedges. The ordering of the inverted hyperedges (labelled
by symbols from X*") is inherited from the ordering of the hyperedges on which they
are based and from the number of the output port used. Moreover, the DFT normally
explores first original hyperedges and only then the inverted hyperedges. However, the
inverted hyperedges are prioritised whenever the traversal comes to a node x using an
inverted hyperedge and x is not a root of some tree. In such a case, the DFT continues
the search first by inverted hyperedges and only then by the regular hyperedges.

The above described handling of the inverted hyperedges forces the DFT on back-
ward reachability hypergraphs to reach a root of a tree component before alternating
the direction of the DFT inside the tree component. We explain the reason behind this
on an example. Suppose that we have a TA accepting tree components ¢ and #, rooted
at the root-point 2 as depicted in Figure 2. Suppose that all the edges in these trees are
backward passable and that the accepting state of this automaton is labelled by the fol-
lowing label (“13”,{1,3},{(1,S,1), (3,5,2)}, {(1,S,1,“13"),(3,S,2,“13”)}). Further,
assume that the root-point ;20 is the only input port of the represented hypergraphs.
Hence, the DFT on the described trees will start from the reference to ry (represented
by the node labelled by 1 in Figure 2). In the backward reachability hypergraph based
on ¢, a DFT without the described priority of inverted hyperedges would go from r;
to the internal node of #; using the inverted hyperedge (S, 1) and then it would con-
tinue back to 1, backtrack, and then go to r3 via the different output ports of S. So, the
induced ordering of the root-points would be 1 <y 3 <g 2. On the other hand, in the
backward reachability hypergraph based on #,, such a DFT would go from r; to r, and
then to r3, giving a different induced ordering of the root-points, namely 1 <y 2 <y 3.
The described DFT forces the search in the backward reachability hypergraph based on
t; to continue from the internal node of #; by an inverted hyperedge to r» and only after
that to continue to r3. So, the induced ordering is the same in both the cases. Note that
the same ordering is obtained by the DFT on the root reference graph where the edge
from r| to rp has a bigger priority than the edge from r; to r3.

20 1 et us denote the i-th oot point as ;.

23

The FA obtained after splitting based on the extended labels described above, re-
moving the redundant roots, and re-arranging the particular TA according to the root
reference reachability graph are still not necessarily canonicity respecting. Respecting
of canonicity is not guaranteed in cases when there exist root-points of Type 3 in the
represented hypergraphs—i.e., when there exist loops without any incoming edge in
these hypergraphs. This situation can easily be detected by looking for a component
TA accepting a tree representation of such loops. In particular, this amounts to looking
for a component TA accepting trees such that (1) their roots are not ports in the forest
representation, (2) they are not referred from the trees accepted by any other TA—this
can easily be checked by inspecting the label w of the final states of the other TA, and
(3) they contain a single leaf with a root reference to itself—this can be checked by
inspecting the labels w and Y of the accepting states of the concerned TA. The canoni-
sation procedure then rearranges the concerned TA such that the root of each accepted
tree is the smallest node according to the above described depth-first traversal on H®"
(i.e., the node that should be the canonically chosen root-point of Type 3). Intuitively,
this amounts to a rotation of the concerned backward reachable loops represented by
tree automata rules so that the nodes that are identified as the root-points become the
roots of the tree representation.

More formally, let 4, be the TA that we need to rotate, r being the number of
4, in the concerned FA, and let (w™, Y% Z* 7-") be the label associated with the
accepting states of 4,. The states of A4, that accept the nodes that should become the
new roots are identified as follows. Let k& be the number of the root-point from where
the DFT on the represented hypergraphs comes (without passing through any other root-
points) to the nodes corresponding to the roots of the tree components represented by
A, Identifying k is easy since x g, is the predecessor of x 4, in the DFT performed on the
root reference reachability graph. The edge from x4, to x4, exists in the root reference
reachability graph due to existence of a backward passable path from the root of each
tree represented by A4, to a root reference to k. Existence of this path is captured by the
label qu’, concretely by an element (x,S,i) € Zlﬂ’.21

Now, the TA 4, = (Q,,X,A,, F,) can be rotated as described in the following. Let

R=(...,qi,,--,qiy,---) — q € A be arule such that the w label of ¢;, contains r, and
the Z; label of ¢;, contains (k,S, i).%2 Such a rule appears exactly once in each run of
A since a reference to r may appear only once at the leaf level (otherwise we would
not be dealing with a root-point of Type 3), and also S; can link with a single leaf
only (otherwise we would obtain a non-deterministic hypergraph). If there are more
rules like R in A4,, then we may split 4, to several automata containing a single rule
of the described kind, and process each of the automata separately (which we assume
to be the case in the following). When we transform 4, to A/ that accepts trees in
which the concerned loops are represented in the appropriately rotated way, the rule
R is redirected to a newly introduced accepting state, the rules that used to originally
lead to accepting states are redirected to states originally reading a reference to r, and

21 If there are more backward passable paths from the roots of the trees represented by 4, to
a root reference to k, then each such path has a different record in Ziq’ . In such a case, we
choose the one with the smallest (S,).

22 Note that qi, and g;, can appear swapped on the left-hand side of the rule too.

24

reading a reference to r while going to g is allowed. Formally, for some gy, € O,
AL = (QrU{qsin}, T, AL {qsin}) where A" = (A, \ ({R}U{-> q})) UA". The set of the
newly added rules is defined as A” = {(..., i, Gir»---) ~> qrin} U{(q1,---,qk) A

qr | (‘hv--w@() i}qf EAhqf EFra_r> qr eAr}u{_r> CI}-

As a consequence of the rotation, the final state of the rotated TA may have a differ-
ent label (w,Y,Z,Z,) than the original one.” This may cause that the FA with the new
TA inside has a different root reference reachability graph and hence different order-
ing of the roots. Therefore after each TA rotation, we recompute the root reachability
graph and reorder the forest. Note that the order of the roots that are originally ordered
before the root of the rotated TA is not affected. Therefore, even if there are more root-
points of Type 3, the rotations on each of them will be done at most once, and hence the
canonisation procedure terminates.

As mentioned in Appendix A.3, the described canonisation procedure yields FA that
strongly respect canonicity which allows us to check properness and box-connectedness
by computing the reachability relation on the roots of the FA.

A.5 Cases When Inclusion on Hierarchical FA is Precise

In many practical cases, approximating the inclusion [Ly (F)] C [Ly (F')] by deciding
L(F) C L(F') actually is precise. Two general conditions that guarantee this are the
following:

1. Distinct nested SFA of F and F’ represent distinct boxes (i.e., there are no two
nested SFA that represent the same box but are not identical and hence represent
two different labels in the alphabet of the component tree automata of ¥) and

2.VHe Ly(F)VH € Ly(F'):H#H = [H]|N[H'] =0.

It can be seen that (2) holds if the following two conditions hold:

a. nested SFA of F and ¥’ represent a set of boxes X that do not overlap and
b. every H € Ly (F)U Ly (F') is maximally boxed by boxes from X.

The notions of maximally boxes hypergraphs and non-overlapping boxes are defined as
follows. A hypergraph H is maximally boxed by boxes from a set X iff all its nested
boxes are from X and no part of H can be “hidden” in a box from X, this is, there is
no hypergraph G and no component C € B, B € X such that plug(G,e,C) = H for some
edge e of G. Boxes from a set of boxes X over I' do not overlap iff for every hypergraph
G over I, there is only one hierarchical hypergraph H over I" which is maximally boxed
by boxes from X and such that G € [H].

We note that nested SFA that appear in the case studies presented in this paper
satisfy Condition (1). Moreover, the boxes represented by them satisfy Points (a) and
(b), therefore Condition (2) is satisfied too. Hence, inclusion tests performed within our
case studies are precise.

23 The order of root references in the string w can be different, and in each (k,S,i,w’) € Zy, w'
can be ordered differently as well. Y and Z; stay unchanged.

25

B Symbolic Execution

In Section 5, we have outlined several phases of symbolic execution of a program state-
ment over an FA. The first phase may involve unfolding of some of the nested SFA
hiding data values or pointers to be manipulated. Next, certain statements can require
additional root nodes (and hence component TA) to be added, which is therefore done in
the second phase. The third phase implements the actual effect of the statements in the
form of a syntactical manipulation with the rules and states of the FA. Finally, the mod-
ified FA is transformed into the canonicity respecting form (including possible folding
of nested SFA). The main idea of the first and fourth point is discussed in Section 5.
Below, we briefly discuss the second and the third point.

Introduction of Additional Roots. In certain cases, one cannot execute the effect of
a program statement directly on the FA at hand. Consider for example an FA ¥ and the
statement y := x->s. Here, for any hypergraph represented by ¥, x points to a cut-
point that corresponds to the root of a tree accepted by some component TA of ¥.
We want y to point to the node which is reachable from the node pointed to by x via
the selector s. After executing the statement, y will point to a cut-point. However, it
may be the case that the node x->s (i.e., the node that is the successor of the node
pointed to by x via the selector s) is currently not a cut-point and it is accepted at an
ordinary automaton state (not an accepting state as in the case of a root). Therefore, the
TA accepting trees whose roots are pointed to by x has to be split into a new pair of TA
such that the first automaton accepts trees that have a reference to the second automaton
as the s-successors of their roots nodes, and the second automaton describes the part of
the heap starting at the x->s nodes in the trees accepted by the original automaton.?*
For the sake of simplicity, we now assume that the TA to be split contains a single
transition leading to an accepting state only and that the accepting state does not appear
inside any left hand side of a rule of the TA. A general TA can be easily transformed
into a set of several TA obeying this restriction. Let 4 = (Q,X,A,{¢y}) be the TA that

we want to split, let (..., gs,...) — gy € A be the only transition that leads to gy,
and let g; € O be the state at which the nodes accessible via the selector s from the
roots of the trees accepted by A are accepted. We replace 4 by TA A4; and A, such
that 4 references 4 via s. Formally, 4, = (Q,X,A, {qs}), A = A\ {(...,qs,...)

qr}U{(-..sqr...) == qs,— q,} where r is a root reference to the newly created
TA A, and A, = (Q,%,A,{gs}). Since this transformation my cause that many states
of A4; and A4, become useless the automata are subsequently reduced (by removing

24 Sometimes, it may happen that in some trees accepted by the given TA, a split is needed
whereas in the others not. This can happen when in the trees accepted by the TA there is a tree
where x->s is a root reference and another one where x->s is an intermediate node (accepted
at an ordinary state). As an example, there may be sequences of s-selectors below the node
pointed by x of length one or more. For length one, one does not need to introduce a new root
since some root is already reached via s, which is, however, not the case for the other lengths.
In such a scenario, the TA has to be first split into two TA accepting trees that do or do not
need a split (which can be done by inspecting the rules in the immediate neighbourhood of the
accepting states), and then the split is done only in the latter case.

26

useless states and subsequently by using, for instance, techniques for simulation-based
reduction of nondeterministic automata).

Executing the Actual Effect of Pointer Manipulating Statements on FA. We now de-
scribe the execution of particular pointer manipulating statements on FA. Null and
undefined values are represented by special pointer variables null and undefined.
During the whole execution, these variables point to two designated cut-points with no
successors. If a statement requests (1) an access to or a change of a successor of these
nodes, or (2) a value or a change of data stored in these nodes, then we have encoun-
tered a null or undefined pointer dereference, which is followed by examining the error
trace as described in Appendix C. Below there is a brief description of how the particu-
lar pointer manipulating statements can be executed over FA provided that they are not
working with undefined or null pointers in a forbidden way:

- x = y,x = null: x is removed from all labels in which it appears. Then we label
by x each transition that is labelled by y (or by null, respectively).

— x = malloc(): x is removed from all labels in which it appears. Then a new tree
automaton accepting exactly a single tree encoding a single heap node pointed by
x and having undefined successors is added.

— x = y->s: x is removed from all labels in which it appears. Then the TA which
accepts nodes pointed by vy is split at the selector s, and the transitions of the newly
created TA leading to its accepting state, at which y->s is accepted, are labelled
by x.

— x->s = y: The TA that accepts nodes pointed by x is split at the selector s. Then
the transition (...,qs,...) LN qr where gy is an accepting state and gy accepts
a reference to the newly created TA accepting the s-subtrees of the trees accepted
by the original TA is substituted by the transitions (...,q,,...) — qf and — g,
where r is a reference to the TA accepting trees whose root is labelled by y.

- x->data = d: Each transition (q1,...,q,) — qr of the TA accepting the nodes

pointed by x where g is the accepting state is replaced by (q1,...,qx) = qf
where d’ is obtained from a by changing the data value to d.

— free(x): The TA that accepts nodes pointed by x is split at all outgoing selectors.
Then the modified TA accepting the nodes pointed by x is removed from the given
FA, and x is added to the labels associated with the special undef node.

— Tests over pointer variables and data stored in cells pointed to by variables are eval-
uated by examining labels of rules leading to accepting states of the TA that accept
trees whose roots represent nodes pointed by the concerned pointer variables. These
rules contain all the needed information (e.g., testing equality of pointer variables
means that these variables should be associated with the same root node). After
each test, the original SFA is split into two SFA—one of them accepts the trees that
satisfy the tested condition, and the other one accepts the trees which do not satisfy
it.

27

C Backward Symbolic Execution

In what follows, we discuss how a program path that is suspected to lead to an error may
be executed backwards in order to check whether it really leads to an error or whether
it corresponds to a spurious error (implying a need to refine the abstraction used).

First, let us briefly recall some essentials of the forward symbolic execution of a pro-
gram over FA. The statements of the program are processed sequentially. The symbolic
execution of a statement over a set of configurations represented by a CFA can cause the
computation to branch either due to several possible outcomes of some operation over
the given set configurations and/or due to the procedure of transforming an FA resulting
from the operation into an SCFA (which is then further processed element-wise, hence
the branching). The branching creates an execution tree whose nodes are labelled by
CFA and the appropriate control line. The nodes of the tree where the computation can
still continue are kept in memory together with information on how to reverse the effect
of the statements that generated the particular CFA (e.g., after a statement assigning
some data field, i.e., x->data = d, we remember the original value of the data field
x->data, etc.).

Once the forward symbolic execution hits an erroneous configuration, the program
trace suspected to lead to an error can be extracted by traversing the execution tree
from the leaf node in which the (possible) error was detected towards the root. Now,
it is necessary to check whether the path really leads to an error or whether a spurious
counterexample arising just due to the applied abstraction was detected. In the latter
case, the abstraction is to be refined.

More precisely, assume that we have a suspected error trace—a branch of the exe-
cution tree of the form %y, ..., F, where for each 0 <i <n, ¥; is a CFA encoding a set
of possible configurations of the heap. Here, ¥y represents the set of initial configura-
tions (in our case, usually the empty heap), and ¥, encodes a set of configurations that
include some bad configurations. This is, there is a nonempty set Bad C [Ly(%,)] of
hypergraphs that are erroneous meaning that they, e.g., represent heaps with garbage,
heaps where a value of a variable to be dereferenced is null or undef, heap configura-
tions reached at a designated error location, etc. Assume that we have a CFA 75,4 such
that with [Ly (Fpaq)] = Bad. Such a CFA is directly obtained when a designated error
line is hit; in the case of the generic pointer manipulation errors, a CFA encoding con-
figurations that would cause such an error are produced by the symbolic execution of
the appropriate statement (as one of the cases of its execution). Of course, sometimes,
one can obtain an SCFA for the bad configurations, but this can be processes element-
wise. Further, for every 1 <i < n, the CFA ¥; was obtained from #;_; by symbolically
executing some program statement in the following four steps described in Section 5
and also in Appendix B, followed by abstraction:

1. materialisation (unfolding boxes represented by SCFA at the relevant FA transi-
tions),

2. introduction of additional root-points into the represented heaps (and hence com-

ponent TA on the level of FA),

performing the actual update,

4. iterative folding and normalisation yielding an SCFA.

et

28

If we are only interested in determining whether the obtained program path is a real
or spurious counterexample, we execute the trace again but without abstraction. If after
the n-th step we end up with an SCFA representing a set that contains bad configura-
tions, then the counterexample is real, otherwise it is spurious. However, to be able to
refine abstraction within the framework of abstract regular tree model checking in a way
driven by the counterexample, we need a backward execution which allows us to deter-
mine the exact point in the symbolic execution where a use of abstraction introduced
configurations from which a spurious counterexample was generated.”

As usual in CEGAR, a backward execution of a program trace computes a chain
Fad = F} s T]-’ of CFA representing sets of configurations where j < n and ei-
ther j > 0 is the greatest index such that [Ly (F;)] N [Lu(F/)] =0 or j=0if there
is no such index. For each j < i <n, #, is derived from ¥/ by applying back-
wards the steps by which ¥; was obtained from ¥;_;, but without abstraction. If j =0
and [Lg(F))] N [La(Fo)] # 0, then the backward execution reached the initial con-
figurations which means that the error trace is feasible in the verified program. If
[Lu(F))1 N [Lu(F;)] = 0 for some j > 0, then the counterexample is spurious, and
fj’ 1 represents some configurations introduced by abstraction that caused the discov-
ery of the spurious counterexample. In that case, we may use the pair 9-']-’ 1o Fjr1 to
refine the abstraction to prevent this spurious error trace from appearing in further ver-
ification by abstract regular tree model checking [6].

To be able to revert Steps 1 to 4 of the symbolic execution of a program statement
in order to obtain 7, from ¥/, we remember certain information along the compu-
tation path. More precisely, we remember where we performed folding and unfolding
(to revert Step 1 and Step 4). Additionally, we remember certain information to revert
the actual update (Step 3) as we mentioned already at the beginning of this appendix
and also the actions which were taken in order to transform the obtained FA into CFA
(Step 4).

Now, assume that we have computed TZ'H in the backward execution and we want
to revert the effect of the i-th statement. First of all, we have to iteratively revert the
iterative folding and normalisation (the need to iterate stems from possibly unfolding
multiple boxes folded in the forward execution). The folding is reverted by simply un-
folding the corresponding SFA. The normalisation is reverted by splitting certain com-
ponent TA (in cases where some root-points were removed in the forward execution)
and by an inverse reordering of the component TA. Next, we revert the effect of the ac-
tual update, which is typically achieved by using the stored additional information about
what in the original configurations was changed by the actual update. Step 2 only intro-
duces additional roots in the forward execution which are redundant wrt. the canonical
representation. Therefore, it can be reverted by performing the standard normalisation
procedure which converts the given FA into a CFA. Finally, we have to revert the effect
of unfolding performed in Step 1, which is done by folding wherever needed.

25 We note that in the current implementation where we use the finite-height abstraction [6],
we only check whether the counterexample is spurious or not. If it is, we simply globally
refine abstraction by increasing the abstraction height by one. However, we argue here that
the backward execution is possible, which is crucial for using the more advanced predicate
language abstraction (which is to be implemented in Forester in the near future).

29

Checking emptiness of the intersection [Ly (Fi—1)] N [La(F.,)] is an issue by it-
self. For two general hierarchical FA F = (4,,...,4,,1,0) and ¥’ = (By,...,B,,1,0),
we do not know yet whether the intersection emptiness problem is decidable. How-
ever, we solve this problem analogically as in the case of checking language inclu-
sion by using a safe approximation. This is, we compute the automaton ¥ N F' =
(41N By,..., N By,1,0) where 4; N B; is the usual intersection of two tree automata.
It obviously holds that [Ly(F N F)] C [Lu(F)]N[La(F')]. Notice that by having
a method that underapproximates the intersection, the only thing that can happen is that
emptiness of the intersection [Ly ()] N[Ly (F')] is detected sooner during the back-
ward execution (for a larger i) than it should be (or it is detected in cases where it should
not be detected at all). The only possibly consequence of this is that we attempt to refine
abstraction instead of signalling a real counterexample or that we refine the abstraction
in a wrong way. Both of the cases can cause the computation not to terminate, but it
cannot lead to introducing false positives neither false negatives.

Moreover, again like in the case of language inclusion, for many practical cases, the
above way of computing intersection of hierarchical FA gives precise results. Namely,
it is precise under the same conditions under which our language inclusion check is
precise (see Appendix A.5). We note that for SCFA that appear in our case studies, the
conditions from Appendix A.5 hold and thus intersection can be computed precisely on
them.

30

