
Peter Minarovský

FIT VUT BRNO

*

*

*I. INTRODUCTION

*II. PRELIMINARIES AND NOTATIONS

*A. Timed Transition Systems

*B. Timed Propositional Temporal Logic

*III. A TESTING THEORY FOR REAL TIME

*IV. ALTERNATIVE CHARACTERIZATIONS OF TIMED

PREORDERS

*V. TIMED TEST GENERATION

*VI. CONCLUSIONS

*VII. REFERENCES

*

*The aim of this paper is to develop a semantic

theory for real-time system specification based

on timed transition systems modeling the

behaviour of real-time processes.

*

*Our constructions are based on some alphabet

A represent- ing a set of actions excluding the

internal action τ and on a time alphabet L

which contains some kind of positive numbers

(such as N or R+). A set of clocks C is a set of

variables over L. We use A, L, and C in sans-

serif face exclusively for this purpose, so that

their purpose is often consider understood

throughout the paper.

*

*A. Timed Transition Systems

*

*B. Timed Propositional Temporal Logic

*Timed Propositional Temporal Logic (TPTL) is

one of the most general temporal logics with

time constraints. TPTL extends linear-time

temporal logic (LTL), by adding time

constraints, so that its semantics is given with

respect to timed traces, that is, timed words in

(A × L)∗ ∪ (A × L)ω . We use TPTL without

congruence, but we just call it TPTL for short.

*

B. Timed Propositional Temporal Logic

Timed Propositional Temporal Logic (TPTL) [7] is one of

the most general temporal logics with time constraints [10].

TPTL extends linear-time temporal logic (LTL) [5], [10] by

adding time constraints, so that its semantics is given with

respect to timed traces1, that is, timed words in (A × L)∗ ∪
(A× L)ω. We use TPTL without congruence, but we just call

it TPTL for short.

For presentation convenience we use a slightly modified

form of TPTL without congruence. However, it is immediate

that our form is equivalent to the original so we continue to

call our temporal logic TPTL without congruence—we will in

fact shorten this to just TPTL, the lack of congruence being

henceforth implied.

With φ, φ1, φ2 ranging over TPTL formulae, a ranging over

A, x ranging over a set of clocks C, and c ranging over positive

constants, the syntax of the term θ and the TPTL formula φ

is the following:

θ = x + c | c

φ = θ1 ≤ θ2 | | ⊥ | a | ¬φ | φ1 ∧ φ2 |

X φ | φ1 U φ2 | x.φ

Let F be the set of all TPTL formulae. A timed trace

w = (ai ,δi)0< i ≤ k ∈ (A × L)∗ ∪ (A × L)ω satisfies φ if and

only if w γ φ. The relation γ⊆ ((A× L)∗ ∪ (A× L)ω) × F

is the least relation satisfying the conditions in the seman-

tics of TPTL formulae shown below, with wj standing for

(ai ,δi) j ≤ i ≤ k for any 1 ≤ j ≤ k, and γ : C → L being some

clock interpretation.

• θ1 ≤ θ2 if and only if γ(θ1) ≤ γ(θ2),

• w γ and w γ ⊥ for any w,

• w γ a if and only if w = ε and a1 = a,

• w γ ¬φ if and only if ¬(w γ φ),

• w γ φ1 ∧ φ2 if and only if w γ φ1 and w γ φ2,

• w γ X φ if and only if w2 γ+ δ1
φ,

• w γ φ1 U φ2 if ∃0 < i ≤ k: (∀i ≤ r ≤ k:

wr γ+
P

r
j − 1 δj

φ2, ∀0 < s < i : ws γ+
P

s
j − 1 δj

φ1),

• w γ x.φ if and only if w γ [0/ x] φ.

We denote by γ + c a clock interpretation in which (γ +

c)(x) = γ(x) + c for all clocks x. We require that γ(x + c) =

γ(x) + c and γ(c) = c; γ[t/ x] is the clock interpretation that

agrees with γ on all clocks except x, which is mapped to

t ∈ L. The occurrence of a free time variable x in a formula

“freezes” the moment in time, which can be checked later by

using x in various expressions. These restrictions are sufficient

to model most phenomenae from other timed temporal logics

[7].

As usual one can also introduce the derived operators G

(“globally”) and F (“eventually”) as Gφ = ⊥ R φ and F φ =

U φ, respectively. The operator R (“releases”) is the dual of

the operator U. A timed process2 p satisfies the TPTL formula

1Time traces as presented in the previous section also contain time
constraints; however, as we will see in Section III, the time constraints appear
only in tests and so the trace of processes are over A × L only.

2A timed process is a timed transition system without time constraints, as
detailed in Section III

φ, written p γ φ, if and only if ∀w ∈ L f (p)∪Lm (p)∪Lω(p)∪
LD (p) : w γ φ.

III. A TESTING THEORY FOR REAL TIME

We are now ready to extend the testing theory of De Nicola

and Hennessy [4] in two ways. For one thing, we adapt

this testing theory to timed testing. In addition, we are also

introducing the concept of Büchi acceptance to tests (or Büchi

success), so that the properties of infinite runs of a process can

be readily identified by tests. Timed testing has been studied

before in many contexts [8], [11], [12] but to our knowledge

never in such a general setting and never including Büchi

success. In addition, timed testing has never been considered in

conjunction with test generation from temporal logic formulae.

We note however that a somehow incipient consideration of

Büchi success for tests and also of temporal logic formulae as

test generators for untimed tests exists [13], though this theory

is not real time and to our knowledge has not been pursued

any further.

The traditional testing framework defines behavioural pre-

orders that relate labelled transition systems according to their

responses to tests [4], [14]. The tests are thus used to verify the

external interactions between a system and its environment.

We use timed transition systems as the formalism for both

processes and tests.

In our framework a test is a timed transition system where

certain states are considered to be success states. In order to

determine whether a system passes a test, we run the test in

parallel with the system under test and examine the resulting

finite or infinite computations until the test runs into a success

state3 (pass) or a deadlock state (fail). In addition, a set of

ω-final states is used to compartmentalize infinite runs into

successful and unsuccessful.

Definition 3: TIMED PROCESSES AND TESTS. A timed pro-

cess ((A × L) ∪ { τ } , S,→, p0) is a timed transition system

((A × L) ∪ { τ } ,∅, S,→, p0) with an empty set of clocks (and

thus with no time constraints). It follows that all the traces of

any timed process are in the set (A × L)∗ ∪ (A × L)ω.

A timed test (A∪ { τ } , C, T,→t ,Σ ,Ω, t0) is a timed transi-

tion system ((A × ∅) ∪ { τ } , C, T,→, t0) with the addition of

Σ ⊆ T of success states and Ω ⊆ T of ω-final states. Note

that L = ∅ for tests and therefore →t⊆ (T × A× (C)× 2C×

T) ∪ (T × { τ } × T).

The transition relation of a process and a test are restricted

(in different manners) because the test runs in parallel with

the process under the test4. This latter process (called the im-

plementation) features time sequences but no time constraints,

while the test features only time constraints. It is meaningless

to run the test by itself. If (C) = ∅which means there is no

time constraint in the test, we call the test classical. The set

of all timed tests is denoted by T .

Definition 4: PARTIAL COMPUTATION. A partial computa-

tion c of a timed process p and a timed test t is a potentially

3Success states are deadlock states too, but we distinguish then as special
deadlock states.

4Note however that the difference is syntactical only, for indeed the
transition relation for a timed process allows for an empty set L.

INTERNATIONAL JOURNAL OF COMPUTERS

Issue 3, Volume 4, 2010

99

*

0

2

k

1

1c(a1,F)

(a2,F)2c

(a3,F)3c

(ak,F)kc

tM ay,∗
w

c(a1,F)

(a2,F)2c

(a3,F)3c

w0

w1

w2

1

tM ay,ω
w

k

1

2

0

1c(a1,F)

(a2,F)2c

(a3,F)3c

(ak,F)kc

w

t

tM ay,di v
w

t

1

0

2

k

s

1c(a1,F)

(a2,F)2c

(a3,F)3c

(ak,F)kc

t

t

t

t

t⇓ ,∗
w

2s

1c(a1,F)

(a2,F)2c

(a3,F)3c

t

t

t

t

t

w

w

w

0

1

t⇓ ,ω
w

t

1

0

2

k

s

1c(a1,F)

(a2,F)2c

(a3,F)3c

(ak,F)kc

t

t

t

t

tM ust ,∗
w

c

1

0

2s1

1c(a1,F)

(a2,F)2c

(ak,F)kc

s2 k
a"

t

t

t

t

t
(a3,)3F

tM ust ,m ax
w

t

1

0

2s

1c(a1,F)

(a2,F)2c

(a3,)3Fc

t

t

t

tM ust ,ω
w k

1

0

2s1

1c(a1,F)

(a2,F)2c

(a3,)3Fc

(ak,F)kc

a A"
s2

t

t

t

t

t

tM ust
w ,A

Fig. 1. Timed tests used for the characterization of timed may and must preorders.

→= { (i − 1, ai , i , ci =
i
j = 0 δi) : 0 < i ≤ k} ∪

{ (i , τ , s,) : 0 < i ≤ k} .

• For w = (ai , δi)0< i ≤ k ∈ (A × L)ω, let t⇓ ,ω
w = (A ∪

{ τ } , C, T,→, { s} , 0, { s}), where T = N∪{ s} , →= { (i −

1, ai , i , ci =
i
j = 0 δi) : i > 0} ∪ { (i , τ , s,) : i > 0} .

• For w = (ai , δi)0< i ≤ k ∈ (A × L)∗ , let tM ust ,∗
w = (A ∪

{ τ } , C, T,→,∅, 0, { s}), where T = { 0, 1, . . . , k} ∪ { s} ,

→= { (i − 1, ai , i , ci =
i
j = 0 δi) : 0 < i ≤ k} ∪

{ (i , τ , s,) : 0 ≤ i < k}

• For w = (ai , δi)0< i ≤ k ∈ (A × L)∗ , let tM ust ,m ax
w = (A∪

{ τ } , C, T,→,∅, 0, { s1, s2}), where T = { 0, 1, . . . , k} ∪
{ s1, s2} , →= { (i − 1, ai , i , ci =

i
j = 0 δi) : 0 < i ≤

k} ∪ { (i , τ , s1,) : 0 ≤ i < k} ∪ { (k, a, s2,) : (a,) ∈
A × ().

• For w = (ai , δi)0< i ≤ k ∈ (A × L)ω, let tM ust ,ω
w = (A ∪

{ τ } , C, T,→,∅, 0, { s}), where T = N ∪ { s} , →= { (i −

1, ai , i , ci =
i
j = 0 δi) : i > 0} ∪ { (i , τ , s,) : i ∈ N} .

• For w = (ai , δi)0< i ≤ k ∈ (A × L)∗ and A ⊆ A,

let tM ust
w ,A = (A ∪ { τ } , C, T,→,∅, 0, { s1, s2}), where

T = { 0, 1, . . . , k} ∪ { s1, s2} , →= { (i − 1, ai , i , ci =

INTERNATIONAL JOURNAL OF COMPUTERS

Issue 3, Volume 4, 2010

101

*The proof of Theorem 1 relies extensively on these

intuitive properties of timed tests. Notice that the

usage of ω-state tests (that is, tests that accept

based on an acceptance family, not only on Suc)—

even when discussing finite-state timed processes—is

justified by our view that timed tests represent the

arbitrary, potentially irregular behaviour of the

unknown real-time environment.

*The proof of Theorem 2 also relies on the properties

of the timed tests introduced in Lemma 3.

*

*

Autors proposed in this paper a model of timed tests based on timed

transition systems. Group of autors addressed the problem of charac-

terizing infinite behaviours of timed processes by developing a theory of

timed ω-final states. This theory is inspired by the acceptance family of

B ̈uchi automata. We also extended the testing theory of De Nicola and

Hennessy to timed testing. We then studied the derived timed may and

must preorders and developed an alternative characterization for them.

This characterization is very similar to the characterization of De Nicola

and Hennessy’s testing preorders, which shows that our preorders are

fully back compatible: they extend the existing preorders as mentioned,

but they do not take anything away. Further into the characterization

process we also showed that the timed must preorder is equivalent to a

variant of reverse timed trace inclusion when its first argument is purely

nondeterministic.

*

*

1. Stefan D. Bruda and Chun Dai,” A Testing

Theory for Real-Time Systems”, INTERNATIONAL

JOURNAL OF COMPUTERS Issue 3, Volume 4, 2010

97-106

