Introduction:

 Mathematical Preliminaries (Formal Language Theory) Section 1.1
Alphabets and symbols

Definition: An alphabet is a finite, nonempty

 set of elements, which are called symbols.
Example:

If we denote this alphabet as Σ, then $\Sigma=\{\boldsymbol{a}, \boldsymbol{b}, \mathbf{0}, \mathbf{1}\}$

String

Gist: $x=a_{1} a_{2} \ldots a_{n}$

Definition: Let Σ be an alphabet.

1) ε is a string over Σ
2) if x is a string over Σ and $a \in \Sigma$ then $x a$ is a string over Σ
Note: ε denotes the empty string that contains no symbols. Example: Consider $\Sigma=\{0,1\}$

Length of String

Gist: $\left|a_{1} a_{2} \ldots a_{n}\right|=n$

Definition: Let x be a string over Σ. The length of $x,|x|$, is defined as follows:

1) if $x=\varepsilon$, then $|x|=0$
2) if $x=a_{1} \ldots a_{n}$, then $|x|=n$
for some $n \geq 1$, and $a_{i} \in \sum$ for all $i=1, \ldots, n$
Note: The length of x is the number of all symbols in x. Example: Consider $x=1010$
Task: $|x|$

$$
\boldsymbol{x}=\underset{a_{1} a_{2} a_{3}(4) \longrightarrow n=4, \text { thus }|x|=4}{1010}
$$

Concatenation of Strings

Gist: $x y$

Definition: Let x and y be two strings over Σ. The concatenation of x and y is $x y$.
Note: $\boldsymbol{x} \varepsilon=\varepsilon \boldsymbol{x}=\boldsymbol{x}$
Examples:
Concatenation of 101 and 001 is 101001
Concatenation of ε and 001 is $\varepsilon 001=001$

Power of String

Gist: $x^{i}=x_{1, \ldots x}$ i-times
Definition: Let x be a string over Σ. For $i \geq 0$, the i-th power of x, x^{i}, is defined as $\begin{array}{ll}\text { 1) } x^{0}=\varepsilon & \text { 2) if } i \geq 1 \text { then } x^{i}=x x^{i-1}\end{array}$
Note: $x^{i} x^{j}=x^{j} x^{i}=x^{i+j}$, where $i, j \geq 0$
Example: Consider $x=10$
Task: x^{3}

$$
\left\{\begin{array}{l}
x^{3}=x x^{2}=10 x^{2} \longrightarrow x^{3}=101010 \\
x^{2}=x x^{1}=10 x^{1} \longrightarrow x^{2}=1010 \\
x^{1}=x x^{0}=10 x^{0} \longrightarrow x^{1}=10 \\
x^{0}=\varepsilon
\end{array}\right.
$$

Reversal of String

Gist: reversal $\left(a_{1} \ldots a_{n}\right)=a_{n} \ldots a_{1}$

Definition: Let x be a string over Σ.
The reversal of x, reversal (x), is defined as:

1) if $x=\varepsilon$ then $\operatorname{reversal}(\varepsilon)=\varepsilon$
2) if $x=a_{1} \ldots a_{n}$ then reversal $\left(a_{1} \ldots a_{n}\right)=a_{n} \ldots a_{1}$
for some $n \geq 1$, and $a_{i} \in \sum$ for all $i=1, \ldots, n$
Example: Consider $x=1010$
Task: reversal(x)
$\operatorname{reversal}\left(a_{1} a_{2} a_{3} a_{4}\right)=a_{4} a_{3} a_{2} a_{1}$, so $\operatorname{reversal}\left(\begin{array}{llll}1 & 0 & 11 & 0\end{array}\right)=0101$

Prefix of String

Gist: x is a prefix of $x z$

Definition: Let x and y be two strings over Σ; x is prefix of y if there is a string z over Σ so

$$
x z=y
$$

Note: if $x \notin\{\varepsilon, y\}$ then x is proper prefix of y.
Example: Consider 1010
Task: All prefixes of $\mathbf{1 0 1 0}$

Suffix of String

Gist: \boldsymbol{x} is a suffix of $\boldsymbol{z} \boldsymbol{x}$

Definition: Let x and y be two strings over Σ; x is suffix of y if there is a string z over Σ so

$$
z x=y
$$

Note: if $x \notin\{\varepsilon, y\}$ then x is proper suffix of y.
Example: Consider 1010
Task: All suffixes of $\mathbf{1 0 1 0}$

Substring

Gist: x is a substring of $z x z$,

Definition: Let x and y be two strings over Σ; x is substring of y if there are two string z, z, over \sum so $\boldsymbol{z x z} \boldsymbol{z}^{\prime}=\boldsymbol{y}$.
Note: if $x \notin\{\varepsilon, y\}$ then x is proper substring of y. Example: Consider 1010 Task: All substrings of 1010

Proper substrings of 1010

Languages

Gist: $L \subseteq \Sigma^{*}$

Definition: Let Σ^{*} denote the set of all strings over Σ. Every subset $L \subseteq \Sigma^{*}$ is a language over Σ.
Note: Σ^{+}denote the set $\Sigma^{*}-\{\varepsilon\}$.
Example: Consider $\Sigma=\{\mathbf{0}, \mathbf{1}\}$:
Set Σ^{*}
$L_{1}, L_{2}, L_{3}, L_{4}$ are languages over Σ

Finite and Infinite Languages

Gist: finite language contains a finite number

 of stringsDefinition: A language, L, is finite if L contains a finite number of strings; otherwise, L is infinite.
Note: Let S be a set; $\operatorname{card}(S)$ is the number of its members. Examples:

- $L_{1}=\varnothing$ is finite because $\operatorname{card}\left(L_{1}\right)=\mathbf{0}$
- $L_{2}=\{\varepsilon\}$ is finite because $\operatorname{card}\left(L_{2}\right)=1$
- $L_{3}=\{x:|x|=1\}=\{0,1\}$ is finite because $\operatorname{card}\left(L_{3}\right)=2$
- $L_{4}=\{x: 10$ is substring of $x\}=\{10,010,100, \ldots\}$ is infinite

Union of Languages

Gist: Union of L_{1} and L_{2} is $L_{1} \cup L_{2}$

Definition: Let L_{1} and L_{2} be two languages over Σ. The union of L_{1} and $L_{2}, L_{1} \cup L_{2}$, is defined as

$$
L_{1} \cup L_{2}=\left\{x: x \in L_{1} \text { or } x \in L_{2}\right\}
$$

Example: Consider languages $L_{1}=\{0,1,00,01\}$, $L_{2}=\{00,01,10,11\}$ Task: $L_{1} \cup L_{2}$

$$
L_{1} \cup L_{2}=\{0,1,00,01,10,11\}
$$

Intersection of Languages

Gist: Intersection of L_{1} and L_{2} is $L_{1} \cap L_{2}$

Definition: Let L_{1} and L_{2} be two languages over Σ. The intersection of L_{1} and $L_{2}, L_{1} \cap L_{2}$, is defined as:

$$
L_{1} \cap L_{2}=\left\{x: x \in L_{1} \text { and } x \in L_{2}\right\}
$$

Example: Consider languages $L_{1}=\{0,1,00,01\}$, $L_{2}=\{00,01,10,11\}$. Task: $L_{1} \cap L_{2}$

Difference of Languages

Gist: Difference of L_{1} and L_{2} is $L_{1}-L_{2}$

Definition: Let L_{1} and L_{2} be two languages over Σ. The difference of L_{1} and $L_{2}, L_{1}-L_{2}$, is defined as

$$
L_{1}-L_{2}=\left\{x: x \in L_{1} \text { and } x \notin L_{2}\right\}
$$

Example: Consider languages $L_{1}=\{0,1,00,01\}$, $L_{2}=\{00,01,10,11\}$ Task: $L_{1}-L_{2}$

Complement of Language

Gist: $\bar{L}=\Sigma^{*}-L$

Definition: Let L be a languages over Σ. The complement of L, L, is defined as

$$
\bar{L}=\Sigma^{*}-L
$$

Example: Consider language $L=\{0,1,01,10\}$ Task: \bar{L} Σ^{*}

Concatenation of Languages

Gist: $L_{1} L_{2}=\left\{x y: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\}$
Definition: Let L_{1} and L_{2} be two languages over Σ. The concatenation of L_{1} and $L_{2}, L_{1} L_{2}$, is defined as

$$
L_{1} L_{2}=\left\{x y: x \in L_{1} \text { and } y \in L_{2}\right\}
$$

Note: 1) $L\{\varepsilon\}=\{\varepsilon\} L=L \quad$ 2) $L \varnothing=\varnothing L=\varnothing$
Example: Consider languages $L_{1}=\{0,1\}, L_{2}=\{00,01\}$
Task: $L_{1} L_{2}$

Reversal of Language

Gist: reversal $(L)=\{\operatorname{reversal}(x): x \in L\}$
Definition: Let L be a language over Σ. The reversal of L, reversal (L), is defined as

$$
\operatorname{reversal}(L)=\{\operatorname{reversal}(x): x \in L\}
$$

Example: Consider $L=\{01,011\}$ Task: reversal((L)

reversal (L)
$\operatorname{reversal}(01)=10$

Power of Language

Gist: $L^{i}=\frac{L L \ldots . . L}{i \text {-imes }}$

Definition: Let L be a language over Σ. For $\mathrm{i} \geq 0$, the i-th power of L, L^{i}, is defined as: 1) $L^{0}=\{\varepsilon\} \quad$ 2) if $i \geq 1$ then $L^{i}=L L^{i-1}$

Example: Consider $L=\{0,01\}$ Task: L^{2}

Iteration of Language

Gist: $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots \cup L^{i} \cup \ldots$

$$
\boldsymbol{L}^{+}=\boldsymbol{L}^{1} \cup \boldsymbol{L}^{2} \cup \ldots \cup \boldsymbol{L}^{i} \cup \ldots
$$

Definition: Let L be a language over Σ. The iteration of L, L^{*}, and the positive iteration of L, L^{+}, are defined as $L^{*}=\bigcup_{i=0}^{\infty} L^{i}, L^{+}=\bigcup_{i=1}^{\infty} L^{i}$
Note: 1) $L^{+}=L L^{*}=L^{*} L$
2) $L^{*}=L^{+} \cup\{\varepsilon\}$

Example:

Consider language $L=\{\mathbf{0}, \mathbf{0 1}\}$ over $\Sigma=\{0,1\}$. Task: L^{*} and L^{+}
$L^{0}=\{\varepsilon\}, L^{1}=\{0,01\}, L^{2}=\{00,001,010,0101\}, \ldots$ $L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \ldots=\{\varepsilon, 0,01,00,001,010,0101, \ldots\}$ $L^{+}=\quad L^{1} \cup L^{2} \cup \ldots=\quad\{0,01,00,001,010,0101, \ldots\}$

