
13

Chapter 2

Formal Languages and
Rewriting Systems

�e purpose of this chapter is threefold. First, Section 2.1 introduces the terminology concerning
formal languages. Second, Section 2.2 introduces rewriting systems. �en, based upon these sys-
tems, in an intuitive and preliminary way, it outlines major topics discussed later in this book in a
more rigorous and thorough way. �ird, Section 2.3 gives a synopsis of this book.

2.1 Formal Languages

An alphabet Σ is a !nite nonempty set, whose members are called symbols. Any nonempty subset
of Σ is a subalphabet of Σ. A !nite sequence of symbols from Σ is a string over Σ; speci!cally, ε is
referred to as the empty string—that is, the string consisting of zero symbols. By Σ*, we denote
the set of all strings over Σ; Σ+ = Σ* − {ε}. Let x ∈ Σ*. Like for any sequence, |x| denotes the
length of x—that is, the number of symbols in x. For any a ∈ Σ, occur(x, a) denotes the number
of occurrences of as in x, so occur(x, a) always satis!es 0 ≤ occur(x, a) ≤ |x|. Furthermore, if x ≠ ε,
symbol(x, i) denotes the ith symbol in x, where i = 1, …, |x|. Any subset L ⊆ Σ* is a formal language
or, brie#y, a language over Σ. Set symbol(L, i) = {a| a = symbol(x, i), x ∈ L − {ε}, 1 ≤ i ≤ |x|}.
Any subset of L is a sublanguage of L. If L represents a !nite set of strings, L is a !nite language;
 otherwise, L is an in!nite language. For instance, Σ*, which is called the universal language over
Σ, is an in!nite language while ∅ and {ε} are !nite; noteworthy, ∅ ≠ {ε} because card(∅) = 0 ≠
card({ε}) = 1. Sets whose members are languages are called families of languages.

Example 2.1 �e English alphabet, consisting of 26 letters, illustrates the de!nition of an alphabet
as stated earlier, except that we refer to its members as symbols in this book. Our de!nition of a
 language includes all common arti!cial and natural languages. For instance, programming lan-
guages represent formal languages in terms of this de!nition, and so do English, Navaho, and
Japanese. Any family of natural languages, including Indo-European, Sino-Tibetan, Niger-Congo,
Afro-Asiatic, Altaic, and Japonic families of languages, is a language family according to the
de!nition.

14 ◾ Formal Languages and Computation

Convention 2.1 In strings, for brevity, we simply juxtapose the symbols and omit the parentheses
and all separating commas. �at is, we write a1a2…an instead of (a1, a2, …, an).

Let nΦ and in nΦ denote the families of !nite and in!nite languages, respectively. Let allΦ
denote the family of all languages; in other words, allΦ = nΦ ∪ in nΦ.

Operations. Let x, y ∈ Σ* be two strings over an alphabet Σ, and let L, K ⊆ Σ* be two languages
over Σ. As languages are de!ned as sets, all set operations apply to them. Speci!cally, L ∪ K,
L ∩ K, and L – K denote the union, intersection, and di#erence of languages L and K, respectively.
Perhaps most importantly, the concatenation of x with y, denoted by xy, is the string obtained by
appending y to x. Notice that for every w ∈ Σ*, wε = εw = w. �e concatenation of L and K,
denoted by LK, is de!ned as LK = {xy| x ∈ L, y ∈ K }.

Apart from binary operations, we also make some unary operations with strings and languages.
Let x ∈ Σ* and L ⊆ Σ*. �e complement of L is denoted by ~L and de!ned as ~L = Σ* − L. �e rever-
sal of x, denoted by reversal(x), is x written in the reverse order, and the reversal of L, reversal(L),
is de!ned as reversal(L) = {reversal(x)| x ∈ L}. For all i ≥ 0, the ith power of x, denoted by x i, is
 recursively de!ned as (1) x0 = ε, and (2) x i = xx i−1, for i ≥ 1. Observe that this de!nition is based
on the recursive de nitional method. To demonstrate the recursive aspect, consider, for instance,
the ith power of x i with i = 3. By the second part of the de!nition, x3 = xx2. By applying the
 second part to x2 again, x2 = xx1. By another application of this part to x1, x1 = xx0. By the !rst part
of this de!nition, x0 = ε. �us, x1 = xx0 = xε = x. Hence, x2 = xx1 = xx. Finally, x3 = xx2 = xxx. By
using this recursive method, we frequently introduce new notions, including the ith power of L, Li,
which is de!ned as (1) L0 = {ε} and (2) Li = LLi−1, for i ≥ 1. �e closure of L, L*, is de!ned as L* =
L0 ∪ L1 ∪ L2 ∪ …, and the positive closure of L, L+, is de!ned as L+ = L1 ∪ L2 ∪ … . Notice that L+ =
LL* = L*L, and L* = L+ ∪ {ε}. Let w, x, y, z ∈ Σ*. If xz = y, then x is a pre x of y; if in addition, x ∉
{ε, y}, x is a proper pre x of y. By pre xes(y), we denote the set of all pre!xes of y. Set pre xes(L) = {x|
x ∈ pre xes(y) for some y ∈ L}. For i = 0, …, |y|, pre x(y, i) denotes y’s pre!x of length i; notice that
pre x(y, 0) = ε and pre x(y, |y|) = y. If zx = y, x is a su"x of y; if in addition, x ∉ {ε, y}, x is a proper
su"x of y. By su"xes(y), we denote the set of all su%xes of y. Set su"xes(L) = {x| x ∈ su"xes(y) for
some y ∈ L}. For i = 0, …, |y|, su"x(y, i) denotes y’s su%x of length i. If wxz = y, x is a substring
of y; if in addition, x ∉ {ε, y}, x is a proper substring of y. By substrings(y), we denote the set of all
substrings of y. Observe that for all v ∈ Σ*, pre xes(v) ⊆ substrings(v), su"xes(v) ⊆ substrings(v),
and {ε, v} ∈ pre xes(v) ∩ su"xes(v) ∩ substrings(v). Set symbols(y) = {a| a ∈ substrings(y), |a| = 1}.
Furthermore, set substrings(L) = {x| x ∈ substrings(y) for some y ∈ L} and symbols(L) = {a| a ∈
symbols(y) for some y ∈ L}.

Example 2.2 Consider the alphabet {0, 1}. For instance, ε, 1, and 010 are strings over {0, 1}.
Notice that |ε| = 0, |1| = 1, and |010| = 3. �e concatenation of 1 and 010 is 1010. �e third
power of 1010 equals 101010101010. Observe that reversal(1010) = 0101. We have pre xes(1010) =
{ε, 1, 10, 101, 1010}, where 1, 10, and 101 are proper pre!xes of 1010 while ε and 1010 are not.
We have su"xes(1010) = {ε, 0, 10, 010, 1010}, substrings(1010) = {ε, 0, 1, 01, 10, 010, 101, 1010},
and symbols(1010) = {0, 1}.

Set K = {0, 01} and L = {1, 01}. Observe that L ∪ K, L ∩ K, and L – K are equal to {0, 1, 01}, {01},
and {1}, respectively. �e concatenation of K and L is KL = {01, 001, 011, 0101}. For L, ~L = Σ* − L,
so ~L contains all strings in {0, 1}* but 1 and 01. Furthermore, reversal(L) = {1, 10} and L2 = {11,
101, 011, 0101}. �e strings in L* that consists of four or fewer symbols are ε, 1, 01, 11, 011, 101, 111,
0101, 0111, 1011, 1101, and 1111. L+ = L* − {ε}. Notice that pre xes(L) = {ε, 1, 0, 01}, su"xes(L) =
{ε, 1, 01}, substrings(L) = {ε, 0, 1, 01}, and symbols(L) = {0, 1}.

Formal Languages and Rewriting Systems ◾ 15

Let T and U be two alphabets. A total function τ from T * to power (U *) such that τ(uv) = τ(u)
τ(v) for every u, v ∈ T * is a substitution from T * to U *. By this de!nition, τ(ε) = {ε} and τ(a1a2…
an) = τ(a1)τ(a2)…τ(an), where ai ∈ T, 1 ≤ i ≤ n, for some n ≥ 1, so τ is completely speci!ed by
de!ning τ(a) for every a ∈ T. A total function υ from T * to U * such that υ(uv) = υ(u)υ(v) for every
u, v ∈ T * is a homomorphism from T * to U *. As any homomorphism is obviously a special case of
a substitution, we simply specify υ by de!ning υ(a) for every a ∈ T; if υ(a) ≠ ε for all a ∈ T, υ is
said to be an ε-free homomorphism. It is worth noting that a homomorphism from T * to U * may
not represent an injection from T * to U * as illustrated in Example 2.3.

Example 2.3 Let EnglishΔ denote the English alphabet. "e Morse code, denoted by µ, can be seen as
a homomorphism from EnglishΔ

* to {·, −}* (see Figure 2.1). For instance,

 µ(SOS) = · · · – – – · · ·

Notice that µ is no injection from English∆
* to {⋅, −}*; for instance, µ(SOS) = µ(IJS).

We conclude this section by Example 2.4, which demonstrates how to represent nonnegative
integers by strings in a very simple way. More speci!cally, it introduces function unary, which
 represents all nonnegative integers by strings consisting of as. Later in this book, especially in
Section IV, we frequently make use of unary.

Example 2.4 Let a be a symbol. To represent nonnegative integers by strings over {a}, de!ne the
total function unary from 0ℕ to {a}* as unary(i) = ai, for all i ≥ 0. For instance, unary(0) = ε,
unary(2) = aa, and unary(1000000) = a1000000.

2.2 Rewriting Systems

Rewriting systems, de!ned and discussed in this section, are used in many mathematical and
computer science areas, ranging from purely theoretically oriented areas, such as the investigation
of computational principals in terms of logic, up to quite pragmatically oriented areas, such as the
construction of translators. Considering the subject of this book, it comes as no surprise that we
primarily make use of rewriting systems as language-de!ning models and computational models.

"is section is divided into three subsections. Section 2.2.1 introduces rewriting systems in
general. Section 2.2.2 treats them as language-de!ning models. Finally, Section 2.2.3 formalizes
the intuitive notion of a procedure by them.

Letter μ μ μ μLetter Letter Letter

A H O V

B I P W

C J Q X

D K R Y

E L S Z

F M T

G N U

Figure 2.1 Morse code.

16 ◾ Formal Languages and Computation

2.2.1 Rewriting Systems in General

De�nition 2.2 A rewriting system is a pair, M = (Σ, R), where Σ is an alphabet, and R is a !nite
relation on Σ*. Σ is called the total alphabet of M or, simply, the alphabet of M. A member of R is
called a rule of M, and accordingly, R is referred to as the set of rules in M.

"e rewriting relation over Σ* is denoted by ⇒ and de!ned so that for every u, v ∈ Σ*, u ⇒ v
in M i# there exist (x, y) ∈ R and w, z ∈ Σ* such that u = wxz and v = wyz. As usual, ⇒* denotes
the transitive and re$exive closure of ⇒.

Convention 2.3 Let M = (Σ, R) be a rewriting system. Each rule (x, y) ∈ R is written as x → y
throughout this book. We often denote x → y with a label r as r: x → y, and instead of r: x → y ∈ R,
we just write r ∈ R. For r: x → y ∈ R, x and y represent the left-hand side of r, denoted by lhs(r), and
the right-hand side of r, denoted by rhs(r), respectively.

R* denotes the set of all sequences of rules from R; accordingly, by ρ ∈ R*, we brief ly
express that ρ is a sequence of rules from R. By analogy with strings (see Convention 2.1),
in sequences of rules, we simply juxtapose the rules and omit the parentheses as well as all
separating commas in them. That is, if ρ = (r1, r2, …, rn), we simply write ρ as r1r2…rn. To
explicitly express that Σ and R represent the components of M, we write MΣ and MR instead of
Σ and R, respectively. To explicitly express that ⇒ and ⇒* concern M, we write M⇒ and M⇒

*
instead of ⇒ and ⇒*, respectively. Furthermore, by u M⇒ v [r], where u, v ∈ Σ* and r ∈ R,
we express that M directly rewrites u as v according to r. To express that M makes u M⇒

* w
according to a sequence of rules, r1r2…rn, we write u M⇒

* v [r1r2…rn]. Of course, whenever
the information regarding the applied rules is immaterial, we omit these rules; in other
words, we simplify u M⇒ v [r] and u M⇒

* v [r1r2…rn] to u M⇒ v and u M⇒
* v, respectively.

Most often, however, M is understood, so we just write ⇒ and ⇒* instead of M⇒ and M⇒
*,

respectively.
By underlining, we specify the substring rewritten during a rewriting step, if necessary. More

formally, if u = wxz, v = wyz, r: x → y ∈ R, where u, v, x, y ∈ Σ*, then wxz ⇒ wyz [r] means that
the x occurring behind w is rewritten during this step by using r (we usually specify the rewritten
occurrence of x in this way when other occurrences of x appear in w and z).

Example 2.5 Let us introduce a rewriting system M that translates all strings x ∈ EnglishΔ
* to the

corresponding Morse code µ(x), where EnglishΔ and µ have the same meaning as in Example 2.3. "at
is, we de!ne M = (Σ, R) with Σ = EnglishΔ ∪ {·, −} and R = {a → µ(a)| a ∈ EnglishΔ}. Labeling the rules
by l1 through l26, we list them in Figure 2.2.

De!ne the function T(M) from EnglishΔ
* to {·, −}* as

 T(M) = {(s, t)| s ⇒* t, s ∈ English∆
, t ∈ {·, −}}

Observe T(M) = µ, so M actually translates strings from EnglishΔ
* to the corresponding Morse codes.

For instance, T(M) contains (SOS, … – – – …). Indeed, making use of Convention 2.3, we have

 SOS ⇒ SO … [l19]
 ⇒ … O … [l15]

 ⇒ … – – – … [l19]

"us, SOS ⇒* · · · – – – · · · [l19l15l19]. "erefore, (SOS, · · · – – – · · ·) ∈ T(M). To rephrase this less
mathematically, M translates SOS to its Morse code · · · – – – · · · as desired.

Formal Languages and Rewriting Systems ◾ 17

2.2.2 Rewriting Systems as Language Models

In this book, we frequently discuss languages that are in�nite, so we cannot specify them by an
exhaustive enumeration of all their elements. Instead, we de�ne them by formal models of �nite
size, and we base these models upon rewriting systems (see De�nition 2.2).

Whenever we use a rewriting system, M = (Σ, R), as a language-de�ning model, then for
 brevity, we denote the language that M de�nes by L(M). In principal, M de�nes L(M), so it either
generates L(M) or accepts L(M). Next, we explain these two fundamental language-de�ning meth-
ods in a greater detail. Let S ⊆ Σ* and F ⊆ Σ* be a start language and a !nal language, respectively.

 I. !e language generated by M is de�ned as the set of all strings y ∈ F such that x ⇒* y in
M for some x ∈ S. M used in this way is generally referred to as a language-generating
model.

 II. !e language accepted by M is the set of all strings x ∈ S such that x ⇒* y in M for some y ∈ F.
M used in this way is referred to as a language-accepting model.

Convention 2.4 Let D be the notion of a language model de�ned as a rewriting system, M =
(MΣ, MR), whose components MΣ and MR satisfy some prescribed properties, referred to as
D-properties. By DΨ, we denote the entire set of all possible rewriting systems whose components
satisfy D-properties; mathematically,

DΨ = {M| M = (MΣ, MR) is a rewriting system with MΣ and MR satisfying D-properties}.

By DΦ, we denote the family of languages de�ned by all the rewriting systems contained in DΨ;
mathematically:

 DΦ = {L(M)| M ∈ DΨ}

Example 2.6 To illustrate method I, we de�ne the notion of a parenthesis-generating language model
(PGLM) as a rewriting system, M = (MΣ, MR), where MΣ consists of (and), and MR is a �nite set of
rules of the form ε → x with x ∈ MΣ

*. Let S = {ε} and F = MΣ
*. We de�ne the language generated

by M as

 L(M) = {t| s ⇒* t, s ∈ S, t ∈ F}

Rules in R

l1: A

l2: B

l3: C

l4: D

l5: E

l6: F

l7: G

l8: H

l9: I

l10: J

l11: K

l12: L

l13: M

l14: N

l15: O

l16: P

l17: Q

l18: R

l19: S

l22: V

l23: W

l24: X

l25: Y

l26: Z

l20: T

l21: U

Figure 2.2 Rules of M.

18 ◾ Formal Languages and Computation

In other words,

 L(M) = {t| ε ⇒* t, t ∈ Σ*}

Following Convention 2.5, by PGLMΨ, we denote the set of all rewriting systems that represent a
PGLM—that is, their alphabets consist of (and), and each of their rules has ε as its left-hand side.
Furthermore, we set PGLMΦ = {L(Z)| Z ∈ PGLMΨ}.

Next, we consider X ∈ PGLMΨ de!ned as X = (XΣ, XR), XΣ consists of (and), and

 XR = {ε → ()}

For example,

 ε ⇒ () ⇒ ()() ⇒ (())() ⇒ (()())()

in X, so (()())() ∈ L(X). Observe that L(X) consists of all properly nested parentheses; for instance,
() ∈ L, but (() ∉ L.

To illustrate method II, we de!ne the notion of a parenthesis-accepting language model (PALM)
as a rewriting system M = (MΣ, MR), where MΣ is an alphabet consisting of (and), and MR is a !nite
set of rules of the form x → ε with x ∈ Σ*. Let S = Σ* and F = {ε}. We de!ne the language accepted by M as

 L(M) = {s| s ⇒* t, s ∈ S, t ∈ F}

In other words,

 L(M) = {s| s ⇒* ε, s ∈ Σ*}

Let PALMΨ denote the set of all rewriting systems that represent a PALM, and let PALMΦ = {L(W)| W ∈

PALMΨ}.
Next, we consider Y ∈ PALMΨ de!ned as Y = (YΣ, YR), where YΣ consists of (and), and

 YR = {() → ε}

For instance, Y accepts (())()

 (())() ⇒ (()) ⇒ () ⇒ ε

where the underlined substrings denote the substrings that are rewritten (see Convention 2.3).
On the other hand, observe that ((() ⇒ ((, and ((cannot be rewritten by Y, so ((() is not accepted
by Y. Observe that L(X) = L(Y). More generally, as an exercise, prove that

 PGLMΦ = PALMΦ

If some language models de!ne the same language, they are said to be equivalent. For instance,
in Example 2.6, X and Y are equivalent. More generally, suppose we have de!ned two language-
de!ning models, referred to as C and D. Let CΦ = DΦ (see Convention 2.4); then, Cs and Ds are
equivalent, or synonymously, Cs and Ds are equally powerful. If Cs and Ds are equivalent, we also
say that Cs characterize DΦ. For instance, in Example 2.6, PGLMs and PALMs are equivalent
because PGLMΦ = PALMΦ, so PGLMs characterize PALMΦ.

For brevity, language-generating models are often called grammars in this book; for instance, in
Example 2.6, the PGLM could be referred to as a parenthesis grammar for brevity.

Let G = (GΣ, GR) be a grammar. #e symbols occurring in L(G) are referred to as terminal
 symbols or, brie$y, terminals, denoted by GΔ in this book, so GΔ ⊆ GΣ. We set GN = GΣ − GΔ,

Formal Languages and Rewriting Systems ◾ 19

whose members are called nonterminal symbols or nonterminals. !e start language of G always
consists of a single symbol; more precisely, GN contains a special start symbol, denoted by GS, so we
always have GΔ ⊂ GΣ. In GR, at least one nonterminal occurs on the left-hand side of every rule.
If v ⇒* w in G, where v, w ∈ Σ*, then we say that G makes a derivation from v to w. !e language
generated by G, L(G), is de"ned as

 L(G) = {w ∈ G∆*| GS ⇒* w}

Example 2.7 discusses grammars in which the left-hand side of every rule consists of a single
nonterminal. As a result, these grammars rewrite nonterminals regardless of the context in
which they appear in the strings, hence their name context-free grammars (CFGs). Section III of
this book is primarily dedicated to them and their languages, naturally referred to as context-free
languages.

As illustrated in Example 2.7, in a CFG, G = (Σ, R), there may exist many di$erent deriva-
tions from v to w, where v, w ∈ Σ*. Since a derivation multiplicity like this obviously compli-
cates the discussion of G and L(G), we often reduce it by considering only leftmost derivations
in which G always rewrites the leftmost nonterminal occurring in the current rewritten string.
Unfortunately, even if we reduce our attention only to these derivations, we may still face a deri-
vation multiplicity of some sentences, and this undesirable phenomenon is then referred to as
grammatical ambiguity.

Convention 2.5 Let G = (Σ, R) be a grammar. By analogy with Convention 2.3, to explicitly
express that Σ, Δ, N, S, and R represent the above-mentioned components in G, we write GΣ, GΔ,

GN, GS, and GR instead of plain Σ, Δ, N, S, and R, respectively.

Example 2.7 We de"ne the notion of a CFG as a rewriting system, G = (GΣ, GR), where GΣ = GN ∪

GΔ, which satisfy the properties stated previously. Speci"cally, GN always contains a special start
symbol, denoted by GS, shortened to S throughout this example. GR is a "nite set of rules of the form
A → x with A ∈ GN and x ∈ GΣ

*. We de"ne the language generated by G as

 L(G) = {w ∈ G∆*| S ⇒* w}

Set CFGΨ = {G| G is a CFG} (see Convention 2.4). Next, we consider two speci"c instances, U and V,
from CFGΨ.

Let U ∈ CFGΨ be de"ned as U = (UΣ, UR), UΔ = {a, b}, UN = {S, A}, and UR = {S → SS, S → A,
A → aAb, A → ε}. For example, U makes

 S ⇒ SS ⇒ AS ⇒ aAbS ⇒ aAbA ⇒ aAbaAb ⇒ aAbab ⇒ aaAbbab ⇒ aabbab

in U; recall that we specify the rewritten symbols by underlining (see Convention 2.3). !us, S ⇒*
aabbab, so aabbab ∈ L(U). As an exercise, prove that

 L(U) = K *

with

 K = {aibi| i ≥ 0}

In words, the language generated by U is the closure of K (see Section 2.1 for the de"nition of
closure).

20 ◾ Formal Languages and Computation

As already stated, a leftmost derivation is a derivation in which G always rewrites the leftmost
nonterminal occurring in every string. While the above-mentioned derivation is not leftmost, the
next derivation represents a leftmost derivation from S to aabbab:

 S ⇒ SS ⇒ AS ⇒ aAbS ⇒ aaAbbS ⇒ aabbS ⇒ aabbA ⇒ aabbaAb ⇒ aabbab

Notice, however, that there exist in!nitely many other leftmost derivations from S to aabbab,
including these two leftmost derivations:

 S ⇒ SS ⇒ SSS ⇒ ASS ⇒ SS ⇒ AS ⇒ aAbS ⇒ aaAbbS ⇒ aabbS ⇒ aabbA ⇒

aabbaAb ⇒ aabbab

S ⇒ SS ⇒ AS ⇒ aAbS ⇒ aaAbbS ⇒ aabbS ⇒ aabbSS ⇒ aabbAS ⇒aabbaAbS ⇒ aabbabS ⇒
aabbabA ⇒ aabbab

"us, U is ambiguous, which usually represents a highly undesirable property in practice. "erefore,
we may prefer using an equivalent unambiguous CFG, such as V ∈ CFGΨ de!ned next.

Let V = (VΣ, VR), where VΔ = {a, b}, VN = {S, A}, and VR = {S → AS, S → ε, A → aAb, A → ab}.
For example, V generates aabbab by this unique leftmost derivation:

 S ⇒ AS ⇒ aAbS ⇒ aabbS ⇒ aabbAS ⇒ aabbabS ⇒ aabbab

Clearly, U and V are equivalent; however, U is ambiguous while V is not.
In this book, we often introduce a new notion of a grammar as a special case of the notion

of a grammar that has already been defined. To illustrate, we define the notion of a linear
grammar (LG) as a CFG, H = (HΣ, HR), in which the right-hand side of every rule contains no
more than one occurrence of a nonterminal. In other words, HR is a finite set of rules of the
form A → uBv with A ∈ HN, B ∈ HN ∪ {ε}, and u, v ∈ HΔ

*. We set LGΨ = {G| G is an LG} (see
Convention 2.4).

For instance, consider W ∈ LGΨ de!ned as W = (WΣ, WR), WΔ = {a, b}, WN = {S}, and WR =
{S → aSb, S → ε}. For example,

 S ⇒ aSb ⇒ aaSbb ⇒ aabb

in W. "us, aabb ∈ L(W). Observe that L(W) = K, where K = {aibi| i ≥ 0} as explained earlier.
We close this example by taking a more general view at CFGs, LGs, and the language families

they generate. Following Convention 2.4, set

 CFGΦ = {L(C)| C ∈ CFGΨ} and LGΦ = {L(D)| D ∈ LGΨ}

LGs are special cases of CFGs, so LGΦ ⊆ CFGΦ. To prove that this inclusion is proper, take

 K 2 = KK = {aibia jb j| i, j ≥ 0}

Observe that no more than one occurrence of a nonterminal appears in any string generated by
an LG. As an exercise, make use of this property to prove that no LG generates K 2, so K 2 ∉ LGΦ.
Clearly, K 2 ∈ CFGΦ. Since K 2 ∈ CFGΦ − LGΦ and LGΦ ⊆ CFGΦ, LGΦ ⊂ CFGΦ.

Let M and N be two language models. If MΦ ⊂ NΦ (see Convention 2.4), then we say that Ns
are stronger or, equivalently speaking, more powerful than Ms. For instance, in Example 2.7, we
have proved that CFGs are stronger than LGs because LGΦ ⊂ CFGΦ.

Regarding properties of language families, this book pays its principal attention to closure
properties, which are helpful to answer some important questions concerning these families,
such as whether a given language belongs to a language family. To give an insight into them,
let o be an n-ary operation. Let Ξ be a language family. We say that Ξ is closed under o or,

Formal Languages and Rewriting Systems ◾ 21

synonymously, o preserves Ξ if the application of o to any n languages in Ξ results into a language
that is also in Ξ.

We demonstrate most closure properties e ectively in this book. To explain what this means,
let M be a language-de!ning model, MΨ = {X | X is an instance of M}, and MΦ = {L(X)| X ∈ MΨ}.
Giving an e"ective proof that MΦ is closed under o consists in constructing an algorithm that
converts any n models in MΨ to a model in MΨ so that the resulting model de!nes the language
resulting from o applied to the languages de!ned by the n models.

In this introductory book, closure properties are discussed only in terms of n-ary operation for
n = 1 and n = 2—that is, only unary and binary operations are considered.

Example 2.8 Let CFGΦ and LGΦ have the same meaning as in Example 2.7. As operation, consider
closure (see Section 2.1). Recall that the closure of a language L is denoted by L*.

First, we e"ectively prove that CFGΦ is closed under this operation. Let L be any language in

CFGΦ, and let X = (XΣ, XR) be a CFG that generates L, mathematically written as L = L(X). Next,
we give an algorithm that converts X to a CFG Y = (YΣ, YR) so Y generates the closure of L(X),
 symbolically written as L(Y) = L(X)*. Introduce a new symbol, A. Turn X to Y = (YΣ, YR) so YΣ =

XΣ ∪ {A}, YΔ = XΔ, YR = {A → XSA, A → ε} ∪ XR, where XS is the start symbol of X. De!ne A as the
start symbol of Y—that is, A = YS (see Convention 2.5). As an exercise, prove that L(Y) = L(X)*.
Since L = L(X), L* ∈ CFGΦ. Hence, CFGΦ is closed under this operation.

Second, we prove that LGΦ is not closed under this operation. Take K = {(i)i| i ≥ 0}. In Example
2.7, we give an LG W such that L(W) = K, so K ∈ LGΦ. Just like in the conclusion of Example 2.7,
prove that K j ∉ LGΦ, for any j ≥ 2. By using this result, show that K * ∉ LGΦ. Hence, LGΦ is not
closed under this operation.

Finally, in I and II given next, we illustrate how to use closure properties to establish results
concerning CFGΦ and LGΦ.

 I. In Example 2.7, we have constructed CFGs that generate K *. As a consequence, we have actu-
ally proved that K * ∈ CFGΦ in a constructive way. Now, we demonstrate that closure proper-
ties may free us from grammatical constructions in proofs like this. Indeed, as K ∈ LGΦ and
every LG is a special case of a CFG, K ∈ CFGΦ. Since CFGΦ is closed with respect to closure,
K * ∈ CFGΦ, which completes the proof.

 II. In Example 2.7, we have also proved that LGΦ ⊂ CFGΦ. By using closure properties, we can
establish this proper inclusion in an alternative way. Indeed, by de!nition, LGΦ ⊆ CFGΦ. Since

CFGΦ is closed under closure while LGΦ is not, LGΦ ⊂ CFGΦ, and we are done.

2.2.3 Rewriting Systems as Computational Models

While Section 2.2.2 has primarily dealt with language-generating models, this section bases its
discussion upon language-accepting models, frequently referred to as automata or machines for
brevity. More speci!cally, in this section, automata are primarily seen as models of computation.
To introduce this important topic, Example 2.9 gives an automaton, which accepts strings just like
any other language-accepting model. In addition, however, it acts as a computational model, too.

Example 2.9 We introduce a rewriting system, M = (Σ, R), which acts as a computer of well-written
post!x Polish expressions, de!ned in Example 1.1. Set

 ◾ Σ = {0, 1, ∨, ∧};

 ◾ R = {11∨ → 1, 10∨ → 1, 01∨ → 1, 00∨ → 0, 11∧ → 1, 10∧ → 0, 01∧ → 0, 00∧ → 0}.

22 ◾ Formal Languages and Computation

Observe that for all x ∈ Σ* and i ∈ {0, 1},

 x ⇒* i i! x is a post"x polish expression whose logical value is i

For instance, 10∨0∧ ⇒ 10∧ ⇒ 0, so 10∨0∧ ⇒
* 0, and observe the logical value of 10∨0∧ is

indeed 0. On the other hand, 101∧ ⇒ 10, and from 10, M can make no further rewriting step;
notice that 101∧ is no post"x polish expression.

In Example 2.9, M can be viewed as a highly stylized procedure, which evaluates all
 well-constructed post"x logical expressions over {0, 1, ∨, ∧}. $is view brings us to considering
rewriting systems as computational models that formalize the intuitive notion of an e!ective
 procedure or, brie%y, a procedure—the central notion of computation as a whole. We surely agree
that each procedure is "nitely describable and consists of discrete steps, each of which can be
executed mechanically. $at is, throughout this book, we understand the intuitive notion of a
procedure as a "nite set of instructions, each of which can be executed in a "xed amount of time.
When executed, a procedure reads input data, executes its instructions, and produces output data.
Of course, both the input data and the output data may be nil. An algorithm is a special case of a
procedure that halts on all inputs. For instance, every computer program represents a procedure,
and if the program never enters an endless loop, then it is an algorithm.

In this introductory book, we restrict our attention only to rewriting systems that act as compu-
tational models of nonnegative integer functions. To use rewriting systems to compute the numeric
functions, we obviously need to represent all nonnegative integers by strings. Traditionally, they
are represented in unary. More speci"cally, every i ∈ 0ℕ is represented as unary(i), where unary is
de"ned in Example 2.4. Consequently, unary(j) = a j for all j ≥ 0; for instance, unary(0), unary(2),
and unary(999) are equal to ε, aa, and a999, respectively.

Example 2.10 describes rewriting systems that act as integer function computers. $e way
by which they perform their computation strongly resembles the way by which Turing machines
(TMs) compute integer functions in Section IV of this book. $e example also illustrates that just
like grammars use some auxiliary symbols, so do automata, whose alphabets often contain some
delimiter and state symbols.

Example 2.10 Let M = (Σ, R) be a rewriting system, where Σ = {▹, ◃, ▸, ▪, a}, and R is a "nite set
of rules of the form x → y, where either x, y ∈ {▹}W or x, y ∈ W or x, y ∈ W{◃} with W = {a}*{▸, ▪}
{a}*. Let f be a function over 0ℕ. M computes f i! the next equivalence holds true:

 f (i) = j i! ▹▸unary(i)◃ ⇒* ▹▪unary(j)◃ in M

where i, j ∈ 0ℕ. Considering the de"nition of unary (see Example 2.4), we can rephrase this equiva-
lence as

 f (i) = j i! ▹▸ai
◃ ⇒* ▹▪a j

◃ in M

Notice that the string of as is delimited by ▹ and ◃. M always starts its computation from ▸,
referred to as the start state, and "nalizes it in ▪, referred to as a "nal state.

Let g be the successor function de"ned as g(i) = i + 1, for all i ≥ 0. Informally, we construct a
 rewriting system, X = (XΣ, XR), that computes g so ▹▸ai

◃ ⇒* ▹▪ai+1
◃ so it moves ▸ across ai to the

◃ and replaces it with a◃. As a result, in between ▹ and ◃, X increases the number of as by one, so
X constructed in this way computes g. Formally, XΣ = {▹, ◃, ▸, ▪, a} and

 XR = {▸a → a▸, ▸◃ → ▪a◃, a▪ → ▪a}

Formal Languages and Rewriting Systems ◾ 23

For instance, X computes g(2) = 3 as

 ▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹aa▸◃ ⇒ ▹aa▪a◃ ⇒ ▹a▪aa◃ ⇒ ▹▪aaa◃

Modify X by introducing a new rule of the form a▸ → ▸a. Denote the rewriting system modi!ed
in this way by Y. Formally, Y = (YΣ, YR), YΣ = {▹, ◃, ▸, ▪, a}, and

 YR = {▸a → a▸, a▸ → ▸a, ▸◃ → ▪a◃, a▪ → ▪a}

As a simple exercise, prove that Y also computes g. However, Y can move ▸ across as between ▹
and ◃ in either direction while X cannot. For instance, Y computes g(2) = 3 by in!nitely many
sequences of rewriting steps, including these three sequences:

 I. ▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹aa▸◃ ⇒ ▹aa▪a◃ ⇒ ▹a▪aa◃ ⇒ ▹▪aaa◃

 II. ▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹aa▸◃ ⇒ ▹aa▪a◃ ⇒ ▹a▪aa◃ ⇒ ▹▪aaa◃

 III. ▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹▸aa◃ ⇒ ▹a▸a◃ ⇒
▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹▸aa◃ ⇒ ▹a▸a◃ ⇒ ▹▸aa◃ ⇒ ▹a▸a◃ ⇒
▹aa▸◃ ⇒ ▹aa▪a◃ ⇒ ▹a▪aa◃ ⇒ ▹▪aaa◃

We say that X works deterministically while Y does not, and we return to the topic of determinism
from a more general viewpoint after closing this example.

Let us now demonstrate that we can approach the discussion of rewriting systems acting as com-
puters of functions in the other way around. #at is, given a rewriting system, we can naturally ask
what function the system computes. Consider, for instance, Z = (ZΣ, ZR), ZΣ = {▹, ◃, ▸, ▪, a} and

 ZR = {▸a → aa▸, ▸◃ → ▪◃, a▪ → ▪a}

For example, notice that

 ▹▸aa◃ ⇒ ▹aa▸a◃ ⇒ ▹aaaa▸◃ ⇒ ▹aaaa▪◃ ⇒ ▹aaa▪a◃ ⇒ ▹aa▪aa◃ ⇒
▹a▪aaa◃ ⇒ ▹▪aaaa◃

More generally, M deterministically computes the function f (i) = 2i for all i ≥ 0; for instance,
f (1) = 2 and f (9) = 18. Indeed, starting from ▹▸ai

◃, it computes ▹▸ai
◃ ⇒

* ▹▪a2i
◃ for

all i ≥ 0.
Finally, let us point out that we can approach computational models in a more fundamental

way. Return to the de!nition given in the beginning of this example, and assume that f may be,
in a general case, a partial function. Under this assumption, literally every rewriting system with
{▹, ◃, ▸, ▪, a} as its alphabet computes a function. At a glance, this statement sounds almost
incredible because we may have rewriting systems with rules by which they can never compute
anything (for instance, this is the case whenever they have no rule containing ▪); consequently,
the computed function is unde!ned for all arguments. However, realize that functions that are
everywhere unde!ned are mathematically legitimate instances of partial functions, too. When
discussing models of computation later in Chapter 10, we will also approach them in such a
general way—that is, we will consider the entire set of them all as well as the corresponding set
of functions computed by them. Indeed, we will de!ne functions computed by aforementioned
TMs. We will investigate the set of all these functions in order to !nd out what is computable by
computers and what is not, which is obviously a problem area of general mathematical as well as
philosophical interest.

Consider X and Y in the previous example. #ey both compute the same function by rewriting
strings over K, where K = ▹{a}*{▸, ▪}{a}*

◃. As already pointed out in the example, however, in
terms of the way they work, there exists a fundamental di$erence between X and Y—the former

24 ◾ Formal Languages and Computation

works deterministically over K while the latter does not. !at is, X rewrites any string from K by
no more than one rule while Y does not satisfy this property.

De�nition 2.6 Let M = (Σ, R) be a rewriting system and K ⊆ Σ*. M is deterministic over K if
for every w ∈ K, there is no more than one r ∈ R such that w M⇒ v [r] with v ∈ K (when K is
understood, we usually just say that M is deterministic).

Consequently, if M is deterministic over K, then M⇒ represents a function over K—that
is, for all u, v, w ∈ K, if u M⇒ v and u M⇒ w, then v = w. In general, the basic versions
of various types of rewriting systems are always introduced quite generally and, therefore,
nondeterministically in the theory of computational and language models. !at is also why
we "rst de"ne the basic versions of these models in a nondeterministic way throughout this
book. In practice, however, we obviously prefer their deterministic versions because they are
easier to implement. !erefore, we usually place a restriction on their rules so that the mod-
els with rules restricted in this way necessarily work deterministically. Of course, we always
study whether all the nondeterministic versions can be converted to equivalent deterministic
versions, and if so, we want to perform this conversion algorithmically. As determinism obvi-
ously represents such an important investigation area, we pay a special attention to this topic
throughout this book.

As pointed out in the conclusion of Example 2.10, when discussing models of computation, we
are inescapably lead to a certain metaphysics of computation, trying to "nd out what computers can
compute and what they cannot. To narrow this investigation to mathematics, we obviously want
to know whether there is a procedure that computes any function. Unfortunately, the answer is
no. To justify this answer, we need a formalization of the intuitive notion of a procedure, and any
formalization of this kind obviously has to satisfy the essential property that each of its instances
is "nitely describable. Suppose we have a general mathematical model Γ formalizing the intuitive
notion of a procedure that satis"es this property. All the instances of Γ are countable because we
can make a list of all their "nite descriptions, for instance, according to length and alphabetic
order, so the set of these descriptions is equal in cardinality to ℕ. However, we already know that
the set of all functions is uncountable (see Example 1.3), so there necessarily exist functions that
cannot be computed by any procedure. Simply put, the number of all functions is uncountable
while the number of formalized procedures is countable.

More surprisingly, even if we narrow our attention to the set ϕ containing all total functions
over ℕ, by using the diagonalization proof technique (see Example 1.3), the theory of comput-
ability, which studies questions of this kind, can easily demonstrate a speci"c function g ∈ ϕ that
cannot be computed by any Γ-formalized procedure. Indeed, since each function h ∈ ϕ is total, it
has to be computed by an algorithm, which always halts and produces h(j) for all j ∈ ℕ. For the
sake of contradiction, suppose that all functions in ϕ are computed by an algorithm formalized
by an instance of Γ. Consider all the descriptions of the Γ instances that compute the functions
in ϕ. Let 1F, 2F, … be an enumeration of these "nite descriptions. By iF-f, we denote the function
computed by the algorithm formalized by the model described as iF in the enumeration. De"ne
the function g as g(k) = kF-f (k) + 1, for all k ∈ ℕ. As g ∈ ϕ, the enumeration 1F, 2F, …, jF, …
contains jF such that jF-f coincides with g, for some j ≥ 1. !en, jF-f(j) = g (j) = jF-f (j) + 1, which
is a contradiction. !us, no Γ-formalized algorithm computes g.

Apart from uncomputable functions, there also exist undecidable problems, which cannot be
decided by any algorithm. More regretfully and surprisingly, the theory of decidability has even
proved that there will never exist algorithms that decide problems with genuine signi"cance in

Formal Languages and Rewriting Systems ◾ 25

computer science as a whole. For instance, it is undecidable whether a program always halts; that
is, the existence of a general algorithm that decides this problem is ruled out once and for all.

However, even if we restrict our attention only to decidable problems and take a closer look at
them, we �nd out that they signi�cantly di�er in terms of their time and space computational complex-
ity. Indeed, two decidable problems may di�er so the computation of one problem takes reasonable
amount of time while the computation of the other does not—that is, compared to the �rst problem,
the other problem is considered as intractable because its solution requires an unmanageable amount
of time. !us, apart from theoretically oriented investigation, this study of computational complex-
ity is obviously crucially important to most application-oriented areas of computer science as well.

2.3 Synopsis of the Book

In this section, we link all the terminology introduced in this chapter to the rest of this book and,
thereby, make its synopsis. !e book is divided into Sections I through V. Section I is concluded
by this chapter. !e others are outlined next.

In this book, the most important language-de�ning models are �nite automata, CFGs, and
TMs, which de�ne the language families denoted by FAΦ, CFGΦ, and TMΦ, respectively. Accordingly,
Sections II, III, and IV cover models, applications, and properties concerning FAΦ, CFGΦ, and TMΦ,
respectively. Each of these sections consists of three chapters.

Section II

Section II consists of Chapters 3 through 5. Chapter 3 introduces �nite automata and regular expres-
sions as the basic language models that characterize FAΦ, whose languages are usually referred to as
regular languages. Chapter 4 demonstrates how to apply these models to text processing. Speci�cally,
based upon them, it builds up lexical analyzers. Finally, Chapter 5 establishes several properties,
including closure properties, which are helpful to prove or disprove that some languages are regular.

Section III

Section III consists of Chapters 6 through 8. Chapter 6 de�nes already mentioned CFGs, which
characterize CFGΦ—the family of context-free languages. In addition, it de�nes pushdown autom-
ata, which also characterize CFGΦ, so these grammars and automata are equivalent. Chapter 7
applies these models to syntax analysis. It explains how to describe programming language syntax
by CFGs and, then, convert these grammars to e"cient syntax analyzers that act as pushdown
automata. In many respects, Chapter 8 parallels Chapter 5; however, Chapter 8 obviously studies
language properties in terms of CFGΦ. !at is, it establishes many properties concerning CFGs and
explains how to use them to answer certain important questions concerning them.

Section IV

While Sections II and III make use of various rewriting systems as language-de�ning models,
Section IV uses them primarily as computational models. It consists of Chapters 9 through 11.
Chapter 9 de�nes already mentioned TMs. Based upon them, Chapter 10 outlines the theory of com-
putability, decidability, and computational complexity. To link these machines to the theory of for-
mal languages, Chapter 11 considers them as language-accepting models, de�nes their grammatical

26 ◾ Formal Languages and Computation

counterparts, and establishes the relation between several subfamilies of TMΦ. Perhaps most impor-
tantly, it states that

 !nΦ ⊂ FAΦ ⊂ CFG Φ ⊂ TMΦ ⊂ allΦ

Section V

!e purpose of the "nal one-chapter section is fourfold. First, it summarizes this book. Second,
it places all its material into a historical and bibliographical context. !ird, it selects several
 modern and advanced topics, omitted in this introductory book, and gives their overview. Finally,
Section V suggests further reading for the serious student.

Exercises

 1. Let Σ be an alphabet. Let x = aaabababbb, where a, b ∈ Σ. Determine pre!x(x), su"x(x),
and substring(x).

 2. Give a nonempty string x such that xi = reversal(x)i, for all i ≥ 0.
 3 S. Let L = {an| n ≥ 2} be a language over an alphabet, Σ. Determine ~L with (i) Σ = {a} and
 (ii) Σ = {a, b}.
 4. Let Σ be an alphabet. Prove that every x ∈ Σ* satis"es (a) through (c), given next.
 a. pre!x(x) ⊆ substring(x)
 b. su"x(x) ⊆ substring(x)
 c. {ε, x} ⊆ pre!x(x) ∩ su"x(x) ∩ substring(x)
 5. Select some common components of your favorite programming language. Specify them

by using the notions introduced in Section 2.1, such as various language operations. For
instance, consider integers in C and specify them by using such simple operations as concat-
enation and closure.

 6 S. Formalize the usual dictionary order as a lexicographic order based upon a linear order,
de"ned in Exercise 8 in Chapter 1. Write a program that implements the lexicographic order.
Test this program on a large "le of English words.

 7. Let Σ be an alphabet. Prove or disprove each of the following four statements.
 a. For all i ≥ 0, εi = ε.
 b. For all x ∈ Σ*, xε = εx = x.
 c. For all x ∈ Σ*, xix j = x jxi = xi+j.
 d. For all x, y ∈ Σ*, reversal(xy) = reversal(y)reversal(x).
 8. Consider the language L = {011, 111, 110}. Determine reversal(L), pre!x(L), su"x(L), L2,

L*, and L+.
 9. Prove that every language L satis"es L{ε} = {ε}L = L, L∅ = ∅L = ∅, L+ = LL* = L*L, and
 L* = L+ ∪ {ε}.
 10. Let Σ be an alphabet. Determine all languages L over Σ satisfying L* = L; for instance, Σ* is

one of them.
 11. Let Σ be an alphabet. Prove that the family of all "nite languages over Σ is countable, but the

family power (Σ*)—that is, the family of all languages over Σ—is not countable.
 12. Let K and L be two "nite languages over {0, 1} de"ned as K = {00, 11} and L = {0, 00}.

Determine KL, K ∪ L, K ∩ L, and K − L.
 13 S. Prove or disprove that the following two equations hold for any two languages J and K.
 a. (J ∪ K)* = (J *K *)*

 b. (JK ∪ K)* = J(KJ ∪ J)*

 14. Consider each of the following equations. Prove or disprove that it holds for any three
 languages J, K, and L.

 a. (JK)L = J(KL)
 b. (J ∪ K)L = JL ∪ KL
 c. L(J ∪ K) = LJ ∪ LK

Formal Languages and Rewriting Systems ◾ 27

 d. (J ∩ K)L = JL ∩ KL
 e. L(J ∩ K) = LJ ∩ LK
 f. L(J − K) = LJ − LK
 15. Let Σ be an alphabet. In terms of formal languages, DeMorgan's law says that ~(~K ∪ ~L) =

K ∩ L for any two languages K and L over Σ. Prove this law.
 16 S. Recall that a rewriting system is a pair, M = (Σ, R), where Σ is an alphabet, and R is a

!nite relation on Σ* (see De!nition 2.2). Furthermore, the rewriting relation over Σ* is
denoted by ⇒ and de!ned so that for every u, v ∈ Σ*, u ⇒ v in M i# there exist x → y ∈ R
and w, z ∈ Σ* such that u = wxz and v = wyz. For every n ≥ 0, the n-fold product of ⇒ is
denoted by ⇒n. Determine m ∈ 0ℕ satisfying for all u, v ∈ Σ* and n ≥ 0, u ⇒n v in M implies
|v| ≤ nm|u|.

 17. Let G = (Σ, R) be a rewriting system (see De!nition 2.2), v, w ∈ Σ*, and v ⇒* w. If w cannot
be rewritten by any rule from R—in other words, w ⇒ z is false for any z ∈ Σ*, then v ⇒* w
is said to be terminating, symbolically written as v t⇒

* w. Let S ∈ Σ be a special start symbol.
Set tL(G) = {w ∈ Σ*| S t⇒

* w}.
Consider each of the following languages over {a, b, c}. Construct a rewriting system G

such that tL(G) coincides with the language under consideration.
 a. {aibaibai| i, j ≥ 1}
 b. {aibai| i ≥ 0}
 c. {aibia2i| i ≥ 0}
 d. {aibici| i ≥ 0 and j ≥ 1}
 e. {bia jbic j| i, j ≥ 0}
 f. {biakbkalbk| i, j ≥ 0, i = k or l = k}
 g. {x| x ∈ {a, b, c}*, occur(x, a) > occur(x, b) > occur(x, c)}
 h. {x| x ∈ {a, b, c}*, occur(x, a) = occur(x, b) = occur(x, c)}
 i. {ai| i = 2n, i ≥ 0}
 j. {xx| x ∈ {a, b}*}
 18. Return to Example 2.7.
 a. Modify CFGs so S is a !nite language, not a single symbol. Formalize this modi!cation.

Are the CFGs modi!ed in this way as powerful as CFGs?
 b. Rephrase and solve (a) in terms of LGs.
 19 S. Is every formal language de!ned by a language-de!ning rewriting system? Justify your

answer.
 20 S. De!ne the notion of a rewriting system that acts as computers of functions over Σ*, where Σ

is any alphabet. $en, based on this de!nition, introduce a speci!c rewriting system that acts
as a computer of the function f over {0, 1, ∨, ∧}* de!ned for all x ∈ Σ* and i ∈ {0, 1}, by this
equivalence: f (x) = i i# x is a pre!x Polish expression whose logical value is i.

 21 S. Consider Example 2.5 and De!nition 2.6.
 a. Consider M in Example 2.5. Demonstrate that M rewrites strings nondeterministically

in terms of De!nition 2.6.
 b. Modify Example 2.5 as follows. Rede!ne M = (Σ, R) so Σ = EnglishΔ ∪ {·, −, #} and R = {a →

µ(a)#| a ∈ EnglishΔ}. De!ne the function ν from EnglishΔ
* to {·, −, #}* as ν = {(s, t)| s ⇒* t in M,

s ∈ EnglishΔ
, t ∈ {·, −, #}}; for instance, ν contains (SOS, · · · # − − − # · · · #). Construct

deterministic rewriting systems D and E that de!ne ν and inverse(ν), respectively.

Solutions to Selected Exercises

 3. If Σ = {a}, ~L = {ε, a}. If Σ = {a, b}, ~L = {a, b}* − {a}{a}+.
 6. Let Σ be a set, and let β be a linear order on Σ. We extend β to Σ* so that for any x, y ∈ Σ*,

xβy if x ∈ pre!xes(y) – {y}, or for some k ≥ 1 such that |x| > k and |y| > k, pre!x(x, k − 1) =
pre!x(y, k − 1) and symbol(x, k)βsymbol(y, k). $is extended de!nition of β is referred to
as the lexicographic order β on Σ*. Take, for instance, Σ as the English alphabet and β as
its alphabetical order. $en, the lexical order β extended in the above-mentioned way
 represents the usual dictionary order on Σ*.

28 ◾ Formal Languages and Computation

 13. To disprove (ii), take J and K as any two languages such that ε ∉ J and ε ∈ K; then, ε ∈
(JK ∪ K)*, but ε ∉ J(KJ ∪ J)*.

 16. Take m as the minimal nonnegative integer satisfying m ≥ |x| − |y|, for all x → y ∈ R. By
induction on n ≥ 0, prove that for all u, v ∈ Σ*, u ⇒n v in M implies |v| ≤ nm|u|.

 19. In the conclusion of Section 2.2, there is an explanation why some functions cannot be
computed by any procedure, which has a "nite description. Make use of a similar argument
to prove that some formal languages are not de"ned by any language-de"ning rewriting
systems.

 20. Let Σ be an alphabet. Without any loss of generality, suppose that Σ and {▹, ◃, ▸, ▪} are
disjoint. Let M = (W, R) be a rewriting system, where W = Σ ∪ {▹, ◃, ▸, ▪}, and R is a "nite
set of rules of the form x → y, where either x, y ∈ {▹}X or x, y ∈ X or x, y ∈ X{◃} with X =
Σ

{▸, ▪}Σ. Let f be a function over Σ*. M computes f i# this equivalence holds true: f (x) = y
i# ▹▸x◃ ⇒* ▹▪y◃ in M, where x, y ∈ Σ*.

De"ne the rewriting system M = (W, R) with W = {0, 1, ∨, ∧, ▹, ◃, ▸, ▪} and

R = {▸∨ij → ▸k| i, j, k ∈ {0, 1}, k = 0 i# i = j = 0}
 ∪ {▸∧ij → ▸k| i, j, k ∈ {0, 1}, k = 1 i# i = j = 1}
 ∪ {▸i → i▸| i ∈ {0, 1, ∨, ∧}}
 ∪ {i▸ → ▸i| i ∈ {0, 1, ∨, ∧}}
 ∪ {▸i◃ → ▪i◃| i ∈ {0, 1}}

 Observe that for all x ∈ Σ
* and i ∈ {0, 1}, f (x) = i i# x is a pre"x Polish expression

whose logical value is i. For instance, ▹▸∧∨100◃ ⇒ ▹∧▸∨100◃ ⇒ ▹∧▸10◃ ⇒ ▹▸∧10◃ ⇒
▹▸0◃ ⇒ ▹▪0◃.

 21. Consider (a). Notice that, for instance, SOS ⇒ SO · · · and SOS ⇒ · · · OS in M, so M rewrites
strings nondeterministically in terms of De"nition 2.6.

 Consider (b). De"ne D = (DΣ, DR) with DΣ = EnglishΔ ∪ {S, ·, −, #, $} and DR = {Sa → µ(a)S|
a ∈ EnglishΔ} ∪ {S$ → $}. De"ne T(D) = {(s, t)| Ss$ ⇒* t$, s ∈ EnglishΔ

, t ∈ {·, −, #}}. Prove that
T(D) = ν.

 De"ne E = (EΣ, ER) with EΣ = DΣ and ER = {Sµ(a) → aS| a ∈ EnglishΔ} ∪ {S$ → $}. De"ne
T(E) = {(s, t)| Ss$ ⇒* t$, s ∈ {·, −, #}*, t ∈ EnglishΔ

*}. Prove that T(E) = inverse(ν).

