Syntax Analysis: Methods and Theory Sections 3.2 and 3.3

Chomsky Normal Form (CNF)

Definition: Let G = (N, T, P, S) be a CFG. G is in *Chomsky normal form* if every rule in P has one of these forms

- $A \rightarrow BC$, where $A, B, C \in N$;
- $A \rightarrow a$, where $A \in N$, $a \in T$;

Example:

$$G = (N, T, P, S)$$
, where $N = \{A, B, C, S\}$, $T = \{a, b\}$, $P = \{S \rightarrow CB, C \rightarrow AS, S \rightarrow AB, A \rightarrow a, B \rightarrow b\}$ is in Chomsky normal form.

Note: $L(G) = \{a^n b^n : n \ge 1\}$

Greibach Normal Form (GNF)

Definition: Let G = (N, T, P, S) be a CFG. G is in *Greibach normal form* if every rule in P is of this form

• $A \rightarrow ax$, where $A \in N$, $a \in T$, $x \in N^*$

Example:

$$G = (N, T, P, S)$$
, where $N = \{B, S\}$, $T = \{a, b\}$, $P = \{S \rightarrow aSB, S \rightarrow aB, B \rightarrow b\}$ is in Greibach normal form.

Note: $L(G) = \{a^n b^n : n \ge 1\}$

Generative Power of Normal Forms

Theorem: For every CFG *G*, there is an equivalent grammar *G*' in Chomsky normal form.

Proof: Omitted.

Theorem: For every CFG G, there is an equivalent grammar G in Greibach normal form.

Proof: Omitted.

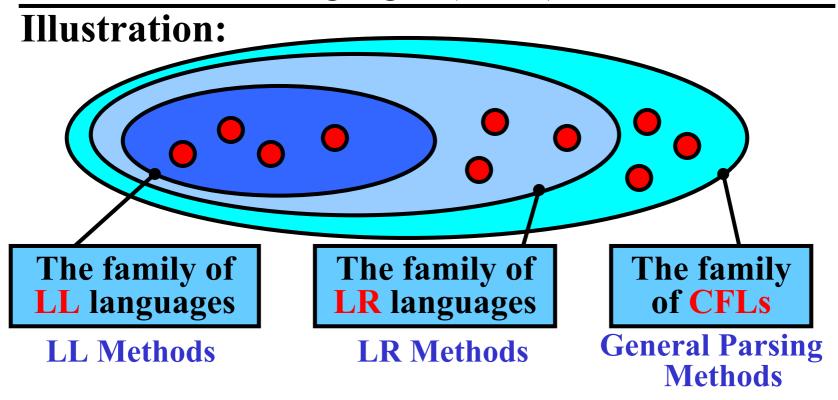
Note: Main properties of CNF and GNF:

CNF: if $S \Rightarrow^n w$; $w \in T^*$ then n = 2|w| - 1

GNF: if $S \Rightarrow^n w$; $w \in T^*$ then n = |w|

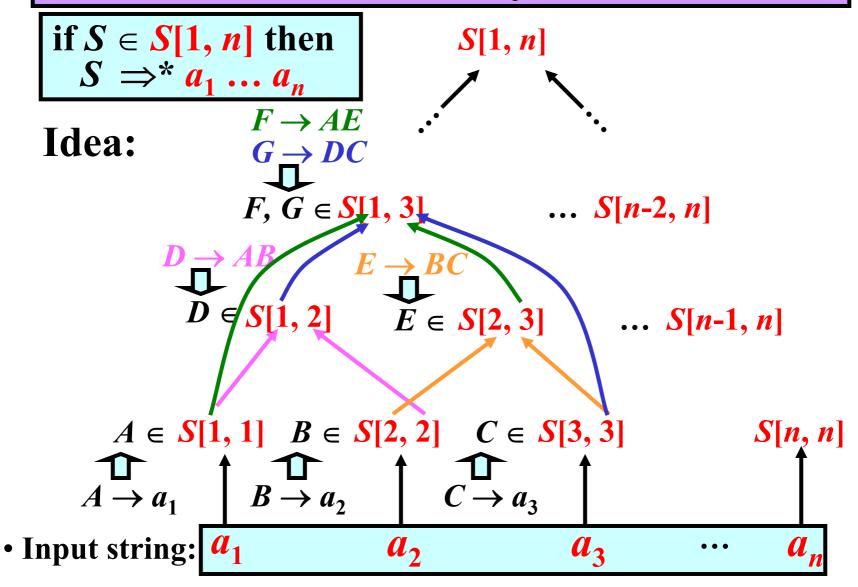
General Parsing Methods

• General Parsing methods (GP) are applicable to all context-free languages (CFLs)



• Note: The family of LR languages = the family of a deterministic CFL

GP Based on Chomsky Normal Form



Algorithm: GP Based on CNF

- Input: G = (N, T, P, S) in CNF, $w = a_1 ... a_n$
- Output: YES if $w \in L(G)$ NO if $w \notin L(G)$
- Method:
- for each a_i , i = 1, ..., n do $S[i, i] := \{A : A \rightarrow a_i \in P\}$
- Apply the following rule until no S[i, k] can be changed:

if $A \rightarrow BC \in P$, $B \in S[i,j]$, $C \in S[j+1,k]$, where $1 \le i \le j < k \le n$ then add A to S[i,k]

• if $S \in S[1, n]$ then write ('YES') else write ('NO')

GP Based on CNF: Example 1/5

$$G = (N, T, P, S)$$
, where $N = \{A, B, C, S\}$, $T = \{a, b\}$, $P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}$
Question: $aacbb \in L(G)$?

$$S[1,1] = \{A\}$$
 $S[2,2] = \{A\}$ $S[3,3] = \{S\}$ $S[4,4] = \{B\}$ $S[5,5] = \{B\}$ $A \to a$ $A \to a$ $B \to b$ $B \to b$

GP Based on CNF: Example 2/5

```
G = (N, T, P, S), where N = \{A, B, C, S\}, T = \{a, b\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Question: aacbb \in L(G)?
```

?
$$AA$$
 ? AS $C \to SB$? BB

$$S[1,2]=\emptyset \quad S[2,3]=\emptyset \quad S[3,4]=\{C\} \quad S[4,5]=\emptyset$$

$$S[1,1]=\{A\} \quad S[2,2]=\{A\} \quad S[3,3]=\{S\} \quad S[4,4]=\{B\} \quad S[5,5]=\{B\}$$

GP Based on CNF: Example 3/5

```
G = (N, T, P, S), where N = \{A, B, C, S\}, T = \{a, b\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Question: aacbb \in L(G)?
```

$$S[1,3] = \emptyset \qquad S[2,4] = \{S\} \qquad S[3,5] = \emptyset$$

$$S[1,2] = \emptyset \qquad S[2,3] = \emptyset \qquad S[3,4] = \{C\} \qquad S[4,5] = \emptyset$$

$$S[1,1] = \{A\} \qquad S[2,2] = \{A\} \qquad S[3,3] = \{S\} \qquad S[4,4] = \{B\} \qquad S[5,5] = \{B\}$$

GP Based on CNF: Example 4/5

```
G = (N, T, P, S), where N = \{A, B, C, S\}, T = \{a, b\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Question: aacbb \in L(G)?
```

$$S[1, 4] = \emptyset \qquad S[2, 5] = \{C\}$$

$$S[1, 3] = \emptyset \qquad S[2, 4] = \{S\} \qquad S[3, 5] = \emptyset$$

$$S[1, 2] = \emptyset \qquad S[2, 3] = \emptyset \qquad S[3, 4] = \{C\} \qquad S[4, 5] = \emptyset$$

$$S[1, 1] = \{A\} \qquad S[2, 2] = \{A\} \qquad S[3, 3] = \{S\} \qquad S[4, 4] = \{B\} \qquad S[5, 5] = \{B\}$$

GP Based on CNF: Example 5/5

```
G = (N, T, P, S), where N = \{A, B, C, S\}, T = \{a, b\}, P = \{S \rightarrow AC, C \rightarrow SB, A \rightarrow a, B \rightarrow b, S \rightarrow c\}
Question: aacbb \in L(G)?
```

$$S[1, 4] = \emptyset \qquad S[2, 5] = \{C\}$$

$$S[1, 3] = \emptyset \qquad S[2, 4] = \{S\} \qquad S[3, 5] = \emptyset$$

$$S[1, 2] = \emptyset \qquad S[2, 3] = \emptyset \qquad S[3, 4] = \{C\} \qquad S[4, 5] = \emptyset$$

$$S[1, 1] = \{A\} \qquad S[2, 2] = \{A\} \qquad S[3, 3] = \{S\} \qquad S[4, 4] = \{B\} \qquad S[5, 5] = \{B\}$$

a a c b

Pumping Lemma for CFL

- Let L be CFL. Then, there exists $k \ge 1$ such that: if $z \in L$ and $|z| \ge k$ then there exist u, v, w, x, y so z = uvwxy and
- 1) $vx \neq \varepsilon$ 2) $|vwx| \leq k$ 3) for each $m \geq 0$, $uv^m wx^m y \in L$

Example:

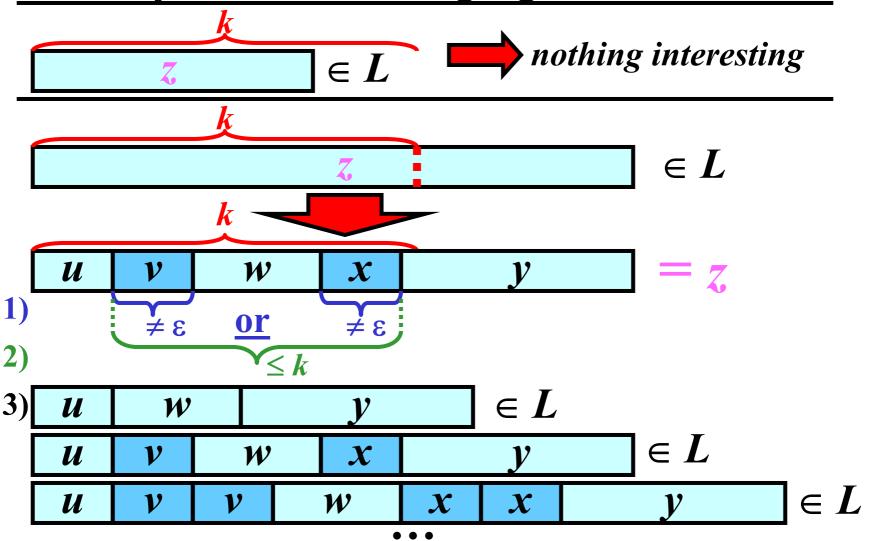
```
G = (\{S, A\}, \{a, b, c\}, \{S \rightarrow aAa, A \rightarrow bAb, A \rightarrow c\}, S) generate L(G) = \{ab^ncb^na : n \ge 0\}, so L(G) is CFL.
There is k = 5 such that 1), 2) and 3) holds:
```

• for z = abcba: $z \in L(G)$ and $|z| \ge 5$: $uv^0wx^0y = ab^0cb^0a = aca \in L(G)$ $uv^1wx^1y = ab^1cb^1a = abcba \in L(G)$ $uv^2wx^2y = ab^2cb^2a = abbcbba \in L(G)$ $uv^2wx^2y = ab^2cb^2a = abbcbba \in L(G)$

• for z = abbcbba: $z \in L(G)$ and $|z| \ge 5$:

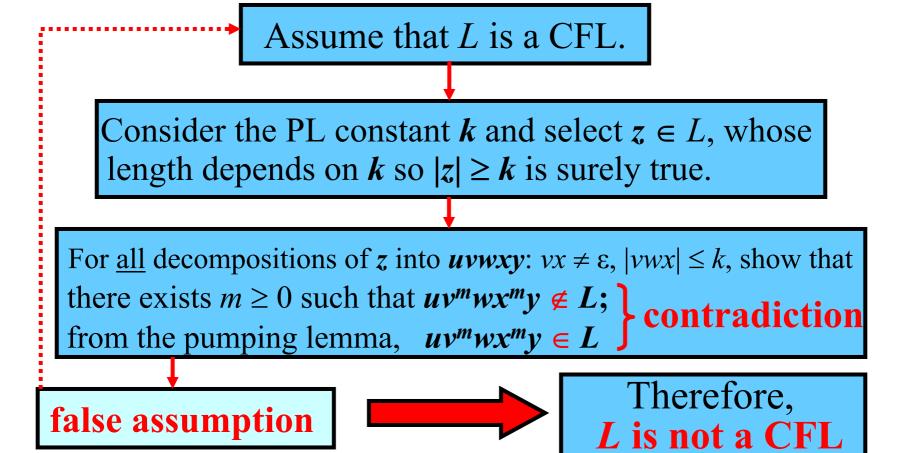
Pumping Lemma: Illustration

• L = any context-free language:



Pumping Lemma: Application

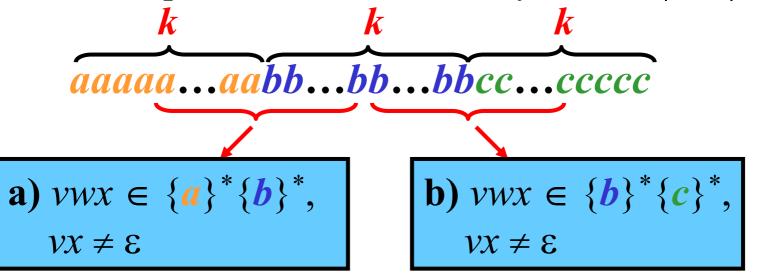
• Based on the pumping lemma for CFL, we often make a proof by contradiction to demonstrate that a language is **not** a CFL.



Pumping Lemma: Example 1/2

Prove that $L = \{a^nb^nc^n : n \ge 1\}$ is not CFL.

- 1) Assume that L is a CFL. Let $k \ge 1$ be the pumping lemma constant for L.
- 2) Let $z = a^k b^k c^k$: $a^k b^k c^k \in L$, $|z| = |a^k b^k c^k| = 3k \ge k$
- 3) All decompositions of z into uvwxy; $vx \neq \varepsilon$, $|vwx| \leq k$:



...aabb ...b bcc ...cc

Pumping Lemma: Example 2/2

- **a)** $vwx \in \{a\}^* \{b\}^*$:
- Pumping lemma: $uv^0wx^0y \in L$
- $uv^0wx^0y = uwy = a$ $uv^0wx^0y = uwy^0y = a$ $uv^0wx^0y = a$

Note: uwy contains k cs, but fewer than k as or bs.

- $\overline{\mathbf{b}) \ vwx \in \{\mathbf{b}\}^* \{\mathbf{c}\}^*}$:
- Pumping lemma: $uv^0wx^0y \in L$
- $uv^0wx^0y = uwy = aa ...aabb ...bbcc ...cc \notin L$

Note: uwy contains k as, but fewer than k bs or cs.
All these decompositions lead to a contradiction!

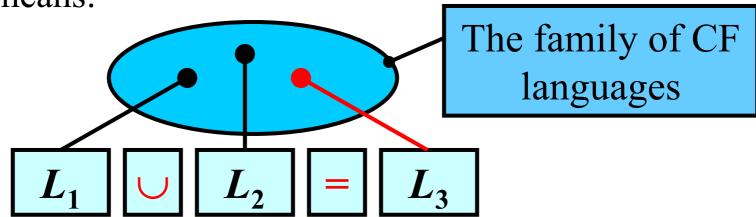
4) Therefore, L is not a CFL.

Closure properties of CFL

Definition: The family of CFLs is closed under an operation o if the language resulting from the application of o to any CFLs is a CFL as well.

Illustration:

• The family of CF languages is closed under *union*. It means:



Algorithm: CFG for Union

- Input: Grammars $G_1 = (N_1, T, P_1, S_1)$ and $G_2 = (N_2, T, P_2, S_2)$;
- Output: Grammar $G_u = (N, T, P, S)$ such that $L(G_u) = L(G_1) \cup L(G_2)$
- Method:
- let $S \notin N_1 \cup N_2$, let $N_1 \cap N_2 = \emptyset$:
 - $N := \{S\} \cup N_1 \cup N_2;$
 - $P := \{S \to S_1, S \to S_2\} \cup P_1 \cup P_2;$

Algorithm: CFG for Concatenation

- Input: $G_1 = (N_1, T, P_1, S_1)$ and $G_2 = (N_2, T, P_2, S_2)$;
- Output: $G_c = (N, T, P, S)$ such that $L(G_c) = L(G_1) \cdot L(G_2)$
- Method:
- let $S \notin N_1 \cup N_2$, let $N_1 \cap N_2 = \emptyset$:
 - $N := \{S\} \cup N_1 \cup N_2;$
 - $P := \{S \to S_1 S_2\} \cup P_1 \cup P_2;$

Algorithm: CFG for Iteration

- **Input:** $G = (N_1, T, P_1, S_1)$
- Output: $G_i = (N, T, P, S)$ such that $L(G_i) = L(G)^*$
- Method:
- let $S \notin N_1$:
 - $N := \{S\} \cup N_1;$
 - $P := \{S \rightarrow S_1 S, S \rightarrow \varepsilon\} \cup P_1;$

Closure properties

Theorem: The family of CFLs is closed under union, concatenation, iteration.

Proof:

- Let L_1 , L_2 be two CFLs.
- Then, there exist two CFGs G_1 , G_2 such that $L(G_1) = L_1$, $L(G_2) = L_2$;
- Construct grammars
 - G_u such that $L(G_u) = L(G_1) \cup L(G_2)$
 - G_c such that $L(G_c) = L(G_2)$. $L(G_2)$
 - G_i such that $L(G_i) = L(G_1)^*$ by using the previous three algorithms
- Every CFG denotes CFL, so
- L_1L_2 , $L_1 \cup L_2$, L_1 * are CFLs.

Intersection: Not Closed

Theorem: The family of CFLs is **not** closed under **intersection**.

Proof:

- The intersection of some CFLs is not a CFL:
- $L_1 = \{a^m b^n c^n : m, n \ge 1\}$ is a CFL
- $L_2 = \{a^n b^n c^m : m, n \ge 1\}$ is a CFL
- $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 1\}$ is not a CFL (proof based on the pumping lemma)

QED

Complement: Not Closed

Theorem: The family of CFLs is not closed under complement.

Proof by contradiction:

- Assume that family of CFLs is closed under complement.
- $L_1 = \{a^m b^n c^n : m, n \ge 1\}$ is a **CFL**
- $L_2 = \{a^n b^n c^m : m, n \ge 1\}$ is a **CFL**
- $\overline{L_1}$, $\overline{L_2}$ are CFLs
- $\overline{L_1} \cup \overline{L_2}$ is a CFL (the family of CFLs is closed under union)
- $\overline{L_1} \cup \overline{L_2}$ is a CFL (assumption)
- DeMorgan's law implies $L_1 \cap L_2 = \{a^n b^n c^n : n \ge 1\}$ is a CFL
- $\{a^nb^nc^n: n \ge 1\}$ is not a CFL \Rightarrow Contradiction

Main Decidable Problems

- 1. Membership problem:
- Instance: CFG $G, w \in \Sigma^*$; Question: $w \in L(G)$?
- 2. Emptiness problem:
- Instance: CFG G; Question: $L(G) = \emptyset$?
- 3. Finiteness problem:
- Instance: CFG G; Question: Is L(G) finite?

Algorithm: Membership

- Input: CFG G = (N, T, P, S) in Chomsky normal form; $w \in T^+$
- Output: YES if $w \in L(G)$ NO if $w \notin L(G)$
- Method I:
- if $S \Rightarrow^n w$, where $1 \le n \le 2|w| 1$, then write ('YES') else write ('NO')
- Method II:
- See: The general parsing method based on CNF Summary:

The membership problem for CFLs is decidable

Accessible Symbols

Gist: Symbol X is accessible if $S \Rightarrow^* ... X...$, where S is the start nonterminal.

Definition: Let G = (N, T, P, S) be a CFG. A symbol $X \in N \cup T$ is *accessible* if there exist $u, v \in \Sigma^*$ such that $S \Rightarrow^* uXv$; otherwise, X is *inaccessible*.

Note: Each inaccessible symbol can be removed from CFG

Example:

$$G = (\{S, A, B\}, \{a, b\}, \{S \rightarrow SB, S \rightarrow a, A \rightarrow ab, B \rightarrow aB\}, S)$$

- **S** accessible: for $u = \varepsilon$, $v = \varepsilon$: $S \Rightarrow^0 S$
- A inaccessible: there is no $u, v \in \Sigma^*$ such that $S \Rightarrow^* uAv$
- **B** accessible: for u = S, $v = \varepsilon$: $S \Rightarrow 1$ SB
- **a** accessible: for $u = \varepsilon$, $v = \varepsilon$: $S \Rightarrow 1$ **a**
- **b** inaccessible: there is no $u, v \in \Sigma^*$ such that $S \Rightarrow^* ubv$

Terminating Symbols

Gist: Symbol X is terminating if X derives a terminal string.

Definition: Let G = (N, T, P, S) be a CFG. A symbol $X \in N \cup T$ is *terminating* if there exists $w \in T^*$ such that $X \Rightarrow^* w$; otherwise, X is *nonterminating*

Note: Each nonterminating symbol can be removed from any CFG.

Example:

$$G = (\{S, A, B\}, \{a, b\}, \{S \rightarrow SB, S \rightarrow a, A \rightarrow ab, B \rightarrow aB\}, S)$$

Symbol **S** - terminating: for w = a: $S \Rightarrow a$

Symbol *A* - terminating: for w = ab: $A \Rightarrow ab$

Symbol **B** - nonterminating: there is no $w \in T^*$ such that $B \Rightarrow^* w$

Symbol **a** - terminating: for $w = \mathbf{a} : \mathbf{a} \Rightarrow^0 \mathbf{a}$

Symbol **b** - terminating: for $w = \mathbf{b} : \mathbf{b} \Rightarrow^0 \mathbf{b}$

Algorithm: Emptiness

- **Input:** CFG G = (N, T, P, S);
- Output: YES if $L(G) = \emptyset$ NO if $L(G) \neq \emptyset$
- Method:
- if S is nonterminating then write ('YES') else write ('NO')

Summary:

The emptiness problem for CFLs is decidable

Algorithm: Finiteness

- **Input:** CFG G = (N, T, P, S);
- Output: YES if L(G) is finite NO if L(G) is infinite
- Method:
- Let $k = 2^{\operatorname{card}(N)}$
- if there exist $z \in L(M)$, $k \le |z| < 2k$ then write ('NO') else write ('YES')

Summary:

The finiteness problem for CFLs is decidable

Main Undecidable Problems

- 1. Equivalence problem:
- Instance: CFGs G_1 , G_2 ; Question: $L(G_1) = L(G_2)$?
- 2. Ambiguity problem:
- Instance: G;

Question: Is G ambiguous?

Note:

It is mathematically proved that there exists no algorithm, which solve these problems in finite time.