
A Logical Representation of Dataflow

Simple Pointer Analysis Algorithm

Michal Sekletar

xsekle00@stud.fit.vutbr.cz

Miroslav Soltes

xsolte00@stud.fit.vutbr.cz

November 1, 2011

In our article we would like to introduce more general notation for repre-

sentation of data flow. The representation is based on predicate logic rather

than on set-theory operations. First we will present the brief comparison of

both approaches. Afterwards, we will focus on the logical representation of

data flow. In order to present an approach based on the logical representa-

tion of data flow we will introduce Datalog language. We will briefly discuss

syntax and semantics of Datalog language. We assume readers are famil-

iar with Prolog language because of the common nature of both languages.

We will present the following aspects of Datalog language : Datalog rules,

intensional and extensional predicates, execution of Datalog programs, in-

cremental evaluation of Datalog programs and problematic Datalog rules.

In the final chapter of our presentation on the logical representation of data

flow we will introduce some examples and possible use cases of this approach

to inter-procedural program analysis.

The second part of our presentation deals with a pointer analysis. We

will introduce simple approach to the pointer analysis. Note that introduced

method of pointer analysis will be flow-insensitive, therefore we assume there

are no procedure calls. The fundamental question we would like to answer

is whatever the given pair of pointers may be aliased. The pointer alias-

ing denotes situation when two pointers may point to the same object in

memory. We will briefly mention pitfalls of pointer analysis and explain

why is it difficult to implement. As a conclusion we will describe intended

flow-insensitive pointer analysis method and its formal representation as a

Datalog program.

1


