
Computer Hardware

IPR
Study support

Doc. Ing. Jiří Kunovský, CSc. November 19, 2008

This learning text was supported by the project "Increase in competitive strength of IT specialists – alumni for the
European employment market", reg. č. CZ .04.1.03/3.2.15.1/0003. This project is co-financed by the European social
fund and by a state budget of Czech Republic.

Chapter 1

Introduction

There are in a lot of ways how to understand elements of the computer, how to design and
analyse them and how to correctly follow their functions.

Figure 1.1: Computer inside

The study support uses the common method for a progressive interpretation of the func-
tion of computer elements (from basic circuits with resistors, diodes, transistors to combina-
tional logic circuits or processors) and it is extended by concrete mathematical calculation
examples.

At first we will talk about block and circuit solutions according to required operations of
mathematical calculation. Later the individual solutions as particular elements of computer
will be specified.

This text is characterised by a large visualisation (even if it does not describe very spe-
cific details). The emphasis lays on function principles, from which we can elicit even very
complicated circuit solutions of computer elements according to initial requirements.

1

CHAPTER 1. INTRODUCTION 2

Some parts are marked by pictographs in the text. Pictographs show to the user the
importance of each fraction of the text or other important information.

Necessary time for study Question, task to solve

Target Computer practice, lab example

Definition Example

Important part Reference

Extension information Right result

Summary

Difficult part Tutor’s commentary

Interesting part

Table 1.1: Meaning of used pictographs

1.1 Organising information
The study support acts as the learning text for the course called Computer Hardware and it is
the source of minimum knowledge for successful graduation. The text should be a help and
that means it tries to fill up other study lectures and it does not replace the mimeographed or
lecture notes. The subject consists of lectures and guided computer labs. An attendance at
lectures is not compulsory. However experiences conclusively show that absence at lectures
belongs to the most frequent failure in passing the mid-term exam and the final exam. The
detailed information about the Computer Hardware with updates in every school year are situ-
ated on the website http://www.fit.vutbr.cz/study/courses/IPR/private,
where the access for each student is granted.

1.2 Final exam and classification of the course
It is possible to obtain up to 25 points for specified activities in computer labs. Another
15 points students can obtain by writing the mid-term exam. The final written exam gives
maximum 60 points.

Lecturers and supervisors of computer labs may appreciate extraordinary student’s activ-
ities by extra points, but it is only a privilege.

The classification of successful students is managed by educational specifications of FIT
VUT and principles of ECTS (European credit system). For successfully passing the course
a student needs to get at least 50 points from the maximum of 100 points.

CHAPTER 1. INTRODUCTION 3

1.3 Estimation of time intensity
The approximate estimation of time intensity of the course (6 credits) is defined subsequently:
1 credit = 25 – 30 hours of work⇒ 6 credits matches 150 – 180 hours of student’s work,
thereof:

• Lectures 26 hours.

• Exercises 13 hours.

• Computer labs 13 hours.

• Continuous study including preparation of examples for exercises about 70 hours.

• Preparation for the mid-term exam and the final exam about 40 hours.

1.4 Methodical information
The Computer Hardware course is a compulsory subject in the second term of Bachelor
degree, Programme Information Technology. This course is the introduction for wide and
interesting problems which students could use to obtained knowledge in other subjects.

The knowledge of basic methods for solving non-linear circuits is a necessary presump-
tion for a good work of every future specialist in the IT sphere.

We speculate about new and more arranged edition of study lectures, which would respect
last changes in the course content coming from the three-year Bachelor study programme.

For readers of this study support we recommend to devote the time to think about intro-
duced examples and also to solve all tasks in the important text parts.

1.5 Words of art
The rigorous thinking is the only presumption of each Msc. thesis and it has to be based on
exact terms and right terminology. Technical dialect could be a common tool for every day
communication. However it does not fit for publication actions or for advanced presentation
activities. Therefore the text tries to present new terms in a precise and terminologically
correct way.

1.6 Graphic layout
The text is written in the standard text type Times New Roman, 12 pt. Significant terms or
text parts are written bold and/or underlined. Supplementary notes are represented by smaller
type Times New Roman, 10 pt.

1.7 Learning outcomes and competences - specific
Students obtain an ability to analyse functions and to design non-linear electric circuits.

1.8 Learning outcomes and competences - generic
Students obtain the basics of selected methods for the description and solving non-linear
electrical circuits, which belongs to elementary knowledge of each specialist in IT sphere.

CHAPTER 1. INTRODUCTION 4

1.9 Annotation
Analysis of transitional processes in electric circuits in a time area. TKSL simulation lan-
guage. Formulation of circuit equations and possibilities of their solutions. Analysis of RC,
RL and RLC circuits. Analysis of non-linear electric circuits. Parameters and characteris-
tics of semiconductor elements. Graphic, numerical and analytical methods of non-linear
circuit analysis. TTL and CMOS gates. Power supply units. Limiters and sampling circuits.
Level translators, stabilizers. Astable, monostable and bistable flip-flops. Dissipationless and
dissipation lines. Wave propagation on lines, reflections, adjusted lines.

1.10 Syllabus of lectures
1. Analysis of transitional processes in electric circuits in a time area.

2. TKSL simulation language.

3. Formulation of circuit equations and possibilities of their solutions.

4. Analysis of RC, RL and RLC circuits.

5. Analysis of non-linear electric circuits.

6. Parameters and characteristics of semiconductor elements.

7. Graphic, numerical and analytical methods of non-linear circuit analysis.

8. TTL and CMOS gates.

9. Power supply units. Limiters and sampling circuits. Level translators, stabilizers.

10. Level translators, stabilizers.

11. Astable, monostable and bistable flip-flops.

12. Dissipationless and dissipation lines.

13. Wave propagation on lines, reflections, adjusted lines.

1.11 Study literature
1. Murina, M.: Teorie obvodu. Brno, VUTIUM 2000.

1.12 Note
The text of this brochure was made in a very short time and under time pressure. Thereby it
contains some faults, mistakes or typing errors. The author will be very grateful for any tips
and the author asks readers to send them to kunovsky@fit.vutbr.cz.

Chapter 2

Computer elements and numerical
integration

6:00

2.1 Didactic intention
The aim is to introduce the function of computer elements as registers, adders and elementary
microprocessors.

2.2 Numerical solution of differential equations
The numerical integration is a very clear and concrete mathematical example of calculation.

Let say that the numerical integration, or more precisely numerical calculation, of the
differential equation y′ = f(t, y) with the initial value y(0) = y0 means for us to establish
values of required solution in points y(t1) = y1, y(t2) = y2, y(t3) = y3, · · ·, (see fig. 2.1).

Figure 2.1: Graphical plotting of differential equation solution

Let’s have a look at the simple example to clarify the definition.

a) Simple differential equation
y′ = y y0 = y0

b) Simple system of differential equations

y′ = z y(0) = y0

z′ = −y z(0) = z0

One-step and multi-step methods are usually used for numerical calculation of differential
equations.

One-step integration methods are suitable for calculations, where the method uses in the
step i+1 in time ti+1 the value from the previous step i in time ti. These types of integration
methods compute with the initial value y[t = 0] = y(0) = y0 as a starting value on the
beginning of computation.

5

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 6

Multi-step integration methods compute the step i + 1 in time ti+1 using several values
obtained from previous steps i, i − 1, i − 2, · · · in time ti, ti−1, ti−2, · · · We call them
non-self starter methods.

2.2.1 Taylor series
We consider the Taylor series of the function y in the point i as a essential one-step integration
method. The formula for the new value in the step (i + 1) is given by

yi+1 = yi + hy′i +
h2

2!
y
(2)
i + · · ·+ hn

n!
y
(n)
i (2.1)

There has been published plenty of numerical methods for the solution of differential
equations. Methods are distinguished by an accuracy and a speed of computing.

2.2.2 Euler method
Euler method is the simplest one-step method. It computes with only first two terms of Taylor
series. The computing formula is defined by:

yi+1 = yi + hy′i (2.2)

If the value h is small enough, the method is sufficiently accurate. The main advantage is that
the method needs to know just one previous derivative.

2.2.3 Solution of simple differential equation
We apply the Euler method to the simple differential equation:

y′ = y y(0) = y0 (2.3)

Using the formula 2.2 the equation is now given by

yi+1 = yi + hy′i

then replace by 2.3, we find
yi+1 = yi + hyi (2.4)

The first step of computation is given by

y1 = y0 + hy0

and next steps follow

y2 = y1 + hy1

y3 = y2 + hy2

...

The equation 2.4 is the essential equation for the solution using Euler method. From
the equation 2.4 is derived the request for the single-purpose arithmetic unit structure, also
known as an elementary integration processor. Mathematical operations like addition, sub-
traction and multiplication are required for calculations.

Analytical solution of the differential equation is equal to

y = y0e
t (2.5)

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 7

numerically analytically
step size y t y

0 1,00000 0 1,00000
1 1,10000 0,1 1,10517
2 1,21000 0,2 1,22140
3 1,33100 0,3 1,34986
4 1,46410 0,4 1,49183
5 1,61051 0,5 1,64872
...

...
...

...
19 6,11591 1,9 6,68589
20 6,72750 2,0 7,38906

Table 2.1: Comparison of numerical and analytical solution

Now we calculate resultant values from equations 2.4 and 2.5 to obtain the comparison
of numerical and analytical solution. We obtain numerical solution from the equation 2.4 and
analytical solution from 2.5. We put up these resultant values into the table 2.1 for clarity.

The initial value y0 = 1 and the step size h = 0, 1 have been chosen.
Both results are plotted in the graph.

Figure 2.2: Comparison of numerical and analytical solution

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 8

2.2.4 Solution of differential equation order 2
We present the example of second order differential equation

y′′ = −y y′(0) = yp1 y(0) = y0 (2.6)

Before solving the equation it is necessary to transform the second order differential equa-
tion to the equivalent system of first order differential equations. We substitute the equation
2.6 by y′ = z and we have

z′ = −y z(0) = yp1 (2.7)
y′ = z y(0) = y0 (2.8)

We apply the Euler method to the system of differential equations

zi+1 = yi + hy′i zi+1 = zi + hz′i

and after substitution we obtain the essential equation for solving

yi+1 = yi + hzi zi+1 = zi + h(−yi) (2.9)

First step of calculation is

y1 = y0 + hz0 z1 = z0 + h(−y0)

followed by next steps, which are

y2 = y1 + hz1 z2 = z1 + h(−y1)
y3 = y2 + hz2 z3 = z2 + h(−y2)

...
...

Equations in this position are disposed for the parallel design of calculation. It is very im-
portant to know that all mathematical operations executed in parallel in both microprocessors
are identical. Hence, microprocessors can be controlled by one unique unit.

We compare results with analytical solutions, which are

y = sin(t) z = cos(t) (2.10)

For solving equations we set initial values y0 = 0, z0 = 1 and the step size h = 0, 1.
Resultant values from the equation 2.9 (numerical solution) and from the equation 2.10 (an-
alytical solution) are put up in the table 2.2.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 9

y z
step size numerically analytically numerically analytically

0 0,00000 0,00000 1,00000 1,00000
1 0,10000 0,09983 1,00000 0,99500
2 0,20000 0,19867 0,99000 0,98007
3 0,29900 0,29552 0,97000 0,95534
4 0,39600 0,38942 0,94010 0,92106
5 0,49001 0,47943 0,90050 0,87758
6 0,58006 0,56464 0,85150 0,82534
7 0,66521 0,64422 0,79350 0,76484
...

...
...

...
...

81 1,46049 0,96989 -0,32534 -0,24355
82 1,42796 0,94073 -0,47138 -0,33916
83 1,38082 0,90217 -0,61418 -0,43138

Table 2.2: Comparison of numerical and analytical solution

Results are plotted in figures 2.3 and 2.4 for easy comparison. Solution of the equation
y = f(t), y(0) = 0 is plotted in fig. 2.3 and solution of the equation z = z(t), z(0) = 1
is shown in fig. 2.4.

Figure 2.3: Solution of variable y

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 10

Figure 2.4: Solution of variable z

2.2.5 Conception of microprocessor
The design of microprocessor as a single-purpose arithmetic unit, which executes the numer-
ical integration, is influenced by needful mathematical operations for numerical calculation
of differential equations. From the view of microprocessor design, the simplest processing
occurs, when the machine computes the homogeneous first order differential equation, e.g.
example 1, especially the equation 2.4.

Solution of the homogeneous differential equation computed by Euler method gives indi-
vidual desired operations of microprocessor:

• addition - realised by the combinatory adder,

• subtraction - is transferred into addition by changing subtrahend sign,

• multiplication - executed by serial-parallel method of partial totals and shifts based on
Booth’s algorithm.

Designed microprocessor computes the system of homogeneous first order differential
equations with constant coefficients. Corresponded numerical integration is realized in the
binary representation, in complement code in the fixed decimal point.

Theory of binary representation is the content of following chapter.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 11

2.3 Binary representation
The concrete mathematical computation has been shown in the previous chapter. It is obvious
that mathematical computation are realised in the binary code.

This chapter introduces conversions between decimal and binary number systems. The
technique of data storage in the computer is shown, as well as the coding and organisation of
individual bits.

2.3.1 Decimal and binary number systems conversion
The decimal number is divided by two and the remainder as a least-significant bit is stored.
Then the (integer) result is divided by two repeatedly and remainders are remembered. This
process repeats until the result of further division becomes a zero. The first digit of the
number in the binary system is the remainder acquired from the last division.

Example: Conversion of integer number

division result remainder
155 : 2 = 77 1
77 : 2 = 38 1
38 : 2 = 19 0
19 : 2 = 9 1
9 : 2 = 4 1
4 : 2 = 2 0
2 : 2 = 1 0
1 : 2 = 0 1

(155)10 = (10011011)2

The binary number 10011011 could be written in the form:

1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20 =
1 · 128 + 0 · 64 + 0 · 32 + 1 · 16 + 1 · 8 + 0 · 4 + 1 · 2 + 1 · 1 = 155

Conversion of decimal number
To convert a number between 0 and 1 we must separate integer and decimal parts. The

decimal fraction is repeatedly multiply by two and the integer fraction is stored. At each step,
keep track of the integer part of the result but do not carry it along in subsequent multiplica-
tions. The first digit of number in the binary system is the first stored integer number after
the multiplication.

0 625 x 2
1 250 x 2
0 500 x 2
1 000 x 2
0 000 x 2
0 000 x 2
0 000 x 2
0 000

(0, 625)10 = (0, 1010000)2

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 12

The binary number 0,1010000 could be written in the form:

1 0,5 2−1

0 0,25 2−2

1 0,125 2−3

0 0,0625 2−4

...
...

...

= 1 · 2−1 + 0 · 2−2 + 1 · 2−3 + 0 · 2−4 + 0 · 2−5 + 0 · 2−6 + 0 · 2−7 = 0, 625

2.3.2 Number storage
Numbers are stored bit after bit in the one-bit storage element in the binary system.

Each storage element has an input (for the binary value writing) and an output (for the
binary value reading) - see figure 2.5.

Figure 2.5: Storage element

The input value to the storage element is controlled by e.g. clock signal CLK.

The high frequency storage element is the D-type flip-flop (see fig. 2.6).

Figure 2.6: The symbol of D-type flip-flop

Important note: The input value (X0) has been written into the storage element by the
rising edge of the clock signal and it has been displayed on the output (Q0). This process is
shown in fig. 2.7.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 13

Figure 2.7: D flip-flop timing diagram

Explanatory text for fig. 2.7:

point 1 The arrival of the rising edge of the clock signal writes the input value to the flip-flop
output. We say, the output is over set to the value Q0 = 1. This output value Q0 stays
until the new rising edge of the clock signal comes.

point 2 The output value is set according to the input value again; that means the output is over
set to the value Q0 = 0. This state holds until the next clock signal comes.

point 3 The rising edge over sets the output to the value Q0 = 1 according to the input.

point 4 Next clock signal does not change the output Q0 = 1 (the input value is on the level 1,
therefore the output stays on the same value 1). The input value has been changed on 0
for a moment between 3rd and 4th clock signal. But the output value is still 1, because
for change the output value the rising edge of the clock signal is needed.

Register with parallel input and output
The register is built from the group of storage elements. The register is used for storage

data (operands), which are used for mathematical calculations in the processor. It is a very
fast storage unit.

The parallel register has to ensure:

• Parallel input data writing.

• Parallel output data reading.

The symbol of the register is in figure 2.8.
Detailed scheme of register is shown in figure 2.9. The register contains D-type flip-flop

circuits. The rising edge of the clock signal CLK controls the writing of input data into the
register.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 14

Figure 2.8: Symbol of parallel register

Figure 2.9: Internal connection of parallel register

Shift register
The shift register has to ensure:

• Parallel input for data writing.

• Serial input for data.

• Serial output for data.

• Right shift of data.

The symbol of the shift register SR is in figure 2.10.

Figure 2.10: Shift register

Detailed scheme of internal connection of the shift register is shown in fig. 2.11. The
function of the shift register after the clock signal arrival is described in the table of functions
2.3.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 15

Input values are written into the shift register SR by the rising edge of the clock signal
CLK and by logic level "0" on the input S/W . The modification to logic level "1" on the
input S/W causes the next clock signal CLK to shift the register content 1 bit to the right.

Figure 2.11: Internal connection of shift register

S/W Yi

0 Xi

1 Qi−1

Table 2.3: Function of the shift register

The circuit MPX is shown in fig. 2.12, it is a single-bit multiplexer, which switches the
direct parallel input (writing) or the output from previous flip-flop circuit (shift).

Figure 2.12: Circuit MPX - multiplexer

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 16

Arithmetic shift accumulator
Basic requirements of accumulator are:

• Parallel input data writing.

• Parallel output data reading.

• Arithmetic right shift.

• Insertion zeros.

The symbol of accumulator ACC is in fig. 2.13.

Figure 2.13: Accumulator

During the right arithmetic shift the bit "0" is not stored in the released position (as the
logical shift), but the accumulator saves the bit, which has been on the position before shift-
ing. This operation is called sign-propagation. The shift is important for calculation with
numbers in codes with the sign in the most significant bit.

Detailed scheme of accumulator is in fig. 2.14.

Figure 2.14: Internal connection of accumulator

The function of the accumulator is analogical to the shift register. The content of accu-
mulator is reset by loading logic level "1" signal on the input CLR.

If the logic level "1" is on the input S/W , the next clock signal CLK shifts the content
of accumulator to the right. In the position of the most significant bit is written the previous
logic level (before a clock signal CLK - sign propagation). If the logic level "0" on the input
S/W , the rising edge of the clock signal CLK loads input data into the accumulator.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 17

2.4 Computational operations
In the chapter 2.2 operations like addition, subtraction, multiplication and division have been
shown. This chapter describes how are these operations executed in the microprocessor. Fix-
point numbers are used in ensuing text.

Used code is frequently represented by the complement code. It is possible to count up
arbitrary positive and negative numbers. Potential carry from the sign bit is disregarded. The
information about the sign is saved in the most significant bit – a sign bit.

2.4.1 Addition
See the simple example of addition two numbers 0, 75 + 0, 125. In the binary system on 8 bits
in complementary code: (0, 75)10 = (0, 1100000)2, (0, 125)10 = (0, 0010000)2. The result
is 0, 875 in decimal system, i. e. 0, 1110000 in binary system.

Decimal: Binary:
x = 0,75 01100000
y = + 0,125 ⇒ + 00010000
z = 0,875 01110000

The process of addition works subsequently: operands are loaded to registers, which are
connected with the input of adder (fig. 2.15) and operands are summed (fig. 2.16).

Figure 2.15: Operands on adder input

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 18

Figure 2.16: Operands sum

Previous example is the simplest possibility of computing. In other examples, the high
order carry could happen (i.e. the adder computes two operands with a carry).

The high order carry could also happen in the case of addition of numbers 0, 625 and
0, 125. Binary numbers, the result are shown in fig. 2.17. The carry (logic value "1") is
presented by the arrow and the symbol 1.

Figure 2.17: Addition with the carry

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 19

The connection diagram is shown in fig. 2.18. The operand X is stored in the register
RX , the operand Y is in the register RY .

Figure 2.18: Principle of addition

The symbol of 8 bits combinational adder is in fig. 2.19.

Figure 2.19: Combinational adder

Detailed scheme of the combinational adder is in fig. 2.20. The circuit ADD is a full
one-bit adder. It is necessary to connect partial one-bit adders to each other (the output carry
from one adder is the input for the second one, etc.).

It is important for a carry propagation, which could happen during the computation. De-
tailed scheme of one-bit full adder is in fig. 2.21.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 20

Figure 2.20: Combinational adder

Figure 2.21: One-bit full adder

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 21

2.4.2 Subtraction
The operation of subtraction (X − Y) is transferred to the addition with the subtrahend sign
modification. The modification is realised by subtrahend conversion into the binary supple-
ment and it follows described algorithm.

• Inverse all subtrahend orders (bits).

• Add the logic value "1" to the least significant bit.

The subtrahend is transferred to the supplementary system. Now the positive minuend and
the negative subtrahend are added.

Let see the example with conversion into the binary supplement:

0,625 = 01010000 - convert into the binary system

10101111 - invert of all bits
1 - add 1

-0625 = 10110000 = negative result

Connection diagram of the example is in fig. 2.22.

Figure 2.22: Conversion of negative number

Let’s demonstrate the subtraction in the example (0, 625 - 0, 125). The number (0, 625)10
in the binary system is (01010000)2 and the number (0, 125)10 is (00010000)2. The number
(0, 125)10 is transferred to the negative number in supplementary code and then added with
the number (0, 625)10.

Decimal: Binary:
x = 0,625 01010000
y = - 0,125 ⇒ + 11110000
z = 0,5 1|01000000

The technical realisation is more complicated.
We connect the first register R Y , where the subtrahend is stored, with inverters. Inverters
negate the stored number and this new number is written into the input of the adder. On the
second input R X the minuend is stored. To complete the calculation in the complementary
code, we have to add an extra value one to the least significant bit. It could be realised by
third adder carry input CIN with the value "1". The function of the technical realisation is
shown in fig. 2.23. The completed result of the subtraction is shown in fig. 2.24.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 22

Figure 2.23: Operands writing

Figure 2.24: Completed computation

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 23

The most significant bit (sign bit) overflows during the computation. But this carry could
easily be ignored. The result displayed on the given number of bits is correct.

The operation of addition or subtraction could be managed using a controlled negation.

Unit of controlled negation
The unit of controlled negation realises two functions:

• to carry input data X (on the level NEG="0"),

• to negate input data X (control signal NEG="1").

The symbol of the unit BNEG is shown in fig. 2.25.

Figure 2.25: Unit of controlled negation BNEG

The function of the circuit is described in the table 2.4.

NEG Y

0 X

1 X

Table 2.4: Function of BNEG

The unit of controlled negation could be realized in two ways.

• Using non-equivalence terms (exclusive OR), see fig. 2.26.

Figure 2.26: Realisation of BNEG using exclusive OR

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 24

The equation for values on the output Yi:

Yi = NEG⊗Xi = NEG ∧Xi ∨NEG ∧Xi

It could be written in the truth table:

Xi NEG Yi

0 0 1
1 1 1
0 1 1
1 1 0

• Using multiplexer (see fig. 2.28), which switches the direct and the inverse output from
the attached register, see fig. 2.27.

Figure 2.27: Realisation of BNEG using multiplexer

It is possible to work with the second realization, when the register with the direct (Xi)
and also the inverse output (Xi) is used in the connection. We connect the double out-
put to the one-bit multiplexer (fig. 2.28) and the multiplexer switches the direct and the
inverse output from the register using the controlled signal NEG. The function of the
multiplexer is described in the following truth table.

NEG Yi

0 Xi

1 Xi

Figure 2.28: Multiplexer

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 25

The subtracter integration, which uses the unit BNEG, is shown in figure 2.29.

Figure 2.29: Subtraction principle

In a perspective view of the proposed processor the subtracter is used also as an adder.
The function is specified by the control signal NEG. If the signal NEG is at the logic level 1,
that means the unit is used as a subtracter. If the NEG is a the logic 0, the unit is an adder.

Figure 2.30: Function of adder-subtracter is given by the signal NEG

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 26

2.4.3 Multiplication
In this chapter, more examples of multiplication will be presented. The multiplication is more
complicated operation then previous operations and we can realize it in many ways. The
elementary computational method will be demonstrated in signed magnitude representation
and the Booth’s multiplication algorithm will be presented.

The following table shows elementary conversion to decimal numbers (weights for the
transformation from binary representation to decimal representation):

2−1 0,5
2−2 0,25
2−3 0,125
2−4 0,0625
2−5 0,03125
2−6 0,015625
2−7 0,0078125
2−8 0,00390625

Multiplication in unsigned magnitude binary representation

The classical multiplication principle is based on sequential addition and multiplication. The
principle is demonstrated in following examples:

• 0,625 * 0,5 = 0,3125:

0, 1 0 1 0 ≡ 0,625
* 0, 1 0 0 0 ≡ 0,5

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 Result conversion:
0 1 0 1 0 0,25 2−2

0 0 0 0 0 0,0625 2−4

0, 0 1 0 1 0 0 0 0 ≡ 0,3125 0,3125

The result is now stored in the double number of bits.

• 0,625 * 0,75 = 0,46875:

0, 1 0 1 0 ≡ 0,625
* 0, 1 1 0 0 ≡ 0,75 Result conversion:

0 0 0 0 0,25 2−2

0 0 0 0 0,125 2−3

1 0 1 0 0,0625 2−4

1 0 1 0 0,3125 2−5

0, 0 1 1 1 1 0 0 0 ≡ 0,46875 0,46875

The most significant bit is not needed in this example (the bit has any important infor-
mation). This bit provides information about the location of the decimal separator.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 27

• 0,9375 * 0,9375 = 0,87890625:

0, 1 1 1 1 ≡ 0,625
* 0, 1 1 1 1 ≡ 0,75

1 1 1 1
1 1 1 1 Result conversion:

(1 0 1 1 0 1) 0,5 2−1

1 1 1 1 0,25 2−2

(1 1 0 1 0 0 1) 0,125 2−3

1 1 1 1 0,00390625 2−8

0, 1 1 1 0 0 0 0 1 ≡ 0,87890625 0,87890625

If there is a problem with ones, it is easier to calculate the example step-by-step and to
note partial results (rows in brackets). The partial result is good for computation clarity
and to avoid the carry calculation.

If we want to multiply negative numbers as well, absolute values are needed for the cal-
culation. After the computation we compute the sign of both numbers, for the multiplication
of one positive and one negative number, the result is a negative number. If we multiply two
positive, or two negative numbers, the result is always a positive number.

Booth’s multiplication algorithm

The algorithm is based on repeatedly partial addition (subtraction) and partial shifts.
The function of algorithm executes the multiplier value using the two predetermined logic

values of bits (a current one and a previous one) according to rules described in the table 2.5.

multiplier logic value
bi bit bi−1 bit action

0 0 fill remainder with zeros
0 1 add the multiplicand to the remainder
1 0 subtract the multiplicand from the remainder
1 1 fill remainder with zeros

Table 2.5: Principle of Booth’s multiplication algorithm

We need the positive and also negative value of the multiplicand during the computation.
Current value of multiplier bits decides the specific action in the step.

Notice the last multiplier bit, is compared with the value called "small zero" in the first
step.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 28

The algorithm principle is demonstrated in examples, where numbers 0, 625 and 0, 5 are
multiplied. We describe four possibilities of computation, when number signs are different
in each example. The algorithm will show us always the same correct result for any sign
combination.

The truncation error is also shown in following examples. The error could arise, when
the same number of bits for the result storage as operands number of bits is used.

• 0,625 * 0,5 = 0,3125:

Multiplier: 0,625 = 0,1010
Multiplicand: 0,5 = 0,1000 – plus multiplicand

-0,5 = 1,1000 – minus multiplicand

0, 1 0 1 0 ≡ 0, 1 0 1 0
∗ 0, 1 0 0 0

CLR 0 0 0 0 0 reset
+ 0 0 0 0 0 0 0 (plus zero)∑

0 0 0 0 0
→ 0 0 0 0 0
+ 1 1 0 0 0 1 0 (minus multiplicand)∑

1 1 0 0 0
→ 1 1 1 0 0
+ 0 1 0 0 0 0 1 (plus multiplicand)∑

0 0 1 0 0
→ 0 0 0 1 0
+ 1 1 0 0 0 1 0 (minus multiplicand)∑

1 1 0 1 0
→ 1 1 1 0 1
+ 0 1 0 0 0 0 1 (plus multiplicand)∑

0, 0 1 0 1 result

The result checking (conversion into the decimal system):
0,25 2−2

0,0625 2−4

0,3125

We see that the algorithm is correct. It gives us the correct result and the result sign. The
positive sign was correctly obtained from the multiplication of two positive numbers.
Notice, the sign is a component part of calculation.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 29

• 0,625 * (-0,5) = -0,3125:

Multiplier: 0,625 = 0,1010
Multiplicand: (-0,5) = 1,1000 – plus multiplicand

-(-0,5) = 0,1000 – minus multiplicand

0, 1 0 1 0 ≡ 0, 1 0 1 0
∗ 1, 1 0 0 0

CLR 0 0 0 0 0 reset
+ 0 0 0 0 0 0 0 (plus zero)∑

0 0 0 0 0
→ 0 0 0 0 0
+ 0 1 0 0 0 1 0 (minus multiplicand)∑

0 1 0 0 0
→ 0 0 1 0 0
+ 1 1 0 0 0 0 1 (plus multiplicand)∑

1 1 1 0 0
→ 1 1 1 1 0
+ 0 1 0 0 0 1 0 (minus multiplicand)∑

0 0 1 1 0
→ 0 0 0 1 1
+ 1 1 0 0 0 0 1 (plus multiplicand)∑

1, 1 0 1 1 result

The result checking (conversion into the decimal system):
We get a negative result. To convert it to the decimal representation, we have to negate
the number and add an extra number one.

11011

00100 - invert of all bits
1 - add an one

00101 = positive result
Now it is easy to check that the absolute value of number 0,3125 is the correct result
of the example.

Conversion into the decimal system:
0,25 2−2

0,0625 2−4

0,3125

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 30

• -0,625 * 0,5 = -0,3125:
Multiplier: -0,625 = 1,0110
Multiplicand: 0,5 = 0,1000 – plus multiplicand

-0,5 = 1,1000 – minus multiplicand

1, 0 1 1 0 ≡ 1, 0 1 1 0
∗ 0, 1 0 0 0

CLR 0 0 0 0 0 reset
+ 0 0 0 0 0 0 0 (plus zero)∑

0 0 0 0 0
→ 0 0 0 0 0
+ 1 1 0 0 0 1 0 (minus multiplicand)∑

1 1 0 0 0
→ 1 1 1 0 0
+ 0 0 0 0 0 1 1 (plus zero)∑

1 1 1 0 0
→ 1 1 1 1 0
+ 0 1 0 0 0 0 1 (plus multiplicand)∑

0 0 1 1 0
→ 0 0 0 1 1
+ 1 1 0 0 0 1 0 (minus multiplicand)∑

1, 1 0 1 1 result

• -0,625 * (-0,5) = 0,3125:
Multiplier: -0,625 = 1,0110
Multiplicand: (-0,5) = 1,1000 – plus multiplicand

-(-0,5) = 0,1000 – minus multiplicand

1, 0 1 1 0 ≡ 1, 0 1 1 0
∗ 1, 1 0 0 0

CLR 0 0 0 0 0 reset
+ 0 0 0 0 0 0 0 (plus zero)∑

0 0 0 0 0
→ 0 0 0 0 0
+ 0 1 0 0 0 1 0 (minus multiplicand)∑

0 1 0 0 0
→ 0 0 1 0 0
+ 0 0 0 0 0 1 1 (plus zero)∑

0 0 1 0 0
→ 0 0 0 1 0
+ 1 1 0 0 0 0 1 (plus multiplicand)∑

1 1 0 1 0
→ 1 1 1 0 1
+ 0 1 0 0 0 1 0 (minus multiplicand)∑

0, 0 1 0 1 result

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 31

• 0,6875 * 0,8125 = 0,55859375:
Multiplier: 0,6875 = 0,1011
Multiplicand: 0,8125 = 0,1101 – plus multiplicand

-0,8125 = 1,0011 – minus multiplicand

0, 1 0 1 1 ≡ 0, 1 0 1 1
∗ 0, 1 1 0 1

CLR 0 0 0 0 0 reset
+ 1 0 0 1 1 1 0 (minus multiplicand)∑

1 0 0 1 1
→ 1 1 0 0 1
+ 0 0 0 0 0 1 1 (plus zero)∑

1 1 0 0 1
→ 1 1 1 0 0
+ 0 1 1 0 1 0 1 (plus multiplicand)∑

0 1 0 0 1
→ 0 0 1 0 0
+ 1 0 0 1 1 1 0 (minus multiplicand)∑

1 0 1 1 1
→ 1 1 0 1 1
+ 0 1 1 0 1 0 1 (plus multiplicand)∑

0, 1 0 0 0 result

The result checking (conversion into the decimal system): (0, 1000)2 = (0, 5)10
And for the twin check, we convert the expected result into the binary system:

0 55859375 x 2
1 1171875 x 2
0 234375 x 2
0 46875 x 2
0 9375 x 2
1 875 x 2
1 75 x 2
1 5 x 2
1 0

(0, 55859375)10 = (0, 10001111)2

It is clear that we get the correct result on 4 bits. Unfortunately the truncation error
arises, hence for the accurate result is needed the double number of bits. In this exam-
ple operands have 4 bits and the accurate result must be displayed on 8 bits.
Hence we need to select the reasonable number of bits, which gives us required accu-
racy. The small number of bits, as used in the example above is not suitable for realistic
calculation. Also the truncation error is normally much smaller than in our result.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 32

Realization of multiplication in the circuit diagram

The multiplier is based on the adder-subtracter unit (fig. 2.30) and the multiplication is ex-
ecuted by Booth’s algorithm. From the table 2.5, where the principle of Booth’s algorithm
is described, we obtain other circuit requirements. We add the control logic to the adder-
subtracter where the control unit generates signals as a NEG and CIN . These signals are
necessary for the operation of subtraction. Then we create a signal for zero counting, we
denote it as a the zero counter signal BL and this signal controls another new unit called
blocking (inhibit) unit.

Blocking unit
makes for prevention of addition the multiplicand to the partial result in Booth’s algorithm

(adjacent bits 0, 0 or 1, 1). In fact it fills the multiplicand with zeros. The schematic symbol
of the blocking unit is shown in fig. 2.31 and the function of the unit is described in the
functional table 2.6.

Figure 2.31: Blocking unit

BL Y

0 0
1 X

Table 2.6: Function of blocking unit

The detailed unit scheme of internal connection is characterised in fig. 2.32.

Figure 2.32: Internal connection of blocking unit

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 33

In the beginning of the calculation using Booth’s multiplication algorithm the multipli-
cand and the multiplier are in two’s complement representation. In the next step of the com-
putation the arithmetic shift of total partial result is required. This partial result is stored in
the accumulator (the accumulator theory is described in the chapter 2.3.2). Simultaneously
the right shift of the multiplier is required. The multiplier is stored in the shift register (the
shift register theory is charactered in the chapter 2.3.2). These two general operations are
executed until all bit of multiplier are perused.

The multiplier, which executes the Booth’s multiplication algorithm, contains:

• The adder SUM - computes progressive totals during the multiplication.

• Control units for data transfer BNEG, BLOK - execute controlled negation or data
blocking (zeroing).

• The memory - it contains registers as memory units for multiplier storage SR (shift
register) and the multiplicand storage RN,

• The accumulator ACC - stores the result (or partial results) from the adder.

• The "small zero" unit - stores the i−1 bit (required for multiplier register SR extension,
in the beginning of calculation this unit is cleared).

• Sub-units of non-equivalence and logical conjunction - generate control signals for
multiplication: NEG (data inverse), BL (data blocking) and CIN (add an one to the
least significant bit).

The total multiplier scheme is in fig. 2.33.

Figure 2.33: Multiplier

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 34

Brief description of multiplier function

1. The accumulator AC is cleared, the "small zero" flip-flop is cleared (with the sig-
nal CLRACC = 1, CLRMN = 1) and control signals are set: SF/WRSR = 1,
CLKACC = 0, CLKSR = 0.

2. Accumulator resetting is ended (CLRACC = 0).
Rem. In the adder output is the result:
<blocking unit output> + <accumulator output> + NEG (CIN)

3. The accumulator ACC is set in the writing mode for input data (with the signal
SF/WRACC = 0).

4. The clock signal is activated CLKACC and partial result is written into the accumulator
(CLKACC = 1).

5. The clock signal is deactivated CLKACC and it writes data into the accumulator
(CLKACC = 0).

6. The accumulator ACC is set to the right shift mode (with the signal SF/WRACC = 1).

7. The control shift signal CLKACC = 1 is activated, which shifts the content of accu-
mulator. Simultaneously the control signal CLKSR = 1 is activated, which shifts the
multiplier shift register.
Rem. The right shift is executed in the accumulator and also in the shift register.

8. Signals CLKACC (CLKACC = 0) and CLKSR (CLKSR = 0) are deactivated.

9. GOTO step 3, if the total content of the multiplier shift register is not right shifted.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 35

2.5 Microprocessor design
The basis of microprocessor is in the multiplier described in the previous chapter. For re-
quired exact calculations of the equation 2.4 (y1 = h ∗ y0 + y0), the microprocessor needs to
be extended with a multiplexer and a register for result:

• Multiplexer MPX - switches initial values into the adder.

• Result register RV - stores the initial value y0 for the final addition.

• Multiplicand register RN - stores the step size h.

• Shift register SR - stores the initial value y0.

Multiplexer
The basic requirement for the multiplexer MPX is:

• Parallel data inputs switching.

The table 2.7 described the circuit function.

ARV Z

0 X

1 Y

Table 2.7: The function of multiplexer

The schematic symbol of multiplexer is in fig. 2.34.

Figure 2.34: Multiplexer

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 36

The signal ARV switches data inputs. When the control signal ARV has the logic
level "1", on the output Z is loaded data from the data bus Y . When the signal has the
logic level "0", on the output is data from the data bus X .

The detailed scheme of multiplexer internal connection is in fig. 2.35.

Figure 2.35: Internal connection of multiplexer

The circuit M is in fig. 2.36 and its function is described in the functional table 2.8.

Figure 2.36: Circuit M of multiplexer

AX AY Zi

1 0 Xi

0 1 Yi

Table 2.8: Functional table of multiplexer

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 37

2.5.1 Arithmetic logic unit
The final connection of the microprocessor is in fig. 2.37.

Figure 2.37: Internal connection of microprocessor

Functions of the microprocessor:

1. Registers are cleared, in registers SR and RV the initial value y0 is loaded and in the
register RN is loaded the step size h. D-type flip-flop has a level 0. This flip-flop state
is called "small zero" state. It stores the logic value of the multiplier i − 1 bit (see
Booth’s algorithm). Since we want to solve the differential equation 2.3, we connect
the input and the output of our designed processor. After the value is loaded in the
serial input, the control signals NEG, BL and CIN are set.

2. The multiplicand register output RN is connected at the input BNEG. It guarantees that
the value RN is inverted, when the control signal NEG comes in the processor input.
But for complete inversion the value one - the signal CIN (Carry In) is added. If the
zero value is on the output (it means also NEG=0), data are not inverted.

3. Now the data from BNEG are on the input of blocking unit (BLOK). BLOK blocks
(zeroing) of data. According the table 2.5 it adds only zeros (it does not change values),
if adjacent multiplier bits are identical. This circuit is controlled by the signal BL.

4. Using the multiplexer, which is still set on the input X, data are written into the adder
SUM. There data is added with the content of the accumulator ACC. And when the
clock signal is activated, new data is restored in the accumulator. The result of the
multiplication is stored step-by-step in the accumulator .

5. Now it is required to execute the right shift of bits in SR a ACC, but the last left bit is
hold. It is according the multiplication algorithm and it is called the arithmetic shift.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 38

6. Computation of progressive totals and shifts is executed step-by-step.

7. When the process of multiplication ended, the multiplexer has to switch the input.

8. The final result is written into the register RV from ACC.

From step 1 to step 4 the process is described as a data throughput in the combinational
circuit. It means that the values passage is not controlled by the clock signal, but only by
actual levels on inputs of units BNEG, BLOK and SUM. Other steps are controlled from the
control unit and a microprogram which executes the function of the whole microprocessor.

2.5.2 Controller – generator of control signals
There are many types of controllers. For clarity the microprogrammable controller is used
(see fig. 2.38).

Figure 2.38: Microprogrammable controller

The microprogrammable controller consists of the memory of microprogram and from
the overlap register. The overlap register works similarly as a normal register type "parallel
in, parallel out". Control signals of overlap register are CLRPRR (zeroing of all flip-flop
registers) and CLKPRR (the rising edge of this signal cases the input data write into the
overlap register).

The overlap register is partly based on the unit, which generates the control signals - the
control bus, and the unit, which generates the address of the microprogram memory - the
address bus.

The most complicated part - from the view of the controller design - is the microprogram
memory. The format of the instruction word is following:

the field of control signals the address of next instruction

The possible execution of each microinstruction (the content of each memory address)
is described in the table 2.9. It is the microprogram for the operation control, which is the
multiplication in multiplier (from fig. 2.33). Signals CLKMN and CLKSR are identical
(CLKMN = CLKSR), hence we use only one description CLKSR.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 39

CLRACC CLRMN S/WACC S/WSR CLKACC CLKSR INSTR note

1 1 0 1 0 0 0001 Zeroing ACC and MN.

0 0 0 1 0 0 0010 Finish of zeroing.

0 0 0 1 0 0 0011 ACC is in the writing mode.

0 0 0 1 1 0 0100 Write subtotal into ACC.

0 0 0 1 0 0 0101 End of writing.

0 0 1 1 0 0 0110 Set ACC for shifting.

0 0 1 1 1 1 0111 Right shift of ACC and SR.

0 0 1 1 0 0 1000 End of shifting.

if (all content of multiplier register is right shifted) end else instruction=0011 Test end of the multiplication.

Table 2.9: Microprogram of multiplication

Principle description
We are interested in the control bus, that are values of control signals CLRACC , CLRMN ,

S/WACC , S/WSR, CLKACC , CLKSR. Each signal represents one bit of the control bus.

1. The overlap register (with the signal CLRPRR = 1) is cleared.

2. The control signal CLRPRR (CLRPRR = 0) is deactivated.
Rem. 1: New zero bits on the address bus pointed to the 1st row of the microprogram
memory (in the address 0000 is the first microinstruction <110100 0001> for control-
ling of multiplication).
Rem. 2: We suppose, the memory is realized in the way, that the content of the address
(≡ corresponds to the microinstruction) is known on the output immediately (and it
generates data inputs of the overlap register).

Function of the controller is managed by the signal CLKPRR:

1. Signals CLKPRR (CLKPRR = 1) are activated (rising edge).
Rem.: The content of data input is written into the overlap register. On the output of
the register are bits from the control bus with values CLRACC = 1, CLRMN = 1,
S/WACC = 0, S/WSR = 1, CLKACC = 0, CLKSR = 0 (presented in the 1st step
of brief description of multiplier function above).

2. The signal CLKPRR (CLKPRR = 0) is deactivated (falling edge).
Rem.: Simultaneously, address bits are generated (following instruction INSTR - the
column in the table 2.9): the address <0001> points to the next microinstruction,
which is (after the address is written) transferred into the memory output and it is
arranged in data inputs of the overlap register at the same time.

3. The signal CLKPRR (CLKPRR = 1) is activated and the microinstruction in the data
inputs is written into the overlap register. Corresponding bits of the control bus have
values CLRACC = 0, CLRMN = 0, S/WACC = 0, S/WSR = 1, CLKACC = 0,
CLKSR = 0 (presented in the 2nd step of brief description above).

4. The signal CLKPRR (CLKPRR = 0) is deactivated.
Rem.: Simultaneously, address bits are generated (of the next instruction): the address
<0010> points to the next instruction, which is (after the address is loaded) transferred
to the memory output and it is arranged in data inputs of the overlap register.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 40

5. The signal CLKPRR (CLKPRR = 1) is activated and corresponding bits of the con-
trol bus have values CLRACC = 0, CLRMN = 0, S/WACC = 0, S/WSR = 1,
CLKACC = 0, CLKSR = 0 (presented in the 3rd step of brief description above).

6. The signal CLKPRR (CLKPRR = 0) is deactivated.
Rem.: Simultaneously, address bits are generated (of the next instruction): the address
<0011> points to the next instruction.

7. The signal CLKPRR (CLKPRR = 1) is activated and corresponding bits of the con-
trol bus have values CLRACC = 0, CLRMN = 0, S/WACC = 0, S/WSR = 1,
CLKACC = 1, CLKSR = 0 (presented in the 4th step of brief description above).

8. The signal CLKPRR (CLKPRR = 0) is deactivated.
Rem.: Simultaneously address bits are generated (of the next instruction): the address
<0100> points to the next instruction.

9. The signal CLKPRR (CLKPRR = 1) is activated and corresponding bits of the con-
trol bus have values CLRACC = 0, CLRMN = 0, S/WACC = 0, S/WSR = 1,
CLKACC = 0, CLKSR = 0 (presented in the 5th step of brief description above).

10. The signal CLKPRR (CLKPRR = 0) is deactivated.
Rem.: Simultaneously, address bits are generated (of the next instruction): the address
<0101> points to the next instruction.

11. The signal CLKPRR (CLKPRR = 1) is activated and corresponding bits of the con-
trol bus have values CLRACC = 0, CLRMN = 0, S/WACC = 1, S/WSR = 1,
CLKACC = 0, CLKSR = 0 (presented in the 6th step of brief description above).

12. The signal CLKPRR (CLKPRR = 0) is deactivated.
Rem.: Simultaneously, address bits are generated (of the next instruction): the address
<0110> points to the next instruction.

13. The signal CLKPRR (CLKPRR = 1) is activated and corresponding bits of the con-
trol bus have values CLRACC = 0, CLRMN = 0, S/WACC = 1, S/WSR = 1,
CLKACC = 1, CLKSR = 1 (presented in the 7th step of brief description above).

14. The signal CLKPRR (CLKPRR = 0) is deactivated.
Rem.: Simultaneously, address bits are generated (of the next instruction): the address
<0111> points to the next instruction.

15. The signal CLKPRR (CLKPRR = 1) is activated and corresponding bits of the con-
trol bus have values CLRACC = 0, CLRMN = 0, S/WACC = 1, S/WSR = 1,
CLKACC = 0, CLKSR = 0 (presented in the 8th step of brief description above).

16. The signal CLKPRR (CLKPRR = 0) is deactivated.
Rem.: Simultaneously, address bits are generated (of the next instruction): the address
<1000> points to the next instruction.

It is important that the rising edge CLKPRR generates new bits of the control bus (CLRACC ,
CLRMN , S/WACC , S/WSR, CLKACC , CLKSR), which control the multiplication.

A very important process is the changeover from one to the next instructions – each
microinstruction has stored addresses of the following microinstructions in its address part.

It is naturally possible to optimize the microprogram.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 41

2.5.3 The microprogram of the arithmetic logic unit
Arithmetic-logic unit (in fig. 2.37) is based on the multiplier (in fig. 2.33). The multiplier
is extended with the MPX (for switching of adder data input) and with the result register RV
(where initial values are stored y0 in the end of calculation). Hence the microprocessor is
extended also with other control signals ARV (for controlling the multiplexer function) and
CLKRV (the result storage in the result register).

The function of ALU is similar to the function of the multiplier. As soon as the multiplier
bits are executed, the multiplexer switches the other input and the initial value is added to the
result of multiplication. The whole process is controlled by microprogram, which is based on
multiplication microprogram. The structure of microprogram is written in the table 2.10.

CLRACC CLRMN S/WACC S/WSR CLKACC CLKSR CLKRV ARV INSTR

1 1 0 1 0 0 0 0 0001

0 0 0 1 0 0 0 0 0010

0 0 0 1 0 0 0 0 0011

0 0 0 1 1 0 0 0 0100

0 0 0 1 0 0 0 0 0101

0 0 1 1 0 0 0 0 0110

0 0 1 1 1 1 0 0 0111

0 0 1 1 0 0 0 0 1000

if (all content of multiplier register is right shifted) instruction=1001 else instruction=0011

0 0 0 1 0 0 0 0 1001

0 0 0 1 0 0 0 1 1010

0 0 0 1 1 0 0 1 1011

0 0 0 1 0 0 1 1 1100

Table 2.10: Microprogram of arithmetic-logic unit

Four last grey rows realise following functions:

• Set the accumulator into the writing mode.

• Switch the multiplexer.

• Write the result into the accumulator.

• Write the result into the result register.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 42

2.5.4 Programmatic realization of the elementary processor simulator
Now the program is presented, which allows to simulate all the previous situations and cal-
culations. It was developed for the illustration of described units functions. The capability of
the program to simulate contents of all registers in every step is very useful. The simulation is
executed in each step described in the chapter 2.5.1, especially in the part where the function
of processor is detailed.

Run of simulation
In the main menu, under the item Simulace (Simulation), is the main simulation control.

There are different choices:

• Procesor (Processor): It runs the simulation of the one-processor system which com-
putes the problem using Taylor series method (the calculation of the first term corre-
sponds to Euler method).

• Rychlost (Speed): It sets the speed of the animation.

• Spustit (Run): It starts the automatic computation of simulation steps.

• Zastavit (Stop): It terminates the automatic computation.

• Krok (Step): It executes one step of the simulation.

Setting of initial values of simulation
After start up the simulation (Simulace → Procesor) screen with information about an

animation is shown. We can disable to display the screen in every start of the simulation.
Then we fill up initial values for simulation in the next screen, see fig. 2.39. These are values:
Počáteční podmínka (Initial step) y0, Integrační krok (Step size) h and Přesnost (Accuracy),
which gives us the accuracy of the Taylor series.

Figure 2.39: Initial values of simulation

Notice that an initial value and a step size should be written in the number with fixed
decimal point. That gives the interval for required numbers (< 1,−1 >).

Behaviour of simulation
In the case of the setting that y0 = 0, 69805 and h = 0, 25, as in fig. 2.39, the simulation

screen is displayed (fig. 2.40).

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 43

Figure 2.40: Processor schema

To control the simulation we can press the button Krok (Step), which executes one step
of the calculation and then the simulation waits for next command. Effectively we can use
the button Spustit (Run), which computes the whole example and shows the result, and the
button Zastavit (Stop), which pauses the simulation. Notice that the purpose of functions
is not to play some technique, but to simulate the process influenced by initial settings. To
continue the paused process, we press the button Zastavit (Stop), as well as Krok (Step) or
Spustit (Run).

Notice the text under the picture of schema. There we can find the information about the
state, in which is the processor during the simulation. The window Hodnota výsledku (Resul-
tant value) gives us a value stored in the register RV, which is the result of all simulation.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 44

Example of function
The following sequence of simulator displays calculation technique in chosen moments

(described below).

A) The first figure shows the small zero setting (zeroing of the flip-flop) and the computa-
tion of control signals for the Booth’s multiplication algorithm. The data transfer from
the multiplicand register through the inversion unit, the blocking unit, the multiplexer
MPX, the adder SUM, which adds the value one to the content of the accumulator
ACC, and finally to storage the partial value into the accumulator ACC.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 45

B) It is executed the right shift of the content of accumulator and also the right shift of
the shift register (the previous value of the least significant bit of the shift register SR
is written into the "small zero" flip-flop). Then the previous sequence of calculation is
executed (according A) until all multiplier bits are processed from the register SR.

C) When the multiplication is finished, the result is written into the accumulator ACC.
The multiplexer MPX is switched and the content of the accumulator is added with the
initial value, which is stored in the result register RV. This result is then rewritten in
ACC and finally into the result register RV.

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 46

Serial input and serial output
With assumption that the processor in fig. 2.41 has a serial output (SOUT) connected

directly into the serial input (SIN), we solve here the Euler differential equation.

y′ = y y(0) = y0

Figure 2.41: Connection for differential equation solving

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 47

With assumption that the serial output of the top processor in fig. 2.42 is connected
into the serial input of the bottom processor and the serial output of the bottom processor
is connected into the serial output of the top processor, we solve the second order Euler
differential equation.

y′′ = −y y′(0) = yp1 y(0) = y0

Figure 2.42: Connection for second order differential equation solving

CHAPTER 2. COMPUTER ELEMENTS AND NUMERICAL INTEGRATION 48

2.6 Resume
The function of register, adder, controller, multiplexer and elementary processor was pre-
sented on the concrete mathematical computation in detail. The described theory relates with
the numerical integration.

Chapter 3

Pipeline
1:30

3.1 Didactic intention
The aim is to introduce the important method for computation acceleration of computer ele-
ments, which is the chain of data-processing technique called pipeline.

3.2 Pipeline principle
We have four identical tasks (yellow, red, green and blue), which comes into the system and
the system executes tasks one-by-one.

(Example: Four cars are waiting for the process of wheels mounting on the assembly-line.
To each car is fixed the left front wheel - in the section S1, right front wheel - in the section
S2, left back wheel - in the section S3 and right back wheel - in the section S4.)

From the technical view, especially from computer elements design, the example repre-
sents four instruction in the computer. At first the yellow instruction is executed:

• The instruction selection is made from the memory (I - Instruction Fetch = "the left
front wheel is mounted").

• The instruction is decoded (ID - Instruction Decoding = "the right front wheel is
mounted").

• Operands are chosen from the memory according to decoded instruction, e.g. the mul-
tiplication (OF - Operand Fetch = "the left back wheel is mounted").

• Operands are computed (EX - Execution = "the right back wheel is mounted").

Then the system executes the second (red), third (green) and fourth (blue) instruction
(car) in successive steps.

The previous classical processing is often presented in the space–time diagram, that
means the section of executing task is marked in specific time intervals.
Rem. This classical processing is easily analogically described as an assembly shop, where
one technician mounts the left front wheel, then the right front wheel, the left back wheel and
finally the right back wheel to the car.

In chained processing it is necessary to provide separate functions for sections S1, S2, S3
and S4. And it is also needed for each section to execute tasks in the same time. The pipeline
processing is described in the space–time diagram.

At first the yellow task’s Instruction Fetch (IF) is executed in the section S1. After finished
processing the first (yellow) task moves to the section S2 and the Instruction Decoding (ID) is
started to execute. Simultaneously the second (red) task entries the released section S1 (and
IF starts to execute). After processing is finished, in the section S2, the first (yellow) task
comes into the section S3. The second (red) task takes the released place in the section S2
and simultaneously the third (green) task entries the free section S1.

The final operation is executed with the first (yellow) task in the section S4. The second
(red) task is allowed to entry into the section S3, the third (green) task moves to the released
section S2 and the last fourth (blue) task comes into the section S1, etc.

49

CHAPTER 3. PIPELINE 50

Space–time diagrams represents the acceleration in the pipeline processing. Rem. Adders
in the processor Pentium computes similarly.

CHAPTER 3. PIPELINE 51

CHAPTER 3. PIPELINE 52

CHAPTER 3. PIPELINE 53

CHAPTER 3. PIPELINE 54

CHAPTER 3. PIPELINE 55

CHAPTER 3. PIPELINE 56

CHAPTER 3. PIPELINE 57

CHAPTER 3. PIPELINE 58

CHAPTER 3. PIPELINE 59

CHAPTER 3. PIPELINE 60

Coefficient increase transmittance

q =
n.k

n + k − 1
k � n k →∞

3.3 Resume
The pipeline processing belongs to important methods for computation acceleration of com-
puter elements. The necessary condition of the acceleration in pipeline processing is a re-
peated calculation of big amount of identical tasks.

The engineering analogy:
The idea of pipelining was firstly used on assembly manufacturing in machine works (serial
assembly-lines for car production). Work on the assembly-line is split in each (time identical)
operation, which continues immediately. Operations are executed in separate sections.

