Lexical Analysis: Theory Section 2.3 (Section 2.3.2 excluded)

Pumping Lemma for RLs

2/26

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

• Let *L* be a RL. Then, there is $k \ge 1$ such that

if $z \in L$ and $|z| \ge k$, then there exist u, v, w: z = uvw, 1) $v \ne \varepsilon$ 2) $|uv| \le k$ 3) for each $m \ge 0$, $uv^m w \in L$

Example: for RE $r = ab^*c$, L(r) is *regular*. There is k = 3 such that 1), 2) and 3) holds.

• for z = abc: $z \in L(r)$ & $|z| \ge 3:uv^0w = ab^0c = ac \in L(r)$ $uv^1w = ab^1c = abc \in L(r)$ $uv^2w = ab^2c = abbc \in L(r)$ $v \ne \varepsilon, |uv| = 2 \le 3$

• for
$$z = abbc$$
: $z \in L(r) \& |z| \ge 3: uv^0 w = abb^0 c = abc \in L(r)$
• $uv^1 w = abb^1 c = abbc \in L(r)$
• $uv^2 w = abb^2 c = abbbc \in L(r)$
• $v \ne \varepsilon, |uv| = 2 \le 3$

Proof of Pumping Lemma 1/3

4/26

- Let *L* be a regular language. Then, there exists **DFA** $M = (Q, \Sigma, R, s, F)$, and L = L(M).
- For $z \in L(M)$, M makes |z| moves and M visits |z| + 1 states:

Proof of Pumping Lemma 2/3• Let k = card(Q) (the number of states).For each $z \in L$ and $|z| \ge k$, M visits k + 1 or

5/26

more states. As k + 1 > card(Q), there exists a

state q that M visits at least twice.

• For z exist u, v, w such that z = uvw:

Proof of Pumping Lemma 3/3

6/26

- There exist moves:
 - **1** $Su \mid -^{i}q$; **2** $qv \mid -^{j}q$; **3** $qw \mid -^{*}f, f \in F$, so
- for m = 0, $uv^m w = uv^0 w = uw$, (1) (3) $suw \mid -i qw \mid -* f, f \in F$
- for each m > 0, (1) (2) (2) (2) (3) $suv^{m}w|_{-i} qv^{m}w|_{-j} qv^{m-1}w|_{-j} \dots |_{-j} qw|_{-*} f, f \in F$

Summary:

1) $qv \mid -j q, j \ge 1$; therefore, $\mid v \mid \ge 1$, so $v \ne \varepsilon$

- 2) $suv \mid -i qv \mid -j q, i+j \leq k$; therefore, $\mid uv \mid \leq k$
- 3) For each $m \ge 0$: $suv^m w \models f, f \in F$, therefore $uv^m w \in L$
 - QED

Pumping Lemma: Application I

7/26

• Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is <u>not</u> regular

Pumping Lemma: Example

8/26

Prove that $L = \{a^n b^n : n \ge 0\}$ is not regular:

- 1) Assume that *L* is regular. Let $k \ge 1$ be the pumping lemma constant for *L*. 2) Let $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
 - 3) All decompositions of *z* into *uvw*, $v \neq \varepsilon$, $|uv| \leq k$:

4) Therefore, *L* is not regular

Note on Use of Pumping Lemma

9/26

• Pumping lemma:

exist $k \ge 0$ and ...

- Main application of the pumping lemma:
- proof by contradiction that L is **not** regular.
- However, the next implication is incorrect:

• We cannot use the pumping lemma to prove that L is regular.

Pumping Lemma: Application II. 1/3

10/26

• We can use the pumping lemma to prove some other theorems.

Illustration:

• Let *M* be a DFA and *k* be the pumping lemma constant (*k* is the number of states in *M*). Then, L(M) is infinite \Leftrightarrow there exists $z \in L(M)$, $k \le |z| < 2k$

Proof:

1) there exists $z \in L(M)$, $k \leq |z| < 2k \Rightarrow L(M)$ is infinite:

if $z \in L(M)$, $k \leq |z|$, then by PL:

 $z = uvw, v \neq \varepsilon$, and for each $m \ge 0$: $uv^m w \in L(M)$

L(M) is infinite

Pumping Lemma: Application II. 2/3

11/26

2) L(M) is infinite \Rightarrow there exists $z \in L(M)$, $k \le |z| < 2k$:

• We prove by contradiction, that

a) Prove by contradiction that

Contradiction !

• L(M) is infinite \Rightarrow there exists $z \in L(M)$, $|z| \ge k$ Assume that L(M) is infinite and there exists no $z \in L(M)$, $|z| \ge k$

for all $z \in L(M)$ holds |z| < k

L(M) is finite

Pumping Lemma: Application II. 3/3

12/26

- **b)** Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

 $|uw| = |z_0| - |v| \ge k \quad \text{for } m = 0: uv^m w = uw \in L(M)$ Summary: $uw \in L(M), |uw| \ge k \text{ and } |uw| < |z_0|!$ z_0 is not the shortest string satisfying $z_0 \in L(M), |z_0| \ge k$ Contradiction ! Closure properties 1/2

Definition: The family of regular languages is closed under an operation *o* if the language resulting from the application of *o* to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

Closure properties 2/2

Theorem: The family of regular languages is closed under **union**, **concatenation**, **iteration**.

Proof:

- Let *L*₁, *L*₂ be two regular languages
- Then, there exist two REs r_1 , r_2 : $L(r_1) = L_1$, $L(r_2) = L_2$;
- By the definition of regular expressions:
 - $r_1 r_2$ is a RE denoting $L_1 L_2$
 - $r_1 + r_2$ is a RE denoting $L_1 \cup L_2$
 - r_1^* is a RE denoting L_1^*
- Every RE denotes regular language, so L_1L_2 , $L_1 \cup L_2$, L_1^* are a regular languages

Algorithm: FA for Complement

15/26

- Input: Complete FA: $M = (Q, \Sigma, R, s, F)$
- Output: Complete FA: $M' = (Q, \Sigma, R, s, F')$,

$$L(M') = \overline{L(M)}$$

• Method:

•
$$F' := Q - F$$

Example:

 $L(M) = \{x: ab \text{ is a substring of } x\}; L(M') = \{x: ab \text{ is no substring of } x\}$

FA for Complement: Problem

16/26

- Previous algorithm requires a **complete** FA
- If *M* is incomplete FA, then *M* must be converted to a complete FA before we use the previous algorithm

Closure properties: Complement

17/26

Theorem: The family of regular languages is closed under **complement**.

Proof:

- Let *L* be a regular language
- We can construct a complete DFA $M': L(M') = \overline{L}$ by using the previous algorithm
- Every FA defines a regular language, so *L* is a regular language

Closure properties: Intersection

18/26

Theorem: The family of regular languages is closed under **intersection**.

Proof:

- Let L_1 , L_2 be two regular languages
- $\overline{L_1}$, $\overline{L_2}$ are regular languages

(the family of regular languages is closed under complement)

- *L*₁ ∪ *L*₂ is a regular language
 (the family of regular languages is closed under union) *L*₁ ∪ *L*₂ is a regular language
 (the family of regular languages is closed under complement)
- $L_1 \cap L_2 = \overline{L_1 \cup L_2}$ is a regular language (DeMorgan's law)

Boolean Algebra of Languages

19/26

Definition: Let a family of languages be closed under union, intersection, and complement. Then, this family represents a *Boolean algebra of languages*.

Theorem: The family of regular languages is a Boolean algebra of languages.

Proof:

• The family of regular languages is closed under union, intersection, and complement.

20/26

© Alexander Meduna & Roman Lukáš

Main Decidable Problems

- **1. Membership problem:**
- Instance: FA $M, w \in \Sigma^*$; Question: $w \in L(M)$?

2. Emptiness problem:

• Instance: FA M; Question: $L(M) = \emptyset$?

3. Finiteness problem:

• Instance: FA M; Question: Is L(M) finite?

4. Equivalence problem:

• Instance: FA M_1, M_2 ; Question: $L(M_1) = L(M_2)$?

Algorithm: Membership Problem

21/26

- Input: DFA $M = (Q, \Sigma, R, s, F); w \in \Sigma^*$
- **Output: YES** if $w \in L(M)$ **NO** if $w \notin L(M)$
- Method:
- if $sw \models f, f \in F$ then write ('YES') else write ('NO')

Summary:

The membership problem for FAs is decidable

Algorithm: Emptiness Problem

22/26

- **Input:** FA $M = (Q, \Sigma, R, s, F);$
- **Output: YES** if $L(M) = \emptyset$ **NO** if $L(M) \neq \emptyset$
- Method:
- if *s* is nonterminating then write ('YES') else write ('NO')

Summary:

The emptiness problem for FAs is decidable

Algorithm: Finiteness Problem

23/26

- **Input:** DFA $M = (Q, \Sigma, R, s, F);$
- Output: YES if L(M) is finite NO if L(M) is infinite
- Method:
- Let $k = \operatorname{card}(Q)$
- if there exist $z \in L(M)$, $k \le |z| \le 2k$ then write ('NO')

else write ('YES')

Note: This algorithm is based on L(M) is infinite \Leftrightarrow there exists $z: z \in L(M), k \le |z| \le 2k$

Summary:

The finiteness problem for FAs is decidable

Decidable Problems: Example

24/26

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$ Answer: YES because $sab \mid -^*f, f \in F$

Question: $L(M) = \emptyset$? $Q_0 = \{f\}$ 1. $qa' \rightarrow f; q \in Q; a' \in \Sigma: sb \rightarrow f, fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s \text{ is terminating}$ Answer: NO because *s* is terminating Question: Is L(M) finite? k = card(Q) = 2All strings $z \in \Sigma^*: 2 \le |z| < 4: aa, bb, ab \in L(M), \dots$ Answer: NO because there exist $z \in L(M), k \le |z| < 2k$

Algorithm: Equivalence Problem

25/26

- Input: Two minimum state FA, M_1 and M_2
- Output: YES if $L(M_1) = L(M_2)$ NO if $L(M_1) \neq L(M_2)$
- Method:
- if M₁ coincides with M₂ except for the name of states then write ('YES') else write ('NO')

Summary:

The equivalence problem for FA is decidable

