
© Alexander Meduna & Roman Lukáš1/26

Lexical Analysis:Lexical Analysis:
Theory Theory

Section 2.3 Section 2.3
(Section 2.3.2 excluded)(Section 2.3.2 excluded)

© Alexander Meduna & Roman Lukáš

• Let L be a RL. Then, there is k ≥ 1 such that
if z ∈ L and |z| ≥ k, then there exist u,v,w: z = uvw,
1) v ≠ ε 2) |uv| ≤ k 3) for each m ≥ 0, uvmw ∈ L

Pumping Lemma for RLs

Example: for RE r = ab*c, L(r) is regular.

• for z = abc: z ∈ L(r) & |z| ≥ 3:
u v w

uv0w = ab0c = ac ∈ L(r)
uv1w = ab1c = abc ∈ L(r)
uv2w = ab2c = abbc ∈ L(r)...v ≠ ε, |uv| = 2 ≤ 3

• for z = abbc: z∈ L(r) & |z| ≥ 3:
u v w

uv0w = abb0c = abc ∈ L(r)
uv1w = abb1c = abbc ∈ L(r)
uv2w = abb2c = abbbc ∈ L(r)...

...

v ≠ ε, |uv| = 2 ≤ 3

Gist: Pumping lemma demonstrates an infinite
iteration of some substring in RLs.

There is k = 3 such that 1), 2) and 3) holds.

2/26

© Alexander Meduna & Roman Lukáš

Pumping Lemma: Illustration
• L = any regular language:

3/26

k
∈ Lz

k
z ∈ L nothing interesting

wu v
k

= z

wu ∈ L3)

v
wvu

wvu
∈ L

∈ L…

≤ k2)
≠ ε1)

© Alexander Meduna & Roman Lukáš

Proof of Pumping Lemma 1/3
• Let L be a regular language. Then, there exists
DFA M = (Q, Σ, R, s, F), and L = L(M).
• For z ∈ L(M), M makes |z| moves and M visits
|z| + 1 states:

sa1a2…an |– q1a2…an |– … |– qn-1an |– qn

|z|
|z| + 1 states

q1s qn
a1 a2 … qn-1

an

• for z = a1a2 ...an:
an-1

4/26

© Alexander Meduna & Roman Lukáš

Proof of Pumping Lemma 2/3
• Let k = card(Q) (the number of states).
For each z ∈ L and |z| ≥ k, M visits k + 1 or
more states. As k + 1 > card(Q), there exists a
state q that M visits at least twice.

sz = suvw |–i qvw |– j qw |–* f, f ∈ F
Summary:

• For z exist u, v, w such that z = uvw:

s

reads v

qreads u freads w
qw |–* f

qv |– j q; j ≥ 1,
i + j ≤ k

5/26

su |–i q

© Alexander Meduna & Roman Lukáš

Proof of Pumping Lemma 3/3
• There exist moves:

• for m = 0, uvmw = uv0w = uw,
1. 2. 3.

suw |–i qw |–* f, f ∈ F
1. 3.

• for each m > 0,

suvmw|–i qvmw |–* f, f ∈ F
1. 3.

|– j qvm-1w
2.

|– j qw|– j ...
2. 2.

Summary:
1) qv |– j q, j ≥ 1; therefore, |v| ≥ 1, so v ≠ ε
2) suv |–i qv |– j q, i + j ≤ k; therefore, |uv| ≤ k
3) For each m ≥ 0: suvmw |–* f, f ∈ F, therefore uvmw ∈ L

QED

su |–i q; qv |– j q; qw |–* f, f ∈ F, so

6/26

© Alexander Meduna & Roman Lukáš

Pumping Lemma: Application I
• Based on the pumping lemma, we often make a proof by
contradiction to demonstrate that a language is not regular

7/26

Assume that L is regular

Consider the PL constant k and select z ∈ L, whose
length depends on k so |z| ≥ k is surely true.

For all decompositions of z into uvw, v ≠ ε, |uv| ≤ k , show:
there exists m ≥ 0 such that uvmw ∉ L
from the pumping lemma, uvmw ∈ L contradiction

false assumption Therefore,
L is not regular

© Alexander Meduna & Roman Lukáš

Pumping Lemma: Example
Prove that L = {anbn : n ≥ 0} is not regular:
1) Assume that L is regular. Let k ≥ 1 be the

pumping lemma constant for L.
2) Let z = akbk: akbk∈ L, |z| = |akbk| = 2k ≥ k
3) All decompositions of z into uvw, v ≠ ε, |uv| ≤ k:

8/26

u v w

a a…a abb…bb
k k

|uv| ≤ k

• pumping lemma: uv0w ∈ L
k - i < k

a abb…bb ∉ L
u w

• uv0w = uw =

Contradiction!

4) Therefore, L is not regular

© Alexander Meduna & Roman Lukáš

Note on Use of Pumping Lemma
• Pumping lemma:

L is regularif exist k ≥ 0 and ...
then

L is regularexist k ≥ 0 and ...if then
• However, the next implication is incorrect:

• We cannot use the pumping lemma to
prove that L is regular.

Main application of the pumping lemma:
• proof by contradiction that L is not regular.

9/26

© Alexander Meduna & Roman Lukáš

Pumping Lemma: Application II. 1/3
• We can use the pumping lemma to prove

some other theorems.
Illustration:
• Let M be a DFA and k be the pumping lemma
constant (k is the number of states in M). Then,
L(M) is infinite ⇔ there exists z ∈ L(M), k ≤ |z| < 2k
Proof:
1) there exists z ∈ L(M), k ≤ |z| < 2k ⇒ L(M) is infinite:
if z ∈ L(M), k ≤ |z|, then by PL:
z = uvw, v ≠ ε, and for each m ≥ 0: uvmw ∈ L(M)

L(M) is infinite

10/26

© Alexander Meduna & Roman Lukáš

Pumping Lemma: Application II. 2/3
2) L(M) is infinite ⇒ there exists z ∈ L(M), k ≤ |z| < 2k:

Assume that L(M) is infinite and there exists no z∈ L(M), |z| ≥ k

a) Prove by contradiction that
• L(M) is infinite ⇒ there exists z ∈ L(M), |z| ≥ k

• We prove by contradiction, that
L(M) is infinite there exists z ∈ L(M), |z| ≥ k

there exists z ∈ L(M), k ≤ |z| < 2k

a)

b)

for all z ∈ L(M) holds |z| < k

L(M) is finiteContradiction !

11/26

© Alexander Meduna & Roman Lukáš

Pumping Lemma: Application II. 3/3

If z0 ∈ L(M) and |z0| ≥ k, the PL implies: z0 = uvw,
|uv| ≤ k, and for each m ≥ 0, uvmw ∈ L(M)

b) Prove by contradiction

Contradiction !

Assume that there is z ∈ L(M), |z| ≥ k k 2k

|uw| = |z0| – |v| for m = 0: uvmw = uw ∈ L(M)
Summary: uw ∈ L(M), |uw| ≥ k and |uw| < |z0|!
z0 is not the shortest string satisfying z0 ∈ L(M), |z0| ≥ k

≥ 2k ≤ k

Let z0 be the shortest string satisfying z0 ∈ L(M), |z0| ≥ k
Because there exists no z ∈ L(M), k ≤ |z| < 2k, so |z0| ≥ 2k

and there is no z ∈ L(M), k ≤ |z| < 2k

≥ k

there exists z ∈ L(M), k ≤ |z| < 2k
• there exists z ∈ L(M), |z| ≥ k ⇒

12/26

© Alexander Meduna & Roman Lukáš

The family of
regular languages

Illustration:
• The family of regular languages is closed under union.

It means:

Definition: The family of regular languages
is closed under an operation o if the language
resulting from the application of o to any
regular languages is also regular.

Closure properties 1/2

L1 L2∪ = L3

13/26

© Alexander Meduna & Roman Lukáš

Proof:

Theorem: The family of regular languages is
closed under union, concatenation, iteration.

Closure properties 2/2

• Let L1, L2 be two regular languages
• Then, there exist two REs r1, r2: L(r1) = L1, L(r2) = L2;
• By the definition of regular expressions:

• r1.r2 is a RE denoting L1 L2
• r1 + r2 is a RE denoting L1∪ L2
• r1

* is a RE denoting L1
*

• Every RE denotes regular language, so
L1 L2, L1∪ L2, L1

* are a regular languages

14/26

© Alexander Meduna & Roman Lukáš

• Input: Complete FA: M = (Q, Σ, R, s, F)
• Output: Complete FA: M’ = (Q, Σ, R, s, F’),

• Method:
• F’ := Q – F

Algorithm: FA for Complement

L(M’) = L(M)

Example:

a

a, b

qs f

b
b

a

Q – F F

M:

F ’ = Q – F
L(M) = {x: ab is a substring of x}; L(M ’) = {x: ab is no substring of x}

a

a, b

f

b

b

aM’:

s q

15/26

© Alexander Meduna & Roman Lukáš

FA for Complement: Problem
• Previous algorithm requires a complete FA
• If M is incomplete FA, then M must be converted to

a complete FA before we use the previous algorithm

a

s fb

cIncomplete DFA:

c
a,b qfalse

a,b,cComplete DFA:

b
a

s f

c

M:

Example:

c
a,b

a,b,ca c

fs b qfalse

M2’:

L(M2’) = L(M)

L(M1’) ≠ L(M)! - c ∉ L(M), c ∉ L(M1’)

s

ca

fb
M1’:

16/26

© Alexander Meduna & Roman Lukáš

Proof:

Theorem: The family of regular languages is
closed under complement.

Closure properties: Complement

• Let L be a regular language
• Then, there exists a complete DFA M: L(M) = L
• We can construct a complete DFA M’: L(M’) = L

by using the previous algorithm
• Every FA defines a regular language, so

L is a regular language

17/26

© Alexander Meduna & Roman Lukáš

Closure properties: Intersection
18/26

Theorem: The family of regular languages is
closed under intersection.
Proof:

• Let L1, L2 be two regular languages
• L1, L2 are regular languages
(the family of regular languages is closed under complement)
• L1 ∪ L2 is a regular language
(the family of regular languages is closed under union)
• L1 ∪ L2 is a regular language
(the family of regular languages is closed under complement)
• L1 ∩ L2 = L1 ∪ L2 is a regular language (DeMorgan’s law)

© Alexander Meduna & Roman Lukáš

Definition: Let a family of languages be
closed under union, intersection, and
complement. Then, this family represents a
Boolean algebra of languages.

Boolean Algebra of Languages

Theorem: The family of regular languages is
a Boolean algebra of languages.

19/26

• The family of regular languages is closed
under union, intersection, and complement.

Proof:

© Alexander Meduna & Roman Lukáš

Main Decidable Problems
20/26

1. Membership problem:
• Instance: FA M, w ∈ Σ*; Question: w ∈ L(M)?

2. Emptiness problem:
• Instance: FA M; Question: L(M) = ∅?

3. Finiteness problem:
• Instance: FA M; Question: Is L(M) finite?

4. Equivalence problem:
• Instance: FA M1, M2; Question: L(M1) = L(M2)?

© Alexander Meduna & Roman Lukáš

Algorithm: Membership Problem
• Input: DFA M = (Q, Σ, R, s, F); w ∈ Σ*

• Output: YES if w ∈ L(M)
NO if w ∉ L(M)

21/26

• Method:
• if sw |–* f, f ∈ F then write (’YES’)

else write (’NO’)

Summary:
The membership problem for FAs is decidable

© Alexander Meduna & Roman Lukáš

Algorithm: Emptiness Problem
• Input: FA M = (Q, Σ, R, s, F);
• Output: YES if L(M) = ∅

NO if L(M) ≠ ∅

22/26

• Method:
• if s is nonterminating then write (’YES’)

else write (’NO’)

Summary:
The emptiness problem for FAs is decidable

© Alexander Meduna & Roman Lukáš

Algorithm: Finiteness Problem
• Input: DFA M = (Q, Σ, R, s, F);
• Output: YES if L(M) is finite

NO if L(M) is infinite
• Method:
• Let k = card(Q)
• if there exist z ∈ L(M), k ≤ |z| < 2k then write (’NO’)

else write (’YES’)

The finiteness problem for FAs is decidable
Summary:

Note: This algorithm is based on
L(M) is infinite ⇔ there exists z: z ∈ L(M), k ≤ |z| < 2k

23/26

© Alexander Meduna & Roman Lukáš

M:a
b

b f as

Question: ab ∈ L(M) ?
sab

Question: L(M) = ∅ ?

Answer: NO because s is terminating

Answer: YES because sab |–* f, f ∈ F

Q0 = {f}
1. qa’ → f; q ∈ Q; a’ ∈ Σ: sb → f, fa → f
Q1 = {f} ∪ {s, f} = {f, s} … s is terminating

|– sb |– f, f ∈ F

, ...

Decidable Problems: Example

Question: Is L(M) finite?

Answer: NO because there exist z ∈ L(M), k ≤ |z| < 2k
∈ L(M) , ...

k = card(Q) = 2
All strings z ∈ Σ*: 2 ≤ |z| < 4: aa, bb, ab

24/26

© Alexander Meduna & Roman Lukáš

Algorithm: Equivalence Problem
• Input: Two minimum state FA, M1and M2
• Output: YES if L(M1) = L(M2)

NO if L(M1) ≠ L(M2)
• Method:
• if M1 coincides with M2 except for the name of states

then write (’YES’)
else write (’NO’)

The equivalence problem for FA is decidable
Summary:

25/26

© Alexander Meduna & Roman Lukáš

Equivalence Problem: Example
Question: L(M1) = L(M2)?

a
f

s

q

b

a
ab

M1:

a qb
aa

p
s

b

b

M2:

A minimum state FA

b

a b
b {f}

a
{s,q}

Mmin1:

a
b

b {p,q}
a

{s}

Mmin2:

26/26

Answer: YES because Mmin1 coincides with Mmin2

	Pumping Lemma for RLs
	Pumping Lemma: Illustration
	Proof of Pumping Lemma 1/3
	Proof of Pumping Lemma 2/3
	Proof of Pumping Lemma 3/3
	Pumping Lemma: Application I
	Pumping Lemma: Example
	Note on Use of Pumping Lemma
	Pumping Lemma: Application II. 1/3
	Pumping Lemma: Application II. 2/3
	Pumping Lemma: Application II. 3/3
	Closure properties 1/2
	Closure properties 2/2
	Algorithm: FA for Complement
	FA for Complement: Problem
	Closure properties: Complement
	Closure properties: Intersection
	Boolean Algebra of Languages
	Main Decidable Problems
	Algorithm: Membership Problem
	Algorithm: Emptiness Problem
	Algorithm: Finiteness Problem
	Decidable Problems: Example
	Algorithm: Equivalence Problem
	Equivalence Problem: Example

