© Alexander Meduna & Roman Lukáš

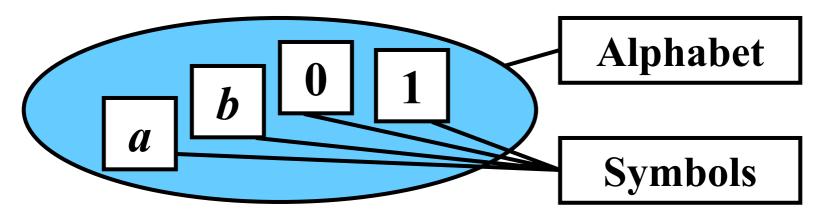
Introduction: **Mathematical Preliminaries** (Formal Language Theory) Section 1.1

1/20

Alphabets and symbols

Definition: An *alphabet* is a finite, nonempty set of elements, which are called *symbols*.

Example:



If we denote this alphabet as Σ , then $\Sigma = \{a, b, 0, 1\}$

String

3/20

Gist: $x = a_1 a_2 \dots a_n$

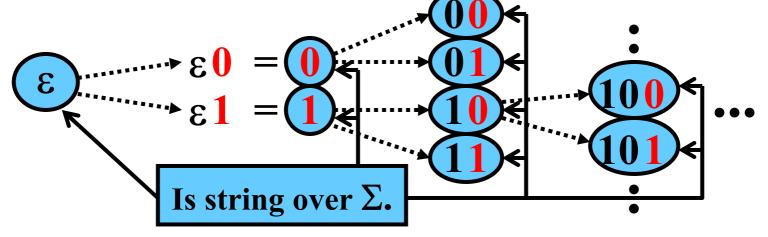
Definition: Let Σ be an alphabet.

1) ε is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

Example: Consider $\Sigma = \{0, 1\}$



Length of String

Gist:
$$|a_1 a_2 ... a_n| = n$$

Definition: Let x be a string over Σ . The *length* of x, |x|, is defined as follows: 1) if $x = \varepsilon$, then |x| = 0**2)** if $x = a_1 \dots a_n$, then |x| = nfor some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1, ..., nNote: The length of x is the number of all symbols in x. **Example:** Consider x = 1010**Task:** |x|x = 1010 $a_1a_2a_3a_4 \rightarrow n = 4$, thus $|\mathbf{x}| = 4$

Concatenation of Strings

Gist: xy

Definition: Let *x* and *y* be two strings over Σ . The *concatenation* of *x* and *y* is *xy*.

Note: $x\varepsilon = \varepsilon x = x$

Examples:

Concatenation of 101 and 001 is 101001 Concatenation of ε and 001 is ε 001 = 001

Power of String

6/20

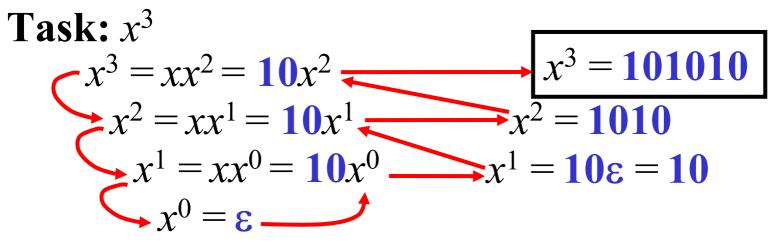
Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1)
$$x^0 = \varepsilon$$
 2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10



7/20

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal($a_1a_2a_3a_4$) = $a_4a_3a_2a_1$, so reversal(1 0 1 0) = 0 1 0 1

Prefix of String

Gist: *x* **is a prefix of** *xz*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *prefix* of *y* if there is a string *z* over Σ so

xz = y

Note: if $x \notin {\epsilon, y}$ then x is *proper prefix* of y.

Example: Consider 1010 Task: All prefixes of 1010

Prefixes of 1010 $\begin{cases} \epsilon \\ 1 \\ 10 \\ 101 \\ 101 \end{cases}$ Proper prefixes of 1010

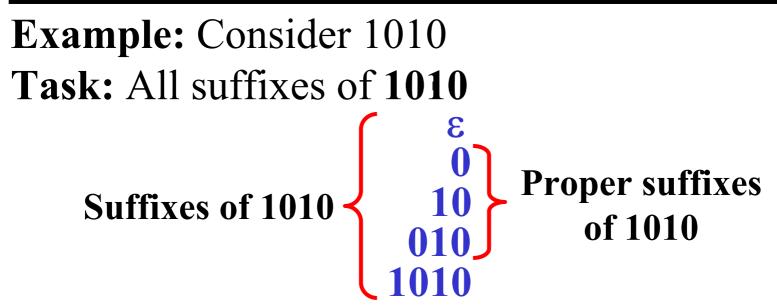
Suffix of String

Gist: *x* is a suffix of *zx*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *suffix* of *y* if there is a string *z* over Σ so

zx = y

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper suffix* of y.



Substring

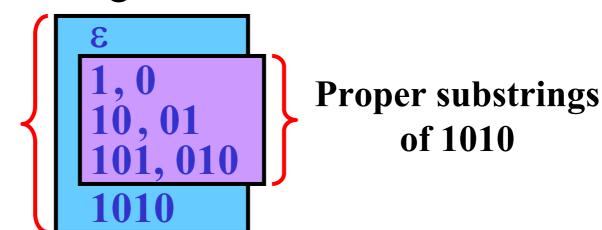
10/20

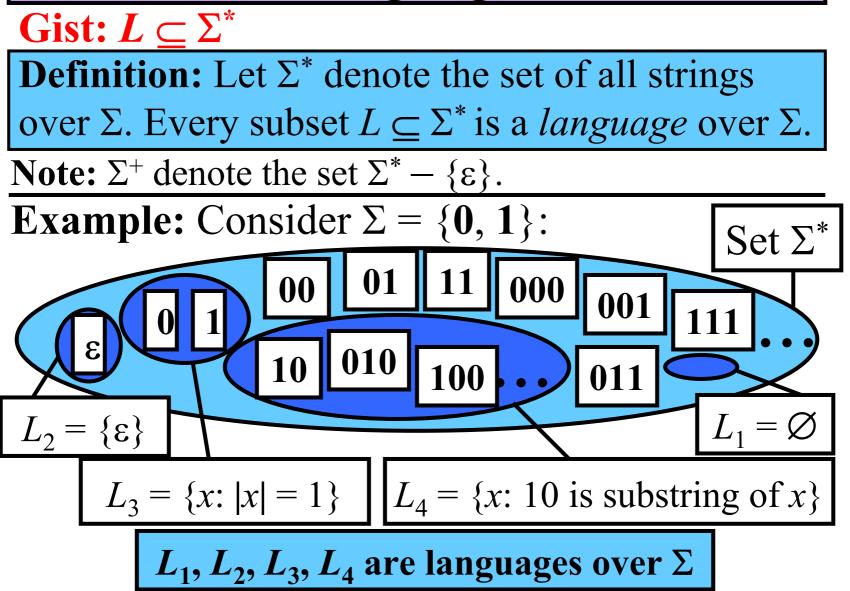
Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y. **Example:** Consider 1010

Task: All substrings of 1 0 1 0

Substrings of 1010





© Alexander Meduna & Roman Lukáš

Finite and Infinite Languages

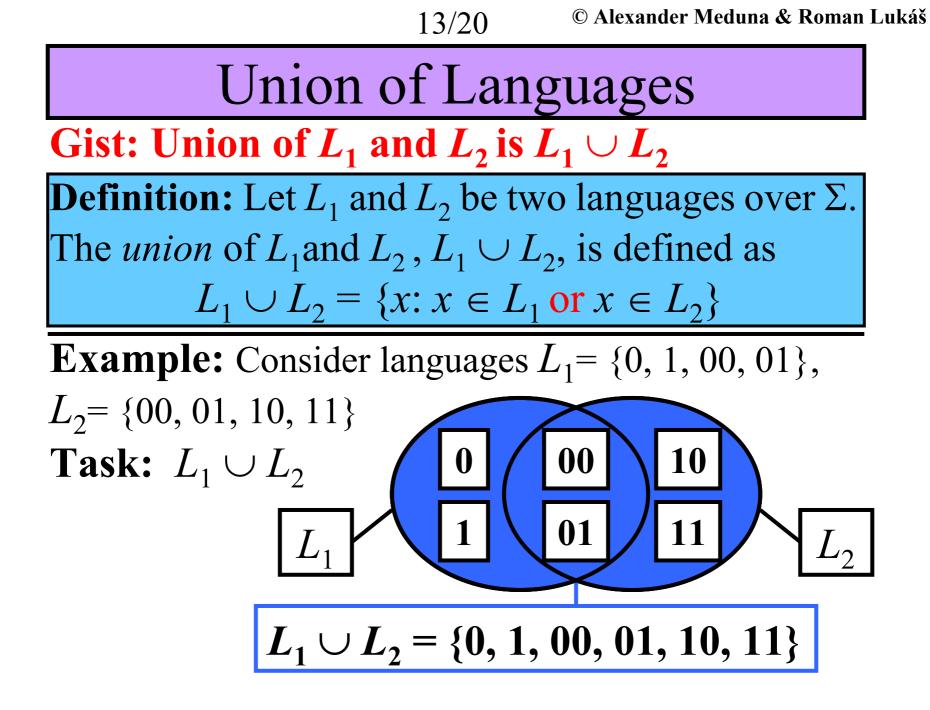
12/20

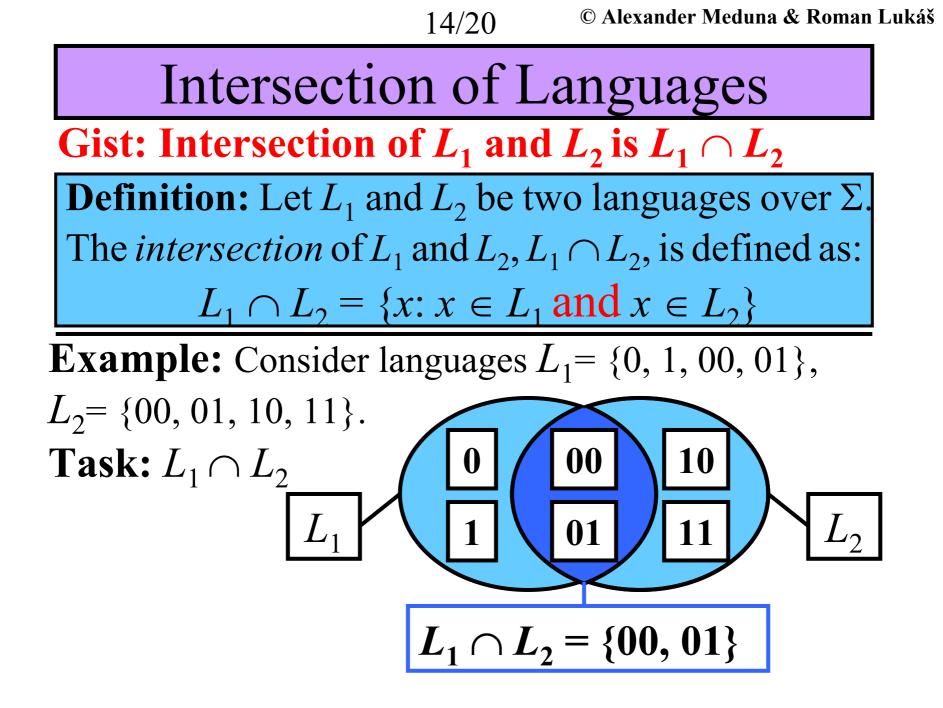
Gist: finite language contains a finite number of strings

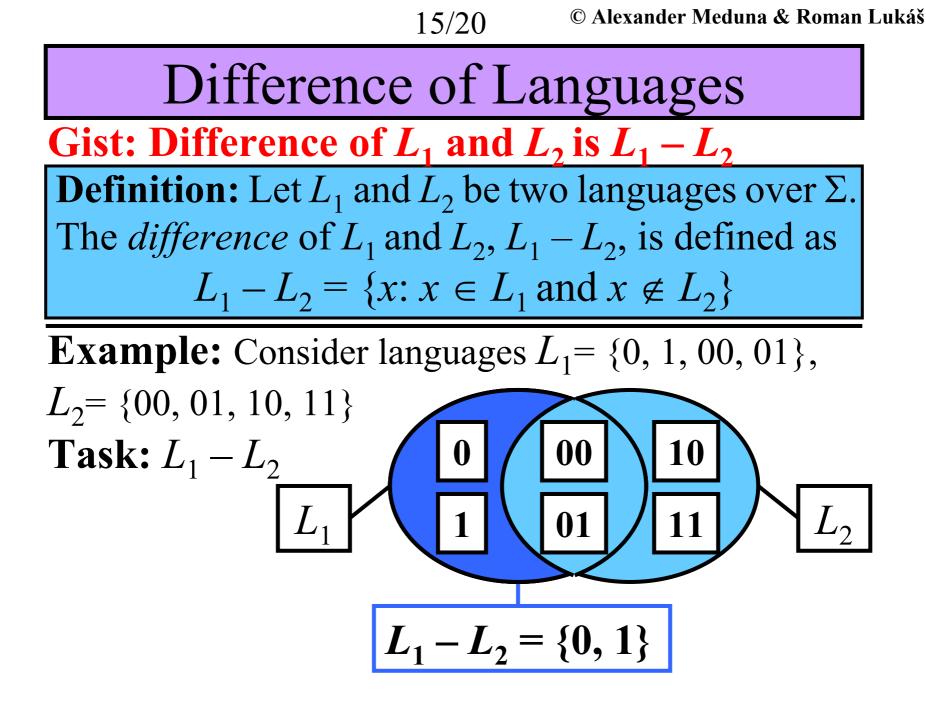
Definition: A language, *L*, is *finite* if *L* contains a finite number of strings; otherwise, *L* is *infinite*.

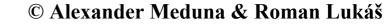
Note: Let S be a set; card(S) is the number of its members. Examples:

- $L_1 = \emptyset$ is **finite** because card $(L_1) = \mathbf{0}$
- $L_2 = \{\varepsilon\}$ is finite because card $(L_2) = 1$
- $L_3 = \{x: |x| = 1\} = \{0, 1\}$ is finite because $card(L_3) = 2$
- $L_4 = \{x: 10 \text{ is substring of } x\} = \{10, 010, 100, ... \}$ is infinite









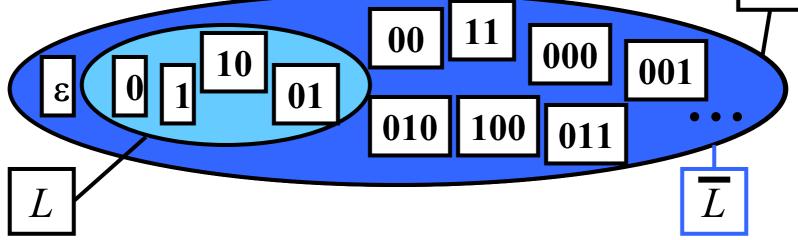
Complement of Language

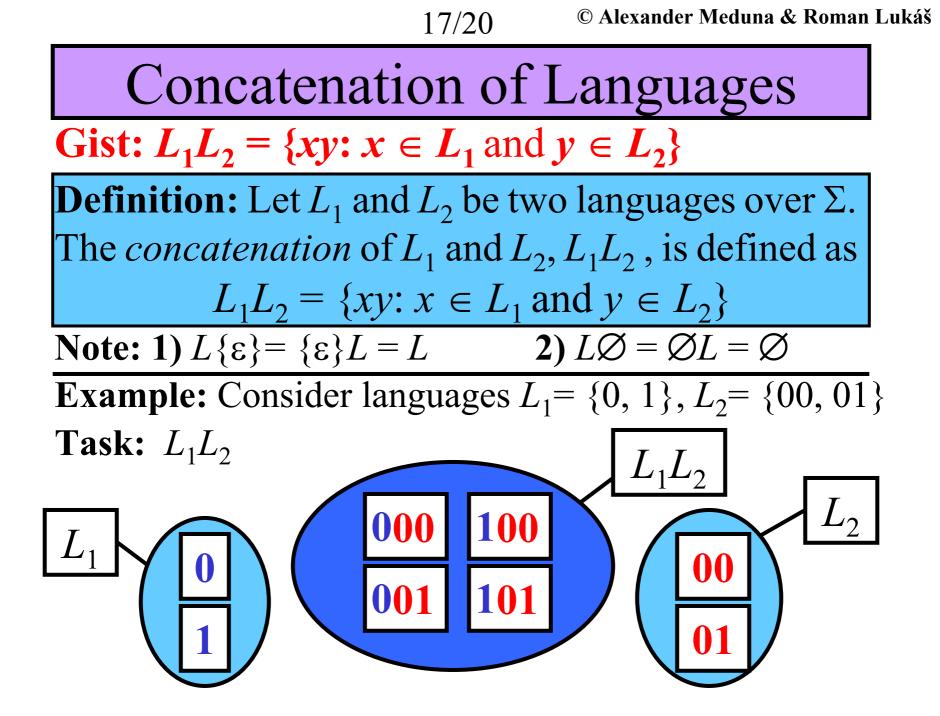
16/20

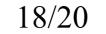
Gist: $\overline{L} = \Sigma^* - L$

Definition: Let *L* be a languages over Σ . The *complement* of *L*, *L*, is defined as $\overline{L} = \Sigma^* - L$

Example: Consider language $L = \{0, 1, 01, 10\}$ **Task:** \overline{L}



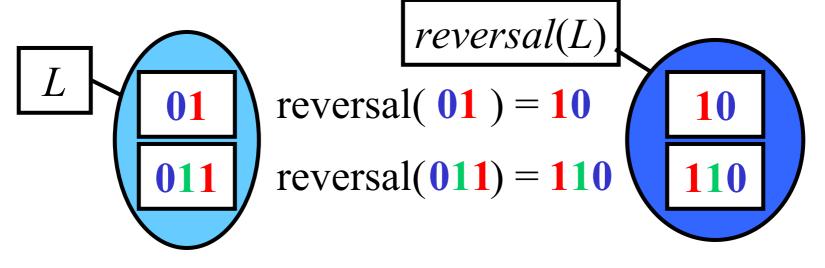


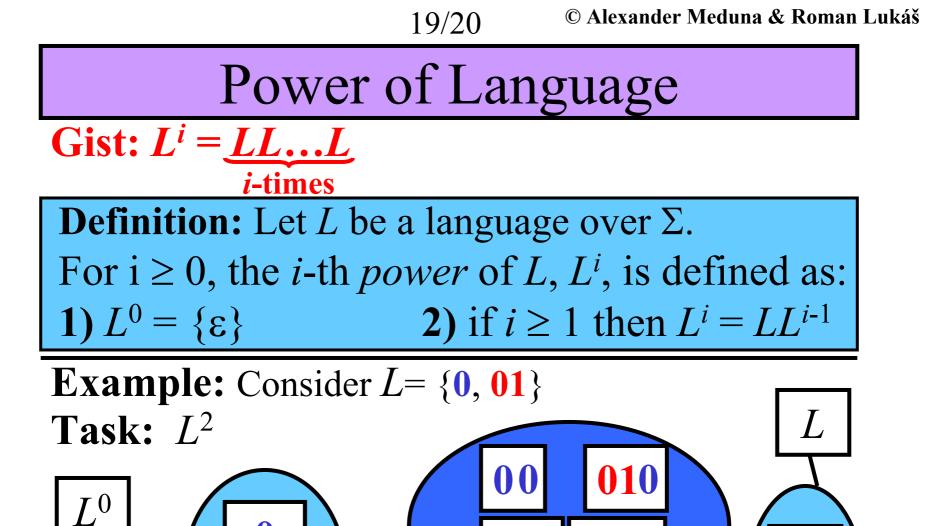


Gist: $reversal(L) = \{reversal(x): x \in L\}$

Definition: Let *L* be a language over Σ . The *reversal* of *L*, *reversal*(*L*), is defined as $reversal(L) = \{reversal(x): x \in L\}$

Example: Consider $L = \{01, 011\}$ **Task:** *reversal*(L)





 $L^{1} = LL^{0}$

 $= I I^{1}$

$$20/20$$
 © Alexander Meduna & Roman Lukáš
Iteration of Language
Gist: $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots \cup L^i \cup \ldots$
 $L^+ = L^1 \cup L^2 \cup \ldots \cup L^i \cup \ldots$
Definition: Let *L* be a language over Σ . The
iteration of *L*, *L*^{*}, and the *positive iteration* of *L*,
 L^+ , are defined as $L^* = \bigcup_{i=0}^{\infty} L^i$, $L^+ = \bigcup_{i=1}^{\infty} L^i$

<u>
</u>

Note: 1)
$$L^+ = LL^* = L^*L$$
 2) $L^* = L^+ \cup \{\epsilon\}$

Example:

Consider language $L = \{0, 01\}$ over $\Sigma = \{0, 1\}$. **Task:** L^* and L^+

 $L^0 = \{ \epsilon \}, L^1 = \{ \mathbf{0}, \mathbf{01} \}, L^2 = \{ \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101} \}, \dots$ $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots = \{\varepsilon, 0, 01, 00, 001, 010, 0101, \ldots\}$ $L^1 \cup L^2 \cup \ldots = \{0, 01, 00, 001, 010, 0101, \ldots\}$ $L^+ =$