

VYPe

(Compiler Construction)

Interprocedural Analysis (abstract)

Bc. Zdeněk Tisoň – xtison00

Bc. Pavel Wollný - xwolln00

1. 11. 2011

In this article we will examine basic concepts, why and when we wish to use

interprocedural analysis. We discuss the importance of interprocedural analysis

by showing some important optimization problems that cannot be solved by

intraprocedural analysis.

Intraprocedural analysis is done one procedure at a time and assumes that

procedures invoked may alter the state of all variables visible to the procedures

and that they may create all possible side effects, such as modifying any of the

variables visible to the procedure or generating exceptions that cause the

unwinding of the call stack. Intraprocedural analysis is relatively simple but often

imprecise and insufficient for some optimizations.

On the other hand an interprocedural analysis operates across an entire

program, transfer information from the caller to its callees and vice versa. One

relatively simple but useful technique is to inline procedures where possible. But

this method is applicable only if we know the target of the procedure call. In

some situation we do not know the target of call for example when procedures

are invoked indirectly through a pointer or via the method dispatch mechanism,

which is used in object-oriented programming languages. The disadvantages of

inline procedures is that inlining can expand the code size exponentially. If we do

not know the target of procedures call we need to do pointer analysis to specify

interprocedural analysis. Therefore we will introduce call graphs.

Graphs that represent calling relationships between procedures in a

program. In general, the presence of references or pointers to functions or

methods requires us to get a static approximation of the potential values of all

procedure parameters, function pointers, and receiver object types. To make an

accurate approximation, interprocedural analysis is necessary.

Interprocedural analysis is also challenging because the behavior of each

procedure is dependent upon the context in which it is called – context

sensitivity. We introduce one simplistic but extremely inaccurate approach to

interprocedural analysis, know as Context-insensitive analysis which treats each

call and return statement as goto operations. For more accurate results we

introduce context-sensitive methods like Cloning-based Context-sensitive

Analysis and Summary-based Context-sensitive Analysis, which keep tracks of the

context in which each procedure was called. A calling context is defined by the

contents of the entire call stack. We refer to the string of call sites on the stack as

the call string.

In the next part we use constant propagation to illustrate interprocedural

analysis. This interprocedural optimization is neither readily applicable nor

particularly beneficial. However, there are many reasons why interprocedural

analysis is essential. We describe several important applications of

interprocedural analysis as Virtual Method Invocation, Pointer Alias Analysis,

Parallelization, SQL Injection, and other.

