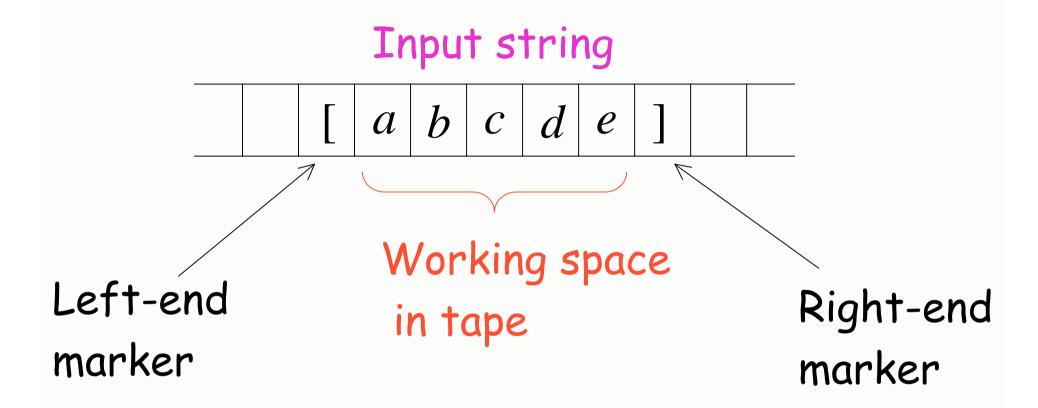
Linear Bounded Automata LBAs

Linear Bounded Automata (LBAs) are the same as Turing Machines with one difference:

The input string tape space is the only tape space allowed to use

Linear Bounded Automaton (LBA)



All computation is done between end markers

We define LBA's as NonDeterministic

Open Problem:

NonDeterministic LBA's have same power with Deterministic LBA's?

Example languages accepted by LBAs:

$$L = \{a^n b^n c^n\}$$

$$L = \{a^{n!}\}$$

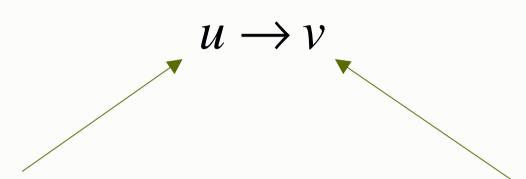
LBA's have more power than NPDA's

LBA's have also less power than Turing Machines

The Chomsky Hierarchy

Unrestricted Grammars:

Productions



String of variables and terminals

String of variables and terminals

Example unrestricted grammar:

$$S \rightarrow aBc$$

$$aB \rightarrow cA$$

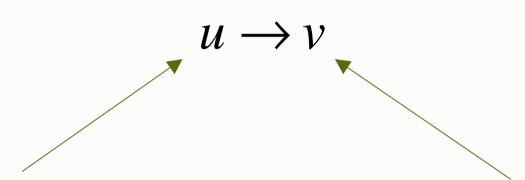
$$Ac \rightarrow d$$

Theorem:

A language $\,L\,$ is recursively enumerable if and only if $\,L\,$ is generated by an unrestricted grammar

Context-Sensitive Grammars:

Productions



String of variables and terminals

String of variables and terminals

and:
$$|u| \leq |v|$$

The language $\{a^nb^nc^n\}$ is context-sensitive:

$$S \rightarrow abc \mid aAbc$$
 $Ab \rightarrow bA$
 $Ac \rightarrow Bbcc$
 $bB \rightarrow Bb$
 $aB \rightarrow aa \mid aaA$

Theorem:

A language L is context sensistive if and only if L is accepted by a Linear-Bounded automaton

Observation:

There is a language which is context-sensitive but not recursive

The Chomsky Hierarchy

Non-recursively enumerable

Recursively-enumerable

Recursive

Context-sensitive

Context-free

Regular

Decidability

Consider problems with answer YES or NO

Examples:

• Does Machine M have three states?

- Is string w a binary number?
- \cdot Does DFA M accept any input?

A problem is decidable if some Turing machine decides (solves) the problem

Decidable problems:

• Does Machine M have three states?

- Is string w a binary number?
- Does DFA M accept any input?

The Turing machine that decides (solves) a problem answers YES or NO for each instance of the problem

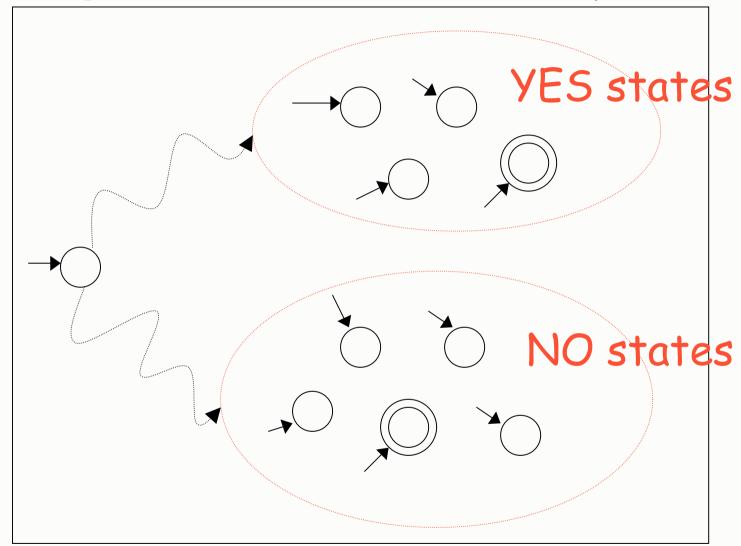
The machine that decides (solves) a problem:

• If the answer is YES then halts in a <u>yes state</u>

 If the answer is NO then halts in a <u>no state</u>

These states may not be final states

Turing Machine that decides a problem



YES and NO states are halting states

Difference between Recursive Languages and Decidable problems

For decidable problems:

The YES states may not be final states

Some problems are undecidable:

which means: there is no Turing Machine that solves all instances of the problem

A simple undecidable problem:

The membership problem

The Membership Problem

Input: • Turing Machine M

·String w

Question: Does M accept w?

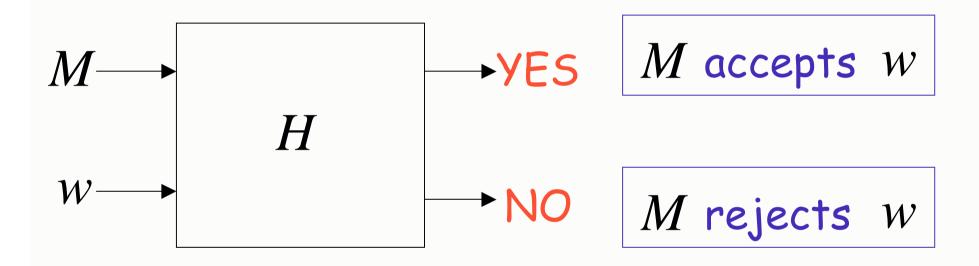
$$w \in L(M)$$
?

Theorem:

The membership problem is undecidable (there are M and w for which we cannot decide whether $w \in L(M)$)

Proof: Assume for contradiction that the membership problem is decidable

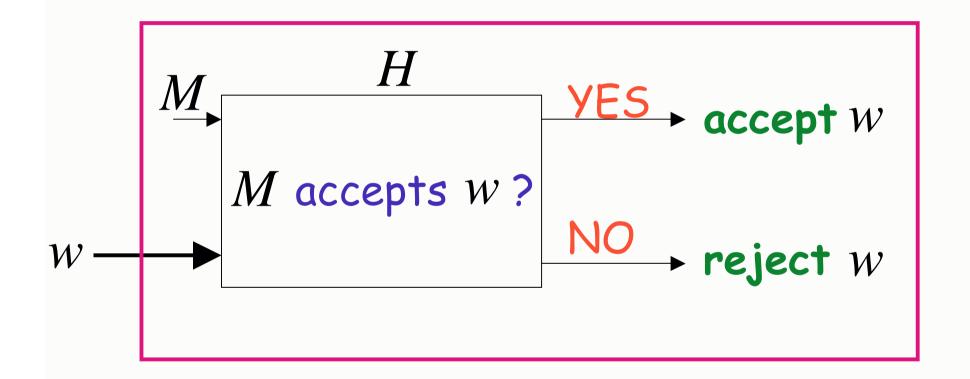
Thus, there exists a Turing Machine \boldsymbol{H} that solves the membership problem



Let $\,^L$ be a recursively enumerable language Let $\,^M$ be the Turing Machine that accepts $\,^L$

We will prove that $\,L\,$ is also recursive: we will describe a Turing machine that accepts $\,L\,$ and halts on any input

Turing Machine that accepts L and halts on any input



Therefore, L is recursive

Since L is chosen arbitrarily, every recursively enumerable language is also recursive

But there are recursively enumerable languages which are not recursive

Contradiction!!!!

Therefore, the membership problem is undecidable

END OF PROOF

Another famous undecidable problem:

The halting problem

The Halting Problem

Input: • Turing Machine M

•String w

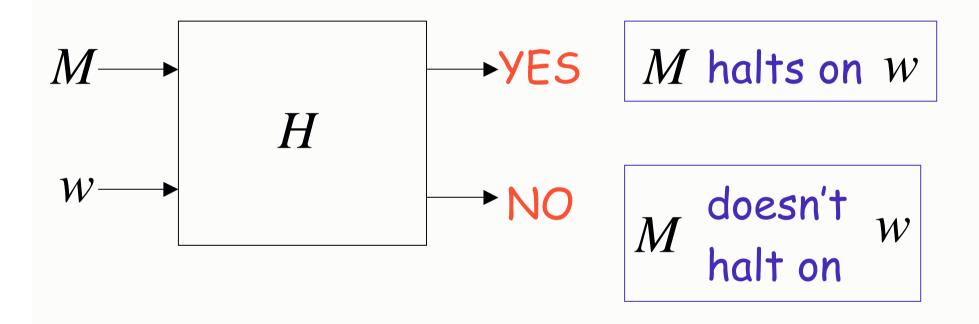
Question: Does M halt on input w?

Theorem:

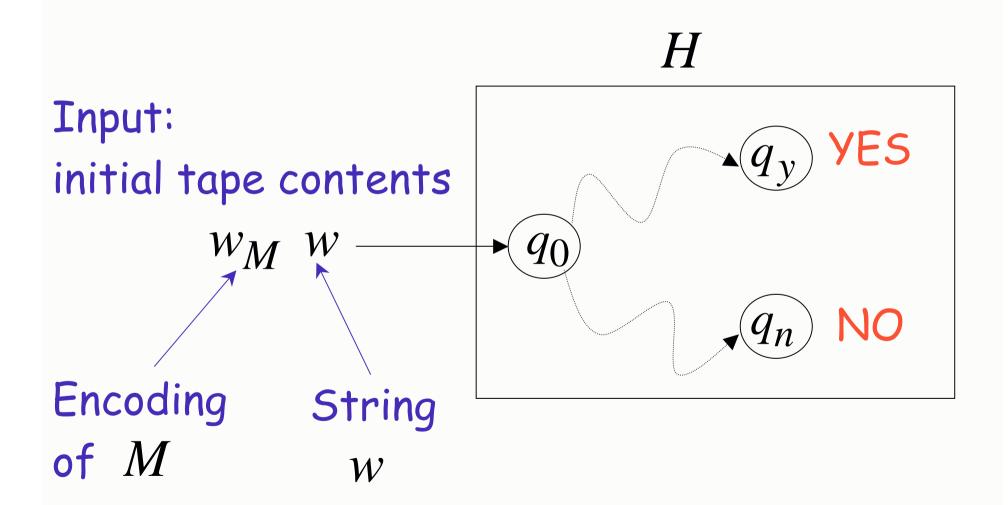
The halting problem is undecidable (there are M and w for which we cannot decide whether M halts on input w)

Proof: Assume for contradiction that the halting problem is decidable

Thus, there exists Turing Machine \boldsymbol{H} that solves the halting problem



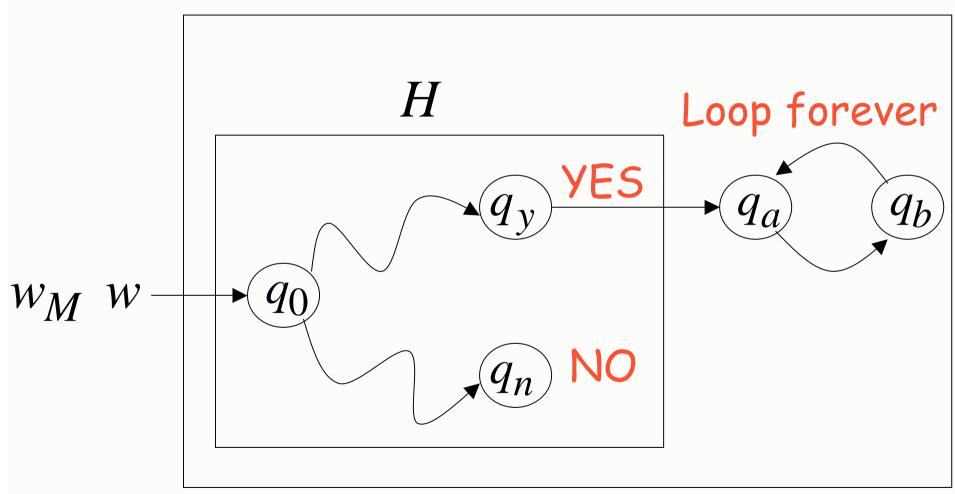
Construction of H



Construct machine H':

If H returns YES then loop forever

If H returns NO then halt



Construct machine \hat{H} :

Input: w_M (machine M)

If M halts on input w_M

Then loop forever

Else halt



Run machine \hat{H} with input itself:

Input: $w_{\hat{H}}$ (machine \hat{H})

If \hat{H} halts on input $w_{\hat{H}}$

Then loop forever

Else halt

 \hat{H} on input $w_{\hat{H}}$:

If \hat{H} halts then loops forever

If \hat{H} doesn't halt then it halts

NONSENSE !!!!!

Therefore, we have contradiction

The halting problem is undecidable

END OF PROOF

Another proof of the same theorem:

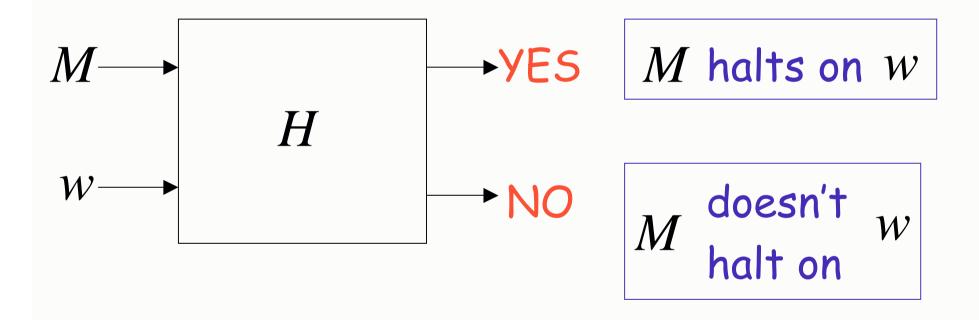
If the halting problem was decidable then every recursively enumerable language would be recursive

Theorem:

The halting problem is undecidable

Proof: Assume for contradiction that the halting problem is decidable

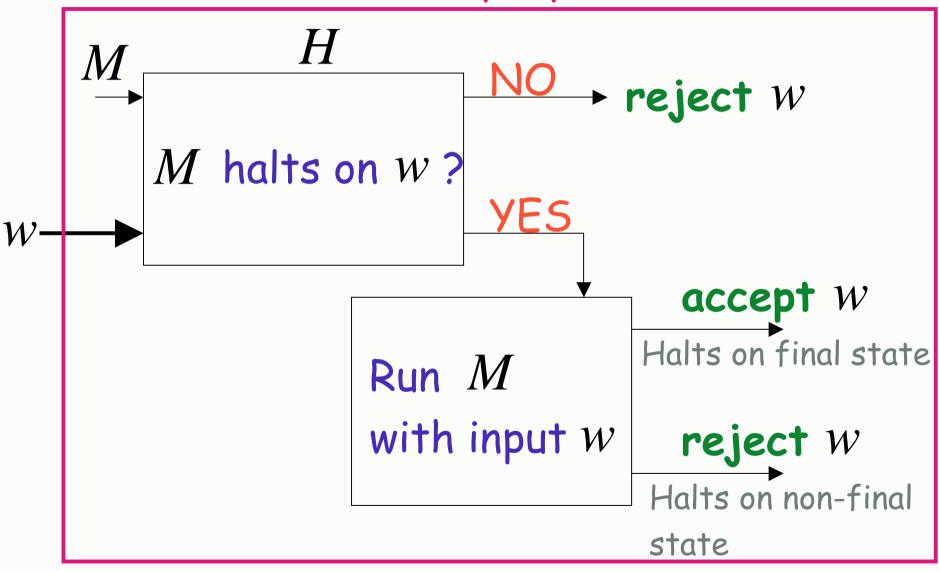
There exists Turing Machine $\,H\,$ that solves the halting problem



Let $\,^L$ be a recursively enumerable language Let $\,^M$ be the Turing Machine that accepts $\,^L$

We will prove that $\,L\,$ is also recursive: we will describe a Turing machine that accepts $\,L\,$ and halts on any input

Turing Machine that accepts L and halts on any input



Therefore L is recursive

Since L is chosen arbitrarily, every recursively enumerable language is also recursive

But there are recursively enumerable languages which are not recursive

Contradiction!!!!

Therefore, the halting problem is undecidable

END OF PROOF