
EXPLORATORY MODELING WITH SMALLDEVS

Vladimı́r Janoušek

Előd Kironský

Faculty of Information Technology

Brno University of Technology

Božetěchova 2, 61266 Brno, Czech Republic

e-mail: {janousek | kironsky}@fit.vutbr.cz

KEYWORDS

DEVS, prototype object, trait, delegation, clonig, reflectivity,
Smalltalk, Self, GUI

ABSTRACT

This paper is an introduction to the simulation and model-
ing framework and tool SmallDEVS. It is a new modeling
and simulation framework for Smalltalk. SmallDEVS is dif-
ferent from other tools of its category, because of its open-
ness and reflective features. It supports class-based as well
as prototype-based object-oriented model construction. Its
meta-object protocol allows the models to be constructed
from scratch and inspected and edited during run-time. In-
teractive modeling and simulation is supported by a graph-
ical user interface which has been highly influenced by the
user interface of Self.

INTRODUCTION

This paper introduces a new modeling and simulation tool for
the programming language Smalltalk named SmallDEVS. It
is an experimental software. SmallDEVS has been designed
mainly for experiments with evolving, self-modifying
models and with interactive modeling under simulation.
The tool is being developed and tested since 2003. As one
could already foretaste, SmallDEVS is based on the DEVS
(Discrete Event System Specification) formalism. DEVS
was introduced in 1976 by Bernard P. Zeigler (University of
Arizona). The formalism specifies a system hierarchically.
A model can be specified as a coupled model comprising
interconnected subsystems, or as an atomic model. Atomic
model is a state machine described by its state variable and
four functions – external transition δext, output function λ,
internal transition δint, and time advance ta. The theory
behind DEVS comprises also abstract simulators for atomic
and coupled models.

DEVS makes systems modeling and simulation clear
and easily understandable whereas it keeps a relatively
simple structure. There are many variants of the DEVS
formalism. This text will consider only the classical version
of DEVS.

Since the invention of the DEVS formalism, new im-
plementations for various programming languages are
coming up. Most of these programming languages are
object oriented like C++ or Java. SmallDEVS package is
a DEVS implementation for Smalltalk. While SmallDEVS
allows us to implement a model as a class in a traditional
fashion, we prefer the use of prototype objects to create
models because of a higher flexibility of this approach. The
creation of the models and the experimentation with them
is supported by a graphical user interface which is highly
influenced by the user interface of Self, a prototype-based
object oriented language and system (Ungar and Smith
1989). More concretness and more interactivity in the
construction of models of discrete-event systems—these are
the main ideas behind SmallDEVS development. It is our be-
lieve that the implementation of these ideas can significantly
contribute to the quality of the “understanding by modeling”.

Our motivation to design and implement a new simula-
tion and modeling tool is discussed in the next sections. We
will explain, why did we choose the Smalltalk programming
language and what are the innovative features of Small-
DEVS. We assume, that the reader is already familiar with
the details of the DEVS formalism (Zeigler at al. 2000) and
therefore we will skip it.

CLASS-BASED DEVS IMPLEMENTATION

The majority of DEVS modeling and simulation tools is
implemented in C++ (Zeigler at al. 1996) or Java (Zeigler
at al. 1997). An implementation of a DEVS model in a
class-based object-orented languages obviously leads to the
modeling by subclassing the existing models. The subclasses
can define new instance variables for the representation of
state; redefine the methods corresponding to the four main
functions (internal transition, external transition, output
function and time advance function) of atomic models; and
specify a component list and a coupling relation for the
coupled models. An initialization method is responsible for
creating input and output ports.

SmallDEVS supports the class-based approach to the
modeling in a way that is very similar to that of Python
DEVS (Bolduc and Vangheluwe 2002). Both of these
frameworks are very close because they are implemented in

dynamically typed languages. Nevertheless, this paper deals
with a more flexible approach—a prototype-based model
construction, which is explained in the next section.

PROTOTYPE-BASED DEVS IMPLEMENTATION

The class-based modeling brings some complications into
the play when we deal with evolving and self-modifying
models. Especially the DEVS implementations which are
built using statically compiled languages such as Java and
C++ are very limited in their flexibility because all the code
which could be possibly needed has to be known at the
compile time. Dynamic modifications to a model during a
simulation are limited to the structural changes only. Every
time we want to modify the behavior of an atomic model,
we must recompile the code of the coresponding class and
restart the simulation.

The traditional approach to the dynamic model imple-
mentation relies on a well-designed set of fine-grained
atomic models. The dynamics is then expressed by the
structural changes of the coupled models. Dynamic lan-
guages are more flexible. They allow also the atomic models
to be dynamicaly changed during runtime. Nevertheless,
even the dynamic class-based object-oriented languages
do not offer enough flexibility. For example, if we have
several instances of the same model and we want to change
only one of them in a specific way, most likely we have
to define a separate class for it. It is not an essential prob-
lem, but it is a complication which can be easily eliminated
by switching to the prototype-based (i.e. classless) approach.

SmallDEVS is implemented in Squeak Smalltalk (In-
galls et al. 1997) using an extension, that allows to modify
the structure and behavior of the individual instances. This
extension is installed with the package Prototypes. This
package makes possible to create prototype objects. A
prototype object can be created as an instance of the class
PrototypeObject, or as a clone of another prototype object:

aPrototypeObject := PrototypeObject new.

anotherPrototypeObject := aPrototypeObject clone.

The class PrototypeObject defines a protocol that al-
lows us to edit slots and methods for any particular prototype
object without a need to define a new class for it:

aPrototypeObject addSlots : {
′name1′− > anObject.
′name2′− > anotherObject}.

aPrototypeObject addMethod :
′messageSelector ...(method body)...′.

Values of the slots can be accessed by sending the ap-
propriate messages to the objects, e.g. self slotName, or
self slotName : aV alue.

Shared behavior can be specified by means of traits. Traits
are prototype objects which contain methods which are
intended to be shared (dynamically inherited) by other

objects (models). Other objects can delegate messages to
them (it is also refered to as the dynamic inheritance or the
instance-based inheritance). The delegates (traits) can be
specified by the delegation slots:

aPrototypeObject addDelegates : {
′name1′− > aTrait.
′name2′− > anotherTrait}.

Note that the traits can also delegate parts of their be-
haviour to some other traits. This way, the traits can play
the role of classes and the delegation can play the role of
inheritance. Also note that a multiple delegation is possible,
as well as a runtime changes of the delegates. We can
see that no feature of class-based object-orientation has
been lost. What is more important, the prototype-based
object-orientation offers more flexibility which is needed for
interactive modeling and model refactoring. The prototype
objects can behave completely differently depending on
their slots and methods which can be incremetally edited at
run-time (we can add and also remove slots, methods, and
delegates). This feature opens a huge box of possibilities.
The atomic models can be created in a very simple way
from prototypes by adding slots, delegates and methods and
then they can be modified dynamically. Such a degree of
flexibility is needed to support

• reflective and evolving systems modeling – as an ex-
ample, we can mention anticipatory systems (Rosen
1985), which perform nested simulations of themselves,
possibly with some modifications, in order to sup-
port their decisions about their next actions and self-
improvements;

• interactive and incremental construction of the models
under simulation – we call it exploratory modeling, sim-
ilarly to the notion of exploratory programming which
represent the way of programming in Smalltalk which
is based on wast exploration of the actual state of a run-
ning program, together with the program modifications
during runtime.

Reflectivity is an essential feature of SmallDEVS – we can
not only build a model incrementally, but we can also inspect
what has been actually built (what is really needed if we
allow models to evolve automatically) and in which state the
simulation is. Anything we can do interactively, the models
can do themselves as well. This leads to an interesting area
of reflective systems modeling and simulation.
When we used class-based approach, we needed classes
to be created and discarded during the model evolution.
Smalltalk can be used this way (classes can be created
even on the fly, without registering in the smalltalk class
repository), but the prototype-based approach is much
simpler (we don’t have to deal with classes if we don’t need
them) and more flexible (thanks to the dynamic inheritance
and individual objects modifications).

SmallDEVS allows an atomic DEVS to be created by
executing the following expressions:

model := AtomicDEV SPrototype new.

model addSlots : {′name′− > value....}.

model addInputPorts : {′name1′. ′name2′....}.

model addOutputPorts : {′name1′. ′name2′....}.

model addDelegates : {′name′− > aTrait}.

model intTransition : ′...(method body)...′.

model extTransition : ′...(method body)...′.

model outputFnc : ′...(method body)...′.

model timeAdvance : ′...(method body)...′.

A coupled DEVS can be created by executing the fol-
lowing expressions in SmallDEVS:

model := CoupledDEV SPrototype new.

model addInputPorts : {name1.name2....}.

model addOutputPorts : {name1.name2....}.

model addComponents : {name− > aComponent....}.

model addCouplings : {

#(component1 port1) − > #(component2 port2).

#(component3 port3) − > #(component4 port4)....}.

OPERATING SYSTEM

SmallDEVS has been designed specifically for the experi-
menting with several interesting techniques such as multi-
simulations, reflective systems simulation studies, interactive
modeling and simulation, and model based design. The fol-
lowing requirements were set on SmallDEVS:

• manipulation with models (create, delete, inspect, edit),

• manipulation with simulations (run, stop, resume, in-
spect, cloning, saving and restoring simulation state,
nested simulations),

• it should be no difference between manipulating models
in a running simulation or separately,

• interactivity and visualization.

As to the manipulation with models, the abstract examples
in the previous section showed how to create models incre-
mentally. Beside that we are able to aquire any detail about
the model - slot names and content, method sources, ports,
delegates, components, couplings and we can also remove
them and/or edit them. This makes full inspecting and
editing of our model possible. These changes can be made
either interactively or programatically. The same operations
are also available during a running simulation. SmallDEVS
makes sure, that the editing operations are executed safely
between the simulations steps. One can also synchronize
the simulation with real-time to support interactive and HIL
simulations.

Simulations can be started and controled in a follow-
ing way:

aSimulation := aModel getSimulatorRT.

aSimulation stopT ime : F loat infinity.

aSimulation RTFactor : 1.

aSimulation start.

aSimulation stop.

The simulation runs on the background and it is possi-
ble to start and control more simulations simultaneously.
The models, their parts, as well as the simulations, can be
cloned:

aModel2 := aModel1 copy.

aSimulation2 := aSimualtion2 copy.

A copy of a simulation creates a copy of the complete
state of the simulation. Note that a copy of a model can be
made at any time during the simulation, of course. What is
important, any copy of the model made during the simulation
can be used as an initial state for another simulation, and/or
saved as a text for possible editing of the code by hand.

An important responsibility of SmallDEVS operating
system is persistency. On the basic level, any object pointed
to by some Smalltalk Workspace variable is persistent (and
can be stored as a part of the Smalltalk object memory).
Nevertheless, for serious work it is not sufficient and
SmallDEVS offers a better solution. The models, as well
as the simulations (either running, or ready-to-run) can be
stored and organized in a structure named MyRepository
(the name is relatively general because it is intended not
only for models and simulations). MyRepository represents
a hierarchy of folders and objects. Objects which are
considered to become patterns for cloning can be put among
other well-known objects, into the objects tree (and available
by a pathname in MyRepository) as prototypes. This tree
is unique in the system and is rooted in Smalltalk as a
global variable. Generally, MyRepository can hold any
object, that understands a protocol allowing for hierarchical
composition of objects and folders. The inspiration came
from filesystems of traditional operating systems. The main
difference from files in such systems is the fact that objects
are live entities residing in Smalltalk object memory, while
files are nothing but named strings of bytes lying passively
on some external media. Although the SmallDEVS objects
can be ”externalized” using XML or as a storeString (a
Smalltalk code which, when executed, recreates an exact
copy of the original object), their primary form is the live
form in the object memory of Smalltalk. Thus, they can
be stored and restored at once—in a form of the so-called
image—as it is in Smalltalk obvious. Objects (simulations,
models, as well as their components) can be accessed in the
following way:

MyRepository at : ′/Sims/TestSim′ put : system.

aComp := MyRepository at : ′/Sims/TestSim′.

The overall structure of the SmallDEVS system is de-
picted in Figure 1. The lowest level of the SmallDEVS

Figure 1: SmallDEVS system

system is the Squeak Smalltalk Virtual Machine. It is
responsible for the interpretation of Smalltalk Image (the
place where all the objects reside). VM is implemented in a
small portion of the C language, being completely portable
to almost all known platforms. Smalltalk image with
Prototypes package represent another level of the system.
The core parts of SmallDEVS are MyRepository and the
DEVS simulator. The core contains all the classes that
implement the real time simulator and the wrapper classes,
that define the reflective interface to the inner prototype
objects (traits, atomic models, etc.). The topmost level
represent the SmallDEVS GUI which is described in the
next sections.

VISUAL TOOLS FOR EXPLORATORY MODELING

The feeling of concretness of the prototype-based approach
can be significantly amplified by an approporiate graph-
ical user interface. The SmallDEVS GUI has been higly
influenced by the GUI of Self, a prototype-based object
oriented language. Self’s GUI with direct manipulation
of objects significantly amplifies the concretness which is
inherent in prototype-based programming. Self’s objects
can be inspected and modified by the so-called outliners.
In fact, the outliner is a merge of inspector and browser,
which follows the fact that a prototype object is a standalone
object – it has its own data and methods. Self’s GUI is
able to visualize inter-object relations and modify them in
a drag-and-drop manner. Object refactoring (moving slots
between objects) is also supported in the same, intuitive and
concrete way.
Another inspiration for the SmallDEVS GUI came from the
file managers known from the traditional operating systems -
they allow fow creating, copying (by cut/copy/paste actions),
renaming and opening files which are organized in folders.
In our case, we use this approach to the objects organized in
MyRepository.

SmallDEVS allows the models to be created by the
GUI or without it. They can be generated by a program. The
user interface can visualize and manipulate a model despite
the way how the model has been created. The visualiza-
tion if completely transparent in SmallDEVS. The model
components are primary entities, while the user interface
is secondary. GUI can be opened on any component of a
model at any time thanks to the reflective interface of the
models. Each component under investigation has its own,
independent GUI instance. The main components of the
SmallDEVS graphical user interface are described in the
following sections.

MYREPOSITORY BROWSER

MyRepository Browser provides an access to the context
menus of the objects. MyRepository is used mainly as a
container for models and simulations, but it can contain ba-
sically any object (for example documents, pictures, binary
data, etc.). Figure 2 shows the window of a MyRepository
Browser. You can see the hierarchical tree of objects as well
as several simulations in the ’Simulation’ directory (subtree).

Figure 2: MyRepository browser

At the bottom of the figure is an opened context menu of
the simulation named ’Generator and Processor [S]’ that was
stopped at the time of the screenshot. From the simulation
context menu, the coupled DEVS context menu is poped up,
where you can see the operations available on the coupled
model.

ATOMIC MODEL INSPECTOR

One of the two main SmallDEVS tools is the atomic model
inspector and editor. It is a tool that makes the implemen-
tation of atomic models more user friendly, but one still has
to write the implementation of the model’s behaviour. The
design of this editor is heavily inspired by the Self language
and its outliner. It allows us to define slots for the model, as-
sign vaues to them, define the four basic methods of a DEVS
model and to add other methods when they are needed. A
special initialization method is prepared for the user, that is
executed at the moment, when the simulation is restarted (or
at the first run). This method ensures, that every model in
a simulation can be returned to initial state at once or sepa-
rately when needed. A so called ”Workspace” is also part of
the tool, where arbitrary expression can be evaluated inter-
actively in the context of the inspected object. This way, the
values of the slots can be changed (among other things like
the execution of scripts, etc.). A screenshot from a editor of
a simple atomic model is in Figure. 3. Notice the expand-
able editors of methods. The header contains the full path
within the MyRepository hierarchy. It is possible to add or
remove input ports on the left side and output ports on the
right. Also, the bottom status bar provides information about
the simulation and the simulation control is accessible from
here, too.

COUPLED MODEL INSPECTOR

The coupled models inspector is a tool to build, inspect and
edit coupled models. The connections editiong, together with
copying, cutting, pasting, and renaming of the models are
supported. The viewable area can be zoomed in or out. Ports
and new atomic/coupled models can be added and removed.
Also there is an option to choose a model from existing mod-

Figure 3: Inspector of atomic models

els in the hierarchy of models and copy that particular model.
Like in the editor of atomic models, here is also a status bar
with the same function. Figure 4 shows an editor over a sim-
ple coupled model.

Figure 4: Inspector of coupled models

SUMMARY

The paper showed why and how the prototype-based object
orientation can help us to build a tool which can support
structurally dynamic and evolving DEVS models and ex-
ploratory modeling. SmallDEVS is a highly interactive tool
for modeling and simulation. Its real power is in rapid pro-
totyping of DEVS models. It supports model modifying dur-
ing simulation (interactively as well as programmatically).
Generally, SmallDEVS is designed to allow vast experimen-
tations with a model without having to recompile it and start
over the simulation each time the model changes. Persis-
tency of models and simulations is also supported, as well
as interconnecting models with real components (hardware
in the loop). An interesting topic of the future research and
development is a meta-language, that could describe DEVS
models independently on the underlying software and hard-
ware architecture. This would allow us to develop mod-
els and debug them in SmallDEVS and then simulate them

on a performance optimized simulator in C++ or on a dis-
tributed simulation engine. For intelligent systems simula-
tion, we plan to develop a library of soft-computing compo-
nents. We also plan to allow the atomic models to be speci-
fied by other formalisms such as Petri nets and state charts.
Other fields of interests are some applications of the model
continuity concept in the intelligent systems development.
The current version of SmallDEVS is available on its web
site http://www.fit.vutbr.cz/˜janousek/smalldevs.

ACKNOWLEDGEMENT

This work has been supported by the Grant Agency of Czech
Republic grant No. 102/04/0780, ”Automated Methods and
Tools Supporting Development of Reliable Concurrent and
Distributed Systems”.

REFERENCES

Bolduc, J. S. and H. Vangheluwe. 2002. ”A modeling and simu-
lation package for classic hierarchical DEVS”. Internal document
for the MSDL, School of Computer Science, McGill University

Ingalls, D.; Kaehler, T.; Maloney, J.; Wallace, S.; Kay, A.
1997. ”Back to the future. The story of Squeak, a practical
Smalltalk written in itself.”. OOPSLA ‘97 Conference Proceedings,
318-326.

Ungar, D. and Smith, R. 1989. ”SELF: The Power of Sim-
plicity”. OOPSLA ‘87 Conference Proceedings, 227-241.

Zeigler, B. P.; Y. Moon; D. Kim; J. G. Kim. 1996. ”DEVS/C++
A High Performance Modelling and Simulation Environment.”.
29th Annual Hawaii International Conference on System Sciences,
IEEE Computer Society, 350-359.

Zeigler B. P. 1997. ”DEVS-JAVA User’s Guide”. Technical
Report, AI & Simulation Lab, Department of Electrical and
Computer Engineering, University of Arizona, Tucson.

Zeigler, B. P.; H. Praehofer; T. G. Kim. 2000. ”Theory of
Modeling and Simulation Second Edition”. Academic Press. ISBN
0-12-778455-1.

BIOGRAPHY

VLADIMÍR JANOUŠEK received the Ph.D. degree from
the Faculty of Information Technology, Brno University
of Technology in 1999. He is an assistant professor in
the Department of Intelligent Systems at the Faculty of
Information Technology, Brno University of Technology.
His research focuses on simulation-driven development,
pure object orientation and reflective architectures.

ELŐD KIRONSKÝ received the M.S. degree from
the Faculty of Information Technology, Brno University of
Technology in 2005. He is a Ph.D. student in the Department
of Intelligent Systems at the Faculty of Information Technol-
ogy, Brno University of Technology. His research focuses
on modeling and simulation tools, robotics and exploratory
modeling.

