Lexical Analysis: Models Sections 2.1

Regular Expressions (RE): Definition

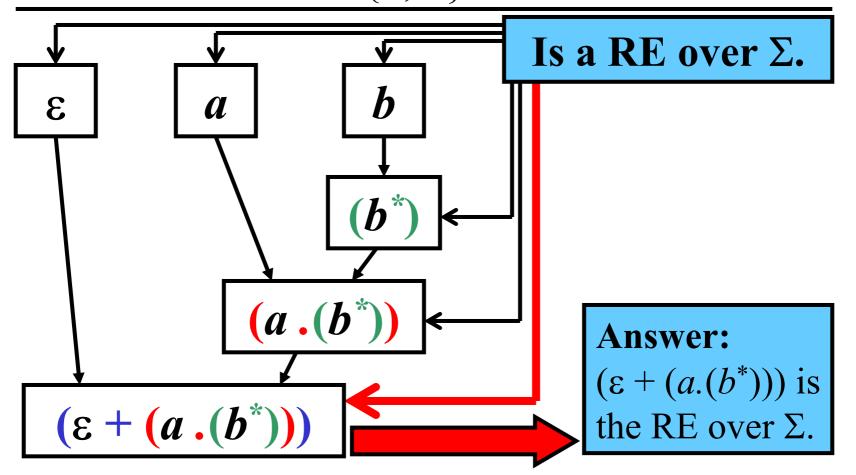
Gist: Expressions with operators ., +, and * that denote concatenation, union, and iteration, respectively.

Definition: Let Σ be an alphabet. The *regular expressions* over Σ and the *languages they denote* are defined as follows:

- Ø is a RE denoting the empty set
- ε is a RE denoting $\{\varepsilon\}$
- a, where $a \in \Sigma$, is a RE denoting $\{a\}$
- Let r and s be regular expressions denoting the languages L_r and L_s , respectively; then
 - (r.s) is a RE denoting $L = L_r L_s$
 - (r+s) is a RE denoting $L=L_r \cup L_s$
 - (r^*) is a RE denoting $L = L_r^*$

Regular Expressions: Example

Question: Is $(\varepsilon + (a.(b^*)))$ the regular expression over $\Sigma = \{a, b\}$?



Simplification

1) Reduction of the number of parentheses by

- 2) Expression *r.s* is simplified to *rs*
- 3) Expression rr^* or r^*r is simplified to r^+

Example:

$$((a.(a^*)) + ((b^*).b))$$
 can be written as $a.a^* + b^*.b$,

and $a \cdot a^* + b^* \cdot b$ can be written as $a^+ + b^+$

Regular Language (RL)

Gist: Every RE denotes a regular language

Definition: Let L be a language. L is a regular language (RL) if there exists a regular expression r that denotes L.

Denotation: L(r) means the language denoted by r.

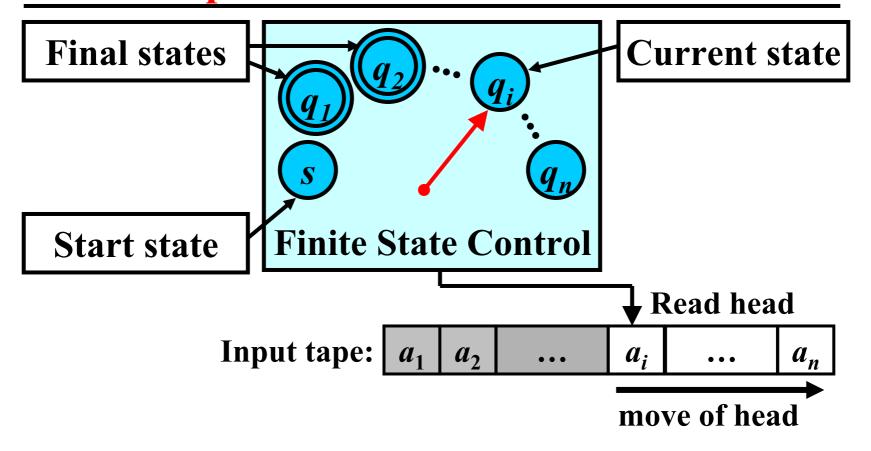
Examples:

$$r_1 = ab + ba$$
 denotes $L_1 = \{ab, ba\}$
 $r_2 = a^+b^*$ denotes $L_2 = \{a^nb^m : n \ge 1, m \ge 0\}$
 $r_3 = ab(a+b)^*$ denotes $L_3 = \{x : ab \text{ is prefix of } x\}$
 $r_4 = (a+b)^*ab(a+b)^*$ denotes $L_4 = \{x : ab \text{ is substring of } x\}$

 L_1, L_2, L_3, L_4 are regular languages over Σ

Finite Automata (FA)

Gist: The simplest model of computation based on a finite set of states and computational rules.



Finite Automata: Definition

Definition: A finite automaton (FA) is a 5-tuple: $M = (Q, \Sigma, R, s, F)$, where

- Q is a finite set of states
- Σ is an *input alphabet*
- *R* is a *finite set of rules* of the form: $pa \rightarrow q$, where $p, q \in Q, a \in \Sigma \cup \{\epsilon\}$
- $s \in Q$ is the start state
- $F \subseteq Q$ is a set of *final states*

Mathematical note on rules:

- Strictly mathematically, R is a relation from $Q \times (\Sigma \cup \{\epsilon\})$ to Q
- Instead of (pa, q), however, we write the rule as $pa \rightarrow q$
- $pa \rightarrow q$ means that with a, M can move from p to q
- if $a = \varepsilon$, no symbol is read

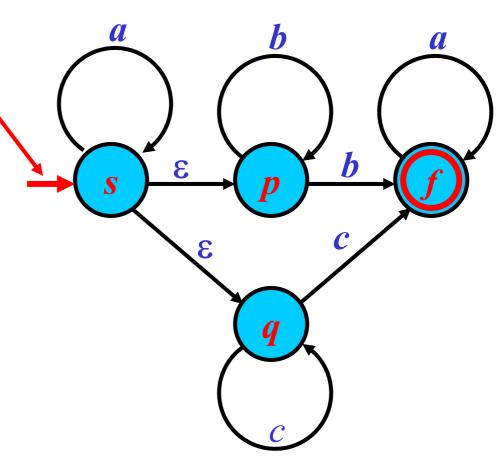
Graphical Representation

- q denotes a state $q \in Q$
- \rightarrow denotes the start state $s \in Q$
 - f denotes a final state $f \in F$

$$p \xrightarrow{a} q$$
 denotes $pa \rightarrow q \in R$

Graphical Representation: Example

```
M = (Q, \Sigma, R, s, F),
 where:
• Q = \{s, p, q, f\};
• \Sigma = \{a, b, c\};
• R = \{sa \rightarrow s,
           s \rightarrow p
          pb \rightarrow p
          pb \rightarrow f
          s \rightarrow q
           qc \rightarrow q,
           qc \rightarrow f
          fa \rightarrow f;
• F = \{ f \}
```



Tabular Representation

• Columns: Member of $\Sigma \cup \{\epsilon\}$

• Rows: States of Q

• First row: The start state

• Underscored: Final states

	•••	a	•••	3	
S					
•••					
p		t(p, a)	1		
···			t(p,	a) = a	$\{q: pa \to q \in R\}$
<u> </u>			μp	<i>u</i>)	$(q \cdot pa $

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$
 where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s, \\ s \rightarrow p, \}$
 - $pb \rightarrow p$
 - $pb \rightarrow f$
 - $s \rightarrow q$
 - $qc \rightarrow q$,
 - $qc \rightarrow f$
 - $fa \rightarrow f$;
 - $\bullet F = \{ f \}$

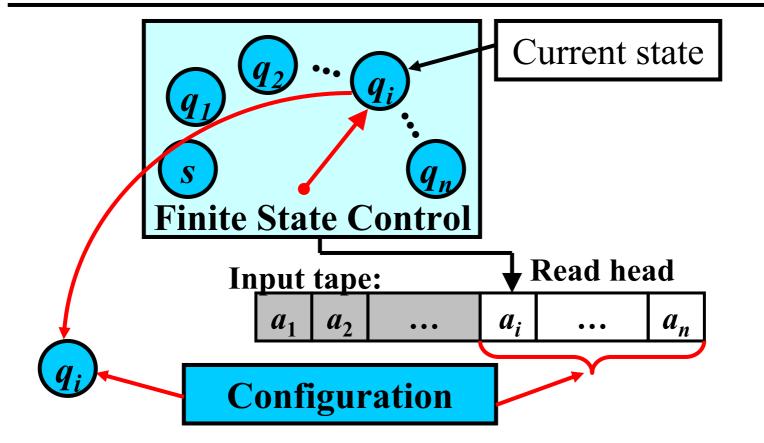
	a	b	c	3
S	{s }	Ø	Ø	{ <i>p</i> , <i>q</i> }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	$\{q,f\}$	Ø
f	{ f }	Ø	Ø	Ø

Configuration

Gist: Instance description of FA

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA.

A configuration of M is a string $\chi \in Q\Sigma^*$



Move

Gist: Computational step of FA

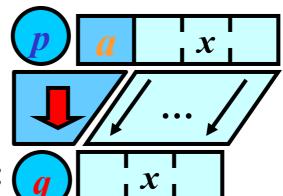
Definition: Let pax and qx be two configurations of M, where $p, q \in Q, a \in \Sigma \cup \{\epsilon\}$, and $x \in \Sigma^*$. Let $r = pa \rightarrow q \in R$ be a rule. Then M makes a move from pax to qx according to r, written as $pax \mid -qx \mid r$ or, simply, $pax \mid -qx$

Note: if $\alpha = \varepsilon$, no input symbol is read

Configuration:

Rule: $pa \rightarrow q$

New configuration:



Sequence of Moves 1/2

Gist: Several consecutive computational steps

Definition: Let χ be a configuration. M makes zero moves from χ to χ ; in symbols, $\chi \mid -^0 \chi$ [ϵ] or, simply, $\chi \mid -^0 \chi$

Definition: Let χ_0 , χ_1 , ..., χ_n be a sequence of configurations, $n \ge 1$, and $\chi_{i-1} \mid -\chi_i [r_i]$, $r_i \in R$, for all i = 1, ..., n; that is, $\chi_0 \mid -\chi_1 [r_1] \mid -\chi_2 [r_2] ... \mid -\chi_n [r_n]$

Then *M* makes *n* moves from χ_0 to χ_n : $\chi_0 \mid -^n \chi_n [r_1...r_n]$ or, simply, $\chi_0 \mid -^n \chi_n$

Sequence of Moves 2/2

```
If \chi_0 \mid -^n \chi_n [\rho] for some n \ge 1, then \chi_0 \mid -^+ \chi_n [\rho].
If \chi_0 \mid -^n \chi_n [\rho] for some n \ge 0, then \chi_0 \mid -^* \chi_n [\rho].
```

Example: Consider

```
pabc |- qbc [1: pa → q], and qbc |- rc [2: qb → r]. Then,

pabc |-^{2} rc [1 2],

pabc |-^{+} rc [1 2],

pabc |-^{*} rc [1 2]
```

Accepted Language

Gist: M accepts w if it can completely read w by a sequence of moves from s to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

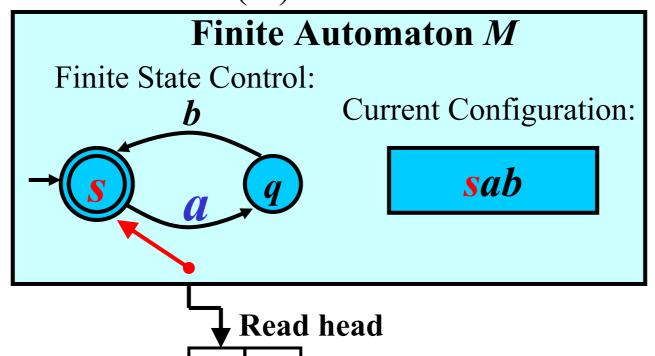
$$L(M) = \{w: w \in \Sigma^*, sw \mid -^*f, f \in F\}$$

$$M = (Q, \Sigma, R, \mathbf{s}, F)$$
: if $\mathbf{q}_n \in F$ then $\mathbf{w} \in L(M)$; otherwise, $\mathbf{w} \notin L(M)$

$$\mathbf{s}a_1 a_2 \dots a_n | -\mathbf{q}_1 a_2 \dots a_n | - \dots | -\mathbf{q}_{n-1} a_n | -\mathbf{q}_n$$

FA: Example 1/3

$$M = (Q, \Sigma, R, s, F)$$
, where:
 $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$
Question: $ab \in L(M)$?



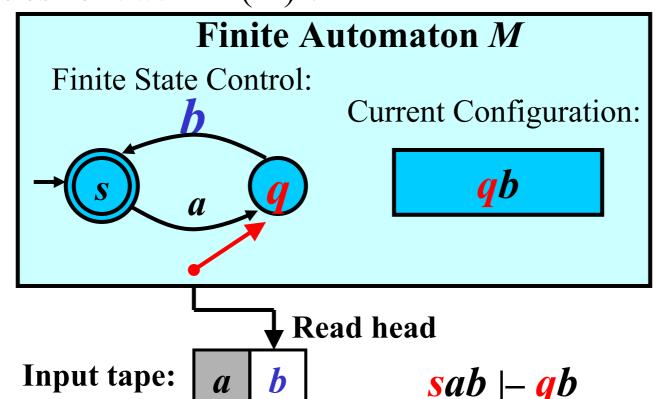
Input tape:

a b

sab

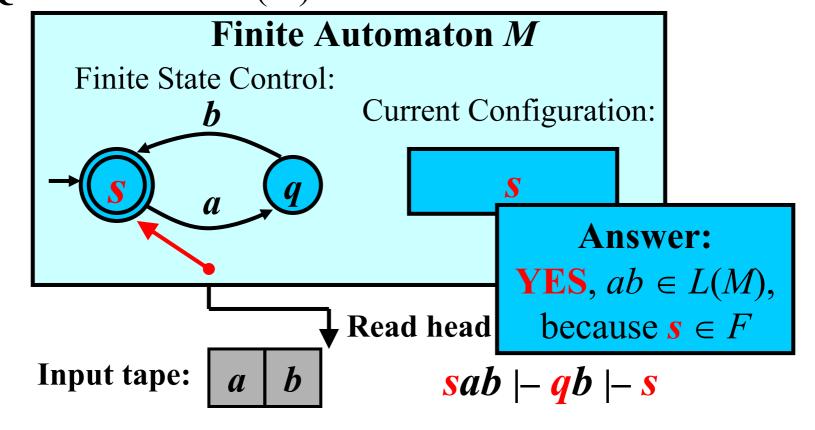
FA: Example 2/3

$$M = (Q, \Sigma, R, s, F)$$
, where:
 $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$
Question: $ab \in L(M)$?



FA: Example 3/3

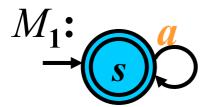
 $M = (Q, \Sigma, R, s, F)$, where: $Q = \{s, q\}, \Sigma = \{a, b\}, R = \{sa \rightarrow q, qb \rightarrow s\}, F = \{s\}$ **Question:** $ab \in L(M)$?

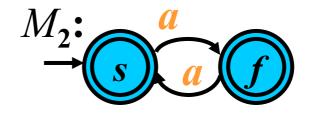


Equivalent Models

Definition: Two models for languages, such as FAs, are equivalent if they both specify the same language.

Example:





Question: Is M_1 equivalent to M_2 ?

Answer: M_1 and M_2 are equivalent because

$$L(M_1) = L(M_2) = \{a^n : n \ge 0\}$$

Conversion of RE to FA: Basics 1/5

Gist: Algorithm that converts any RE to an equivalent FA (lex in UNIX).

• For a RE $r = \emptyset$, there is an equivalent FA M_{\emptyset} .

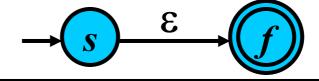
Proof:

 M_{\varnothing} : -

• For a RE $r = \varepsilon$, there is an equivalent FA M_{ε} .

Proof:

 M_{ε} :



• For a RE r = a, $a \in \Sigma$, there is an equivalent FA M_a .

Proof:

 M_{α} :

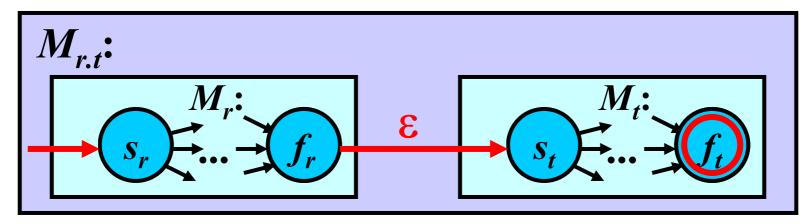
RE to FA: Concatenation 2/5

- Let r be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let t be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE r.t, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction:

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \to s_t\}, s_r, \{f_t\})$$



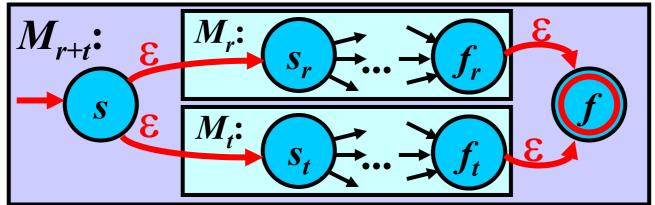
RE to FA: Union 3/5

- Let r be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let t be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$.

Construction

$$M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\}, s, \{f\})$$



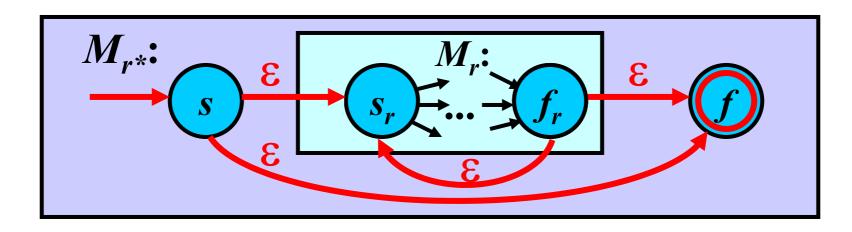
RE to FA: Iteration 4/5

- Let r be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*}

Proof: Let $s, f \notin Q_r$.

Construction:

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\}, s, \{f\})$$



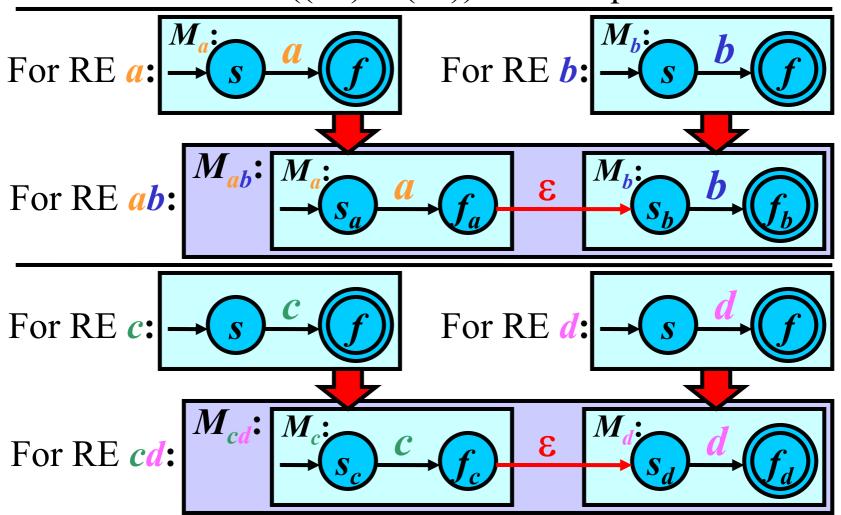
→ (see 1/5)

RE to FA: Completion 5/5

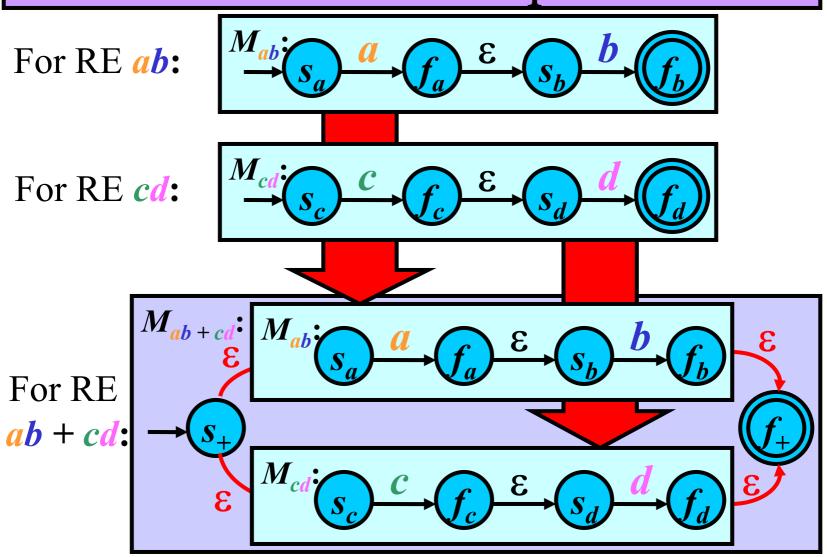
- Input: RE r over Σ
- Output: FA M such that L(r) = L(M)
- Method:
- From "inside" of r, repeatedly use the next rules to construct M:
 - for RE \varnothing , construct FA M_{\varnothing}
 - for RE ε , construct FA M_{ε}
 - for RE $a \in \Sigma$, construct FA M_a
 - let for REs r and t, there already exist FAs M_r and M_t , respectively; then,
 - for RE r.t, construct FA $M_{r.t}$ (see 2/5)
 - for RE r + t, construct FA M_{r+t} (see 3/5)
 - for RE r^* construct FA M_{r^*} (see 4/5)

RE to FA: Example 1/3

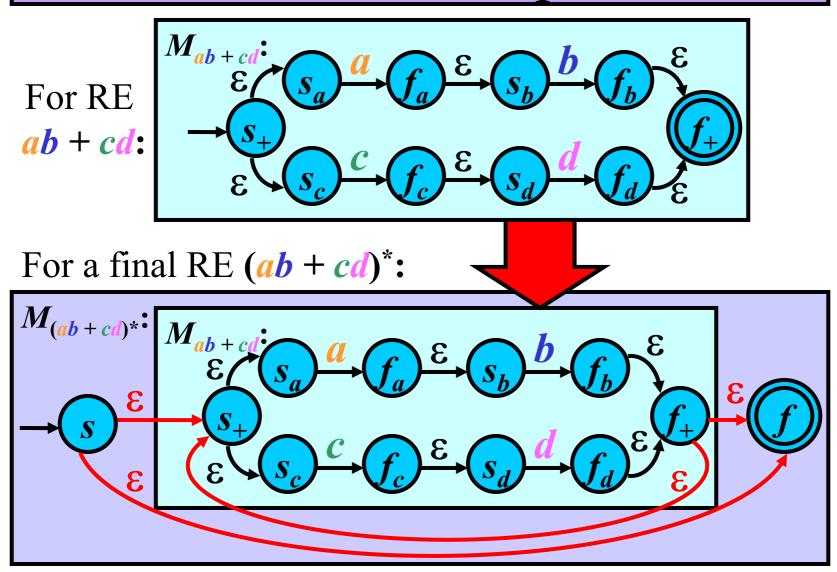
Transform RE $r = ((ab) + (cd))^*$ to an equivalent FA M



RE to FA: Example 2/3



RE to FA: Example 3/3



Models for Regular Languages

Theorem: For every RE r, there is an FA M such that L(r) = L(M).

Proof is based on the previous algorithm.

Theorem: For every FA M, there is an RE r such that L(M) = L(r).

Proof: Omitted.

Conclusion: The fundamental models for regular languages are

1) Regular expressions 2) Finite Automata