CSCI 2400 - Models of Computation
 Homework 10
 Due: Thursday April 8 in class

Problem 1. Show that there exists an infinite number of languages which are not accepted by Turing machines.

Problem 2. Describe an enumeration procedure that prints the strings of the following language in proper order:

$$
L=\left\{x: \quad x \in\{0,1\}^{*}, \text { and the most significant bit of } x \text { is } 0\right\}
$$

Problem 3. Let S_{1} be a countable set, and S_{2} a set which is not countable, and $S_{1} \subset S_{2}$. Show that S_{2} must then contain an infinite number of elements that are not in S_{1}. Will the above be true even if S_{2} is countable? Explain

