CSCI 2400 - Models of Computation

Homework 2

Due: Thursday February 5

Problem 1. Draw a nondeterministic finite automata (NFA) that accepts the set of strings over the alphabet $\{0,1,2\}$ such that the final digit has appeared before.

Problem 2.

(a) Show that the following language is regular by drawing a NFA that accepts the language:

$$
L=\left\{a^{m} b^{n}: m \geq 1 \text { and } n \geq 1\right\}
$$

(b) Using the procedure desribed in the class, convert the above NFA to an equivalent DFA. (Give the diagram of the resulting DFA.)

Problem 3. Define an operation first on strings as

$$
\operatorname{first}\left(a_{1} a_{2} a_{3} a_{4} \cdots\right)=a_{1} a_{3} a_{5} \cdots
$$

with the appropriate extension of this definition to languages. Prove the closure of the family of regular languages under this first operation.

