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Chapter 9

Turing Machines and 
Their Variants

�is three-section chapter introduces Turing machines (TMs) and their variants. Section 9.1 gives 
their basic de�nition. �en, Section 9.2 covers several special variants of these machines while 
Section 9.3 presents their universal versions, which ful�ll an important role in Chapter 10.

9.1 Turing Machines and Their Languages

Return to the notion of a �nite automaton (FA) (see Section 3.1). TM generalizes the FA in 
three essential ways. First, it can read and write on its tape. Second, its read-write head can 
move both to the right and to the left on the tape. Finally, the tape can be limitlessly extended 
to the right.

De�nition 9.1 A Turing machine (TM) is a rewriting system M = (Σ, R), where

 ◾ Σ contains subalphabets Q, F, Γ, Δ, {▹, ◃} such that Σ = Q ∪ Γ ∪ {▹, ◃}, F ⊆ Q, Δ ⊂ Γ, Γ – Δ 
always contains ◽—the blank symbol (see Convention 4.6), and {▹, ◃}, Q, Γ are pairwise 
disjoint

 ◾ R is a �nite set of rules of the form x → y satisfying
 i. {x, y} ⊆ {▹}Q, or

 ii. {x, y} ⊆ ΓQ ∪ QΓ, or
 iii. x ∈ Q{◃} and y ∈ Q{◽◃, ◃}

Q, F, Γ, and Δ are referred to as the set of states, the set of  nal states, the alphabet of tape 
symbols, and the alphabet of input symbols, respectively. Q contains the start state, denoted 
by ▸. Relations ⇒ and ⇒* are de�ned like in any rewriting system (see De�nition 2.2 and 
Convention 2.3). M accepts w ∈ Δ* if ▹▸w◃ ⇒* ▹ufv◃ in M, where u, v ∈ Γ*, f ∈ F. �e language 
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accepted by M or, brie!y, the language of M is denoted by L(M) and de"ned as the set of all 
strings that M accepts; formally,

 L(M) = {w| w ∈ Δ*, ▹▸w◃ ⇒* ▹ufv◃, u, v ∈ Γ*, f ∈ F} 

A con!guration of M is a string of the form ▹uqv◃, u, v ∈ Γ*, q ∈ Q, and let MΧ denote the 
set of all con"gurations of M. We say that uv is on the tape of M, which is always delimited by 
▹ and ◃, referred to as the left and right bounders, respectively. In essence, ▹uqv◃ captures the 
current situation M occurs in. #at is, in ▹uqv◃, q is the current state of M, whose read-write 
head occurs over the current input symbol de"ned as the leftmost symbol of v◃. If β ⇒ χ in M, 
where β, χ ∈ MΧ, we say that M makes a move or a computational step from β to χ. A move made 
by an extending rule of the form q◃ → p◽◃ ∈ R, where q, p ∈ Q, deserves our special atten-
tion because it actually extends the current tape by inserting a new occurrence of ◽ in front of 
◃; more formally and brie!y, ▹uq◃ ⇒ ▹up◽◃, where u ∈ Γ*. As follows from De"nition 9.1, 
▹▸w◃ ⇒* χ implies χ ∈ MΧ. We say that M makes a sequence of moves or a computation from β 
to χ if β ⇒* χ in M, where β, χ ∈ MΧ.

Convention 9.2 For any TM M, we automatically assume that Q, F, Γ, Δ, and R have the 
same meaning as in De"nition 9.1. If there exists any danger of confusion, we mark Q, F, Γ, 
Δ, and R with M as MQ, MF, MΓ, MΔ, and MR, respectively, to emphasize that they represent 
the components of M (in particular, we use these marks when several TMs are simultaneously 
discussed).

Example 9.1 Consider L = {x| x ∈ {a, b, c}*, occur(x, a) = occur(x, b) = occur(x, c)}. Less formally, x 
is in L i% x has an equal number of as, bs, and cs; for instance, babcca ∈ L, but babcc ∉ L. In this 
example, we construct a TM M such that L(M) = L.

Gist. M records symbols it has read by using its states from power({a, b, c}) (see Section 1.2). #at 
is, M moves on the tape in any direction. Whenever it reads an input symbol that is not already 
recorded in the current state, M can add this symbol into its current state while simultaneously 
changing it to ◽ on the tape. M can anytime change the state that records all three symbols to the 
state that records no symbol at all. By using a special state, ↵, M can scan the entire tape so it starts 
from ◃ and moves left toward ▹ to "nd out whether the tape is completely blank, and if this is the 
case, M accepts.

De!nition. De"ne M = (Σ, R), where Σ = Q ∪ Γ ∪ {▹, ◃}, Γ = Δ ∪ {◽}, Δ = {a, b, c}, Q = {▸, ↵, ▪} ∪ 
W with W = {〈O〉| O ⊆ {a, b, c}} and F = {▪}. Construct the rules of R by performing (1) through (5). 
(As stated in Section 1.2, {} denotes the empty set just like ∅ does. In this example, we use {} for 
this purpose.)

 1. Add ▹▸ → ▹〈{}〉 to R.
 2. For every 〈O〉 ∈ W and every d ∈ Δ ∪ {◽}, add 〈O〉d → d〈O〉 and d〈O〉 → 〈O〉d to R.
 3. For every 〈O〉 ∈ W such that O ⊂ {a, b, c} and every d ∈ Δ – O, add 〈O〉d → 〈O ∪ {d}〉◽ to R.
 4. Add 〈{a, b, c}〉d → 〈{}〉d to R, where d ∈ Δ ∪ {◽, ◃}.
 5. Add 〈{}〉◃ → ↵◃, ◽↵ → ↵◽, and ▹↵ → ▹▪ to R.

Computation. Consider both the informal and formal description of M. Observe that by (1), M 
starts every computation. By (2), M moves on its tape. By (3), M adds the input symbol into its 
 current state from power(Δ) and, simultaneously, changes the input symbol to ◽ on the tape. By (4), 
M empties {a, b, c} so it changes this state to the state equal to the empty set. By (5), M makes a "nal 
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scan of the tape, starting from ◃ and moving left toward ▹, to make sure that the tape is completely 
blank, and if it is, M accepts.

For instance, in this way, M accepts babcca as follows:

▹▸babcca◃     ⇒ ▹〈{}〉babcca◃

      ⇒* ▹babc〈{}〉ca◃

      ⇒ ▹babc〈{c}〉◽a◃

      ⇒* ▹ba〈{c}〉bc◽a◃

      ⇒ ▹ba〈{b, c}〉◽c◽a◃

      ⇒* ▹ba◽c◽〈{b, c}〉a◃

      ⇒ ▹ba◽c◽〈{a, b, c}〉◽◃

      ⇒* ▹b〈{a, b, c}〉a◽c◽◽◃

      ⇒ ▹b〈{}〉a◽c◽◽◃

      ⇒* ▹◽◽◽◽◽◽〈{}〉◃

      ⇒ ▹◽◽◽◽◽◽↵◃

      ⇒ ▹◽◽◽◽◽↵◽◃

      ⇒* ▹↵◽◽◽◽◽◽◃

      ⇒ ▹▪◽◽◽◽◽◽◃

Notice, however, M accepts the same string in many other ways, including

▹▸babcca◃     ⇒ ▹〈{}〉babcca◃

      ⇒ ▹〈{b}〉◽abcca◃

      ⇒ ▹◽〈{b}〉abcca◃

      ⇒ ▹◽〈{a, b}〉◽bcca◃

      ⇒* ▹◽◽b〈{a, b}〉cca◃

      ⇒ ▹◽◽b〈{a, b, c}〉◽ca◃

      ⇒ ▹◽◽b〈{}〉◽ca◃

      ⇒ ▹◽◽〈{}〉b◽ca◃

      ⇒ ▹◽◽〈{b}〉◽◽ca◃

      ⇒* ▹◽◽◽◽◽◽↵◃

      ⇒* ▹↵◽◽◽◽◽◽◃

      ⇒ ▹▪◽◽◽◽◽◽◃

Working on the same string in several di!erent ways, M represents a nondeterministic rewriting 
system (see Section 2.2.3). In Chapter 10, we construct another TM that accepts L in a determin-
istic way (see Example 9.2). From a more general viewpoint, we explain how to turn any TM to an 
equivalent TM that works deterministically later in this chapter (see "eorem 9.5).

As illustrated in Example 9.1, the strictly formal description of a TM spells out the states, sym-
bols, and rules of the TM under discussion. It is the most detailed and, thereby, rigorous descrip-
tion. At the same time, this level of description tends to be tremendously lengthy and tedious. 
"us, paradoxically, this fully detailed description frequently obscures what the TM actually is 
designed for. For instance, without any intuitive comments included in Example 9.1, we would 
found somewhat di#cult to $gure out the way the TM accepts its language. "erefore, in the 
sequel, we prefer an informal description of TMs. "at is, we describe them as procedures, omitting 
various details concerning their components. Crucially, the Church–Turing thesis makes both 
ways of description perfectly legitimate because it assures us that every procedure is identi$able 
with a TM de$ned in a rigorously mathematical way. As a matter of fact, whenever describing 
TMs in an informal way, we always make sure that the translation from this informal description 
to the corresponding formal description represents a straightforward task; unfortunately, this task 
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is usually unbearably time-consuming, too. To illustrate an informal description of TMs, we give 
the following example that informally describes a TM as a Pascal-like procedure, which explains 
the changes of the tape but omits the speci�cation of states or rules.

Convention 9.3 By analogy with Convention 4.1, when informally describing a TM as a Pascal-
like procedure, we express that the machine accepts or rejects its input by ACCEPT or REJECT, 
respectively.

Example 9.2 Consider L = {ai| i is a prime number}. !is example constructs a TM M satisfying 
L(M)  = L. !erefore, from a more general viewpoint, TMs are able to recognize the primes as 
opposed to pushdown automata (PDAs) (see !eorem 6.65 and Exercise 2 in Chapter 8). M is de�ned 
as a Pascal-like procedure in the following way:

Let ai be the input string on the tape, where i ∈ ℕ;

if i ≤ 1 then
 REJECT

change ai to AAai-2 on the tape
while Aka h occurs on the tape with k ≤ h and i = k + h do
begin
   on the tape, change Akah to the unique string y satisfying i = |y| and y ∈ Ak{akAk}*z with z ∈ prefix(akAk-1);
  if |z| = 0 or |z| = k then
   REJECT
  else
   change y to Ak+1ah-1 on the tape
end {of the while loop}
ACCEPT.

Observe that i is no prime i# an iteration of the while loop obtains y = AkakAk…akAk. Indeed, 
at this point, i is divisible by k, so M rejects ai. On the other hand, if during every iteration, y = 
AkakAk…akAkz such that z ∈ pre!x(akAk-1) – {ε, ak}, then after exiting from this loop, M accepts the 
input string because i is a prime.

In the while loop, consider the entrance test whether Akah occurs on the tape with k ≤ h and 
i = k + h. By using several states, tape symbols, and rules, we can easily reformulate this test to its 
strictly formal description in a straightforward way. However, a warning is in order: this reformula-
tion also represents a painfully tedious task. As obvious, a strictly mathematical de�nition of the 
other parts of M is lengthy as well.

Even more frequently and informally, we just use English prose to describe procedures repre-
senting TMs under consideration. As a matter of fact, this highly informal description of TMs is 
used in most proofs of theorems given in the sequel.

9.2 Restricted Turing Machines

In this section, we restrict TMs so that compared to their general versions (see De�nition 9.1), the 
resulting restricted TMs are easier to deal with, and yet, they are equally powerful. In essence, we 
classify all the restrictions into (i) restrictions placed on the way TMs perform their computation 
and (ii) restrictions placed on the size of TMs.
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9.2.1 Computational Restrictions

Perhaps most importantly, we want TMs to work deterministically—that is, from any con�gu-
ration, they can make no more than one move. As TMs are de�ned based on rewriting systems 
(see De�nition 9.1), we make use of these systems and simply de�ne deterministic TMs in the 
 following way.

De�nition 9.4 A TM is deterministic if it represents a rewriting system that is deterministic over 

MΧ (see De�nition 2.6).

In the proof of !eorem 9.5, we demonstrate how to turn any TM to an equivalent determin-
istic TM (of course, just like any rewriting systems, TMs are equivalent if they de�ne the same 
language). As an exercise, give this proof in greater detail.

!eorem 9.5 From every TM I, we can construct equivalent deterministic TM O.

Proof. Let I be any TM. From I, we obtain an equivalent deterministic TM O so on every input 
string x ∈ MΔ

*, O works as follows. First, O saves x somewhere on the tape so this string is available 
whenever needed. !en, O systematically produces the sequences of the rules from IR on its tape, 
for instance, in the lexicographical order. Always after producing a sequence of the rules from IR 
in this way, O simulates the moves that I performs on x according to this sequence. If the sequence 
causes I to accept, O accepts as well; otherwise, it proceeds to the simulation according to the next 
sequence of rules. If there exists a sequence of moves according to which I accepts x, O eventually 
produces this sequence and accepts x, too.

Next, without a"ecting the power of TMs, we place further reasonable restrictions on the way 
deterministic TMs work.

De�nition 9.6 Let M be a TM. If from χ ∈ MΧ, M can make no move, then χ is a halting 
con!guration of M.

!eorem 9.7 From every deterministic TM I, we can construct an equivalent deterministic TM 
O = (OΣ, OR) such that OQ contains two new states, ♦ and ▪, which do not occur on the left-hand 
side of any rule in OR, OF = {▪}, and

 I. Every halting con�guration χ ∈ OΧ has the form χ = ▹qu◃ with q ∈ {♦, ▪} and u ∈ OΓ
*, and 

every non-halting con�guration ν ∈ OΧ satis�es {♦, ▪} ∩ symbols(ν) = ∅.
  II. On every input string x ∈ OΔ

*, O performs one of these three kinds of computation:
 i. ▹▸x◃ ⇒* ▹▪u◃, where u ∈ OΓ

*.
 ii. ▹▸x◃ ⇒* ▹♦v◃, where v ∈ OΓ

*.
 iii. Never enters any halting con�guration.
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Proof. Let I be a deterministic TM. From I, construct O satisfying the properties of !eorem 9.7 as 
follows. In both I and O, ▸ is the start state. Introduce ♦ and ▪ as two new states into OQ. De"ne 
▪ as the only "nal state in O; formally, set OF = {▪}. On every input string x, O works as

 1. Runs I on x.
 2. If I halts in ▹yqv◃, where y, v ∈ IΓ

* and q ∈ IQ, O continues from ▹yqv◃ and computes 
▹yqv◃ ⇒* ▹qyv◃.

 3. If q ∈ IF, O computes ▹qyv◃ ⇒ ▹▪yv◃ and halts, and if q ∈ IQ – IF, O computes ▹qyv◃ ⇒ 
▹♦yv◃ and halts.

As obvious, O satis"es the properties stated in !eorem 9.7.

We use Convention 9.8 in almost all proofs throughout the discussion concerning TMs in this 
book, so pay special attention to it.

Convention 9.8 In what follows, we automatically assume that every TM has the properties 
satis"ed by O stated in !eorems 9.5 and 9.7. We denote the set of all these TMs by TMΨ. We set 

TMΦ = {L(M)| M ∈ TMΨ} and refer to TMΦ as the family of Turing languages.
Consider the three ways of computation described in part II of !eorem 9.7—(i), (ii), and 

(iii). Let M ∈ TMΨ and x ∈ MΔ
*. We say that M accepts x i# on x, M makes a computation of the 

form (i). M rejects x i# on x, M makes a computation of the form (ii). M halts on x i# it accepts or 
rejects x; otherwise, M loops on x—in other words, M loops on x i# it performs a computation of 
the form (iii). States ▪ and ♦ are referred to as the accepting and rejecting states, respectively; accord-
ingly, con"gurations of the form ▹▪u◃ and ▹♦u◃, where u ∈ MΓ

*, are referred to as accepting and 
rejecting con!gurations, respectively.

We assume that Δ denotes the input alphabet of all TMs in what follows. Under this assump-
tion, for brevity, we usually simply state that M ∈ TMΨ works on an input string x instead of stat-
ing that M works on an input string x, where x ∈ Δ*.

According to Convention 9.8, we restrict our attention strictly to TMΨ and TMΦ in the sequel 
(a single exception is made in Section 10.2.5). Observe that this restriction is without any loss of 
generality because TMΦ is also characterized by the general versions of TMs (see De"nition 9.1) as 
follows from !eorems 9.5 and 9.7.

Next, we prove that every L ∈ TMΦ is accepted by O ∈ TMΨ that never rejects any input x—
that is, either O accepts x or O loops on x. It is worth noting that we cannot reformulate this result 
so O never loops on any input. In other words, TMΦ contains languages accepted only by TMs 
that loop on some inputs; we prove this important result and explain its crucial consequences in 
computer science as a whole in Section 10.2.3 of Chapter 10 (see !eorem 10.42).

!eorem 9.9 From any I ∈ TMΨ, we can construct O ∈ TMΨ such that L(I) = L(O) and O never 
rejects any input.

Proof. Consider any I ∈ TMΨ. In I, replace every rule with ♦ on its right-hand side with a set of 
rules that cause the machine to keep looping in the same con"guration. Let O be the TM resulting 
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from this simple modi�cation. Clearly, L(I) = L(O) and O never rejects any input. A fully rigorous 
proof of this theorem is left to the reader.

9.2.2 Size Restrictions

By !eorem 9.10 and Corollary 9.11, we can always place a limit on the number of tape symbols 
in TMs.

�eorem 9.10 From any I ∈ TMΨ with card(IΔ) ≥ 2, we can construct O ∈ TMΨ with OΓ = 

IΔ ∪ {◽}.

Proof. Let I = (IΣ, IR) be a TM in TMΨ such that a, b ∈ IΔ. Let 2k-1 ≤ card(IΓ) ≤ 2k, for some 
k ∈ ℕ. We encode every symbol in IΓ – {◽} as a unique string of length k over {a, b} by a 
function f from I Γ – {◽} to {a, b}k. Based on f, define the homomorphism g from IΣ

* to (IQ ∪ 
{▹, ◃, ◽, a, b})* so that for all Z ∈ IΓ – {◽}, g(Z) = f(Z), and for all Z ∈ (IQ ∪ {▹, ◃, ◽), g(Z) = Z 
(see Section 2.1 of Chapter 2 for the de�nition of homomorphism). Next, we construct a TM O 
that simulates I over the con�gurations encoded by g in the following way.

 1. Initialization. Let w = c1c2…cn be an input string, where c1, … , cn are input symbols from IΔ. 
O starts its computation on w by changing w to g(w); in greater detail, it changes ▹▸c1c2…
cn◃ to g(▹▸c1c2…cn◃), which equals ▹▸f(c1)f(c2)…f(cn)◃.

 2. Simulation of a Move. If ▹d1d2…di-1qdi…dm◃ ∈ IΧ is the current con�guration of I, where 
q ∈ IQ and di ∈ IΓ, 1 ≤ i ≤ m, then the corresponding con�guration in OΧ encoded by g is 
g(▹d1d2…di-1qdi…dm◃) = ▹f(d1d2…di-1)qf(di…dm)◃. Let χ, κ ∈ IΧ, and let I compute χ ⇒ 
κ by using r ∈ IR. !en, O simulates χ ⇒ κ so it computes g(χ) ⇒ g(κ), during which it 
changes g(lhs(r)) to g(rhs(r)) by performing several moves.

 3. Simulation of a Computation. O continues the simulation of moves in I one by one. 
If I makes a move by which it accepts, O also accepts; otherwise, O continues the 
simulation.

Notice that we can apply the encoding technique used in the proof of !eorem 9.10 even if a 
or b are not in IΔ, which gives rise to Corollary 9.11.

Corollary 9.11 Let I ∈ TMΨ. !en, there exists O ∈ TMΨ with OΓ = {a, b, ◽} ∪ IΔ.

!eorem 9.12, whose proof is left as an exercise, says we can also place a limit on the number 
of states in TMs without a#ecting their power.

�eorem 9.12 Let I ∈ TMΨ. !en, there exists O ∈ TMΨ with card(OQ) ≤ 3.

!e bottom line of all the restricted versions of TMs discussed in this section is that they 
are as powerful as the general versions of TMs according to De�nition 9.1. Of course, there 
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also exist restrictions placed on TMs that decrease their power. As a matter of fact, whenever we 
simultaneously place a limit on both the number of noninput tape symbols and the number of 
states, we decrease the power of TMs (a proof of this result is omitted because it is beyond the 
scope of this introductory text). Furthermore, in Chapters 10 and 11, we introduce some more 
restricted versions of TMs, such as Turing deciders in Section 10.2.1 and linear-bounded automata 
in Section 11.2.2, which are less powerful than TMs.

9.3 Universal Turing Machines

A formally described TM in TMΨ resembles the machine code of a program executed by a computer, 
which thus acts as a universal device that executes all possible programs of this kind. Considering 
the subject of this chapter, we obviously want to know whether there also exists a TM acting as 
such a universal device, which simulates all machines in TMΨ. !e answer is yes, and in this sec-
tion, we construct a universal TM U ∈ TMΨ that does the job—that is, U simulates every M ∈ TMΨ 
working on any input w. However, because the input of any TM, including U, is always a string, 
we "rst show how to encode every M ∈ TMΨ as a string, symbolically denoted by 〈M〉, from which 
U interprets M before it simulates its computation. To be quite precise, as its input, U has the code 
of M followed by the code of w, denoted by 〈M, w〉, from which U decodes M and w to simulate 
M working on w so U accepts 〈M, w〉 i# M accepts w. As a result, before the construction of U, we 
explain how to obtain 〈M〉 and 〈M, w〉 for every M ∈ TMΨ and every input w.

9.3.1 Turing Machine Codes

Any reasonable encoding for TMs over a "xed alphabet ϑ ⊆ Δ is acceptable provided that for every 
M ∈ TMΨ, U can mechanically and uniquely interpret 〈M〉 as M. Mathematically speaking, this 
encoding should represent a total function code from TMΨ to ϑ* such that code(M) = 〈M〉 for all 
M ∈ TMΨ. In addition, we select an arbitrary but "xed Z ∈ TMΨ and de"ne the decoding of TMs, 
decode, so for every x ∈ range(code), decode(x) = inverse(code(M)) and for every y ∈ ϑ* – range(code), 
decode(y) = Z so range(decode) = TMΨ. As a result, decode is a total surjection because it maps every 
string in ϑ*, including the strings that code maps to no machine in TMΨ, to a machine in TMΨ. 
Notice, on the other hand, that several strings in ϑ* may be decoded to the same machine in TMΨ; 
mathematically, decode may not be an injection. From a more practical viewpoint, we just require 
that the mechanical interpretation of both code and decode is relatively easily performable. Apart 
from encoding and decoding all machines in TMΨ, we also use code and decode to encode and 
decode the pairs consisting of TMs and input strings. Next, we illustrate code and decode in binary.

A Binary Code for TMs. Consider any M ∈ TMΨ. Recall that we automatically apply 
Convention 9.2 to M, including the meaning of Q, F, Γ, Δ, and R. Consider Q as the set of states 
of M. Rename these states to q1, q2, q3, q4, … , qm so q1 = ▸, q2 = ▪, q3 = ♦, where m = card(Q). 
Rename the  symbols of {▹, ◃} ∪ Γ to a1, a2, … , an so a1 = ▹, a2 = ◃, a3 = ◽, where n = card(Γ) + 2. 
Introduce the homomorphism h from Q ∪ {▹, ◃} ∪ Γ to {0, 1}* as h(qi) = 10i, 1 ≤ i ≤ m, and 
h(aj)  = 110j, 1 ≤  j  ≤  n (homomorphism is de"ned in Section 2.1). Extend h so it is de"ned 
from ({▹, ◃} ∪ Γ ∪ Q)* to {0, 1}* in the standard way—that is, h(ε) = ε, and h(X1…Xk) = h(X1)
h(X2)…h(Xk), where k ≥ 1, and Xl ∈ {▹, ◃} ∪ Γ ∪ Q, 1 ≤ l ≤ k (see Section 2.1). Based on h, we 
now de"ne the function code from R to {0, 1}* so that for each rule r: x → y ∈ R, code(r) = h(xy). 
!en, write the rules of R one after the other in an order as r1, r2, … , ro with o = card(R); for 
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instance, order them lexicographically. Set code(R) = code(r1)111code(r2)111…code(ro)111. Finally, 
from code(R), we obtain the desired code(M) by setting code(M) = 0m10n1code(R)1. Taking a closer 
look at code(M) = 0m10n1code(R)1, 0m1 and 0n1 state that m = card(Q) and n = card(Γ) + 2, 
 respectively, and code(R) encodes the rules of R. Seen as a function from TMΨ to {0,  1}*, code 
 obviously  represents a total function TMΨ to ϑ*. On the other hand, there are binary strings that 
represent no legal code of any machine in TMΨ; mathematically, inverse(code) is a partial  function, 
not a total function. For example, ε, any string in {0}* ∪ {1}*, or any string that starts with 1 are ille-
gal codes, so their inverses are unde"ned. Select an arbitrary but "xed Z ∈ TMΨ; for instance, take 
Z as a TM that immediately rejects every input after it starts its computation. Extend inverse(code) 
to the total function decode from {0, 1}* to TMΨ so that decode maps all binary strings that repre-
sent no code of any TM in TMΨ to Z. More precisely, for every x ∈ {0, 1}*, if x is a legal code of a 
TM K in TMΨ, decode maps x to K, but if it is not, decode maps x to Z; equivalently and brie#y, if 
x encodes K ∈ TMΨ and, therefore, x ∈ range(code), decode(x) = K, and if x ∈ {0, 1}* – range(code), 
decode(x) = Z (notice that decode represents a surjection).

To encode every w ∈ Δ*, we simply set code(w) = h(w), where h is the homomorphism de"ned 
above. Select an arbitrary but "xed y ∈ Δ*; for instance, take y = ε. De"ne the total surjection 
decode from {0, 1}* to Δ* so for every x ∈ {0, 1}*, if x ∈ range(code), decode(x) = inverse(code(w)); 
otherwise, decode(x) = y.

For every (M, w) ∈ TMΨ × Δ*, de"ne code(M, w) = code(M)code(w). Viewed as a function 
from TMΨ × Δ* to {0, 1}*, code obviously represents a total function from TMΨ × Δ* to ϑ*. De"ne 
the total surjection decode from {0, 1}* to TMΨ × Δ* so decode(xy) = decode(x)decode(y), where 
decode(x) ∈ TMΨ and decode(y) ∈ Δ*.

Example 9.3 Consider this trivial TM M ∈ TMΨ, where M = (Σ, R), Σ = Q ∪ Γ ∪ {▹, ◃}, Q = {▸, 
▪, ♦, A, B, C, D}, Γ = Δ ∪ {◽}, Δ = {b}, and R contains these rules

▸◃ → ▪◃, ▸b → bA, Ab → bB, Bb → bA, A◃ → C◃, B◃ → D◃,
bD → D ◽, bC → C ◽, ▹C → ▹♦, ▹D → ▹▪

Leaving a simple proof that L(M) = {bi| i ≥ 0, i is even} as an exercise, we next obtain the 
binary code of M by applying the encoding method described above. Introduce the homomor-
phism h from Q ∪ {▹, ◃} ∪ Γ to {0, 1}* as h(qi) = 10i, 1 ≤ i ≤ 7, where q1, q2, q3, q4, q5, q6, and q7 
coincide with ▸, ▪, ♦, A, B, C, and D, respectively, and h(ai) = 110j, 1 ≤ j ≤ 4, where a1, a2, a3, and 
a4 coincide with ▹, ◃, ◽, and b, respectively. Extend h so it is de"ned from (Q ∪ {▹, ◃} ∪ Γ)* to 
{0, 1}* in the standard way. Based on h, de"ne the function code from R to {0, 1}* so for each rule 
x → y ∈ R, code(x → y) = h(xy). For example, code(▸b → bA) = 1011000011000010000. Take, for 
instance, the above order of the rules from R, and set

code(R) = code(▸◃ → ▪◃) 111 code(▸b → bA) 111
 code(Ab → bB) 111 code(Bb → bA) 111
 code(A◃ → C◃) 111 code(B◃ → D◃) 111
 code(bD → D◽) 111 code(bC → C ◽) 111
 code(▹C → ▹♦) 111 code(▹D → ▹▪) 111

 = 10110010011001111011000011000010000111
 1000011000011000010000011110000011000011000010000111
 100001100100000011001111000001100100000001100111
 1100001000000010000000110001111100001000000100000011000111

 1101000000110100011111010000000110100111
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To encode M as a whole, set

code(M) = 071041code(R)1
 = 0000000100001
 10110010011001111011000011000010000111
 1000011000011000010000011110000011000011000010000111
 100001100100000011001111000001100100000001100111
 1100001000000010000000110001111100001000000100000011000111
 1101000000110100011111010000000110100111
 1

Take w = bb, whose code(bb) = 110000110000. As a result, the binary string denoted by 
code(M, bb) is

00000001000011011001001100111101100001100001000011110000110000110000100000111
10000011000011000010000111100001100100000011001111000001100100000001100111110
00010000000100000001100011111000010000001000000110001111101000000110100011111

0100000001101001111110000110000

Convention 9.13 In what follows, we suppose there exist a !xed encoding and a !xed decoding 
of all TMs in TMΨ. We just require that both are uniquely and mechanically interpretable; 
otherwise, they may di"er from code and decode (in fact, they may not even be in binary). As 
already stated in the beginning of this section, we denote the code of M ∈ TMΨ by 〈M〉. Similarly, 
we suppose there exist an analogical encoding and decoding of the members of Δ*, TMΨ × Δ*, 

TMΨ × TMΨ, and TMΨ × 0ℕ. Again, for brevity, we denote the codes of w ∈ Δ*, (M, w) ∈ TMΨ × 
Δ
*, (M, N) ∈ TMΨ × TMΨ, and (M, i) ∈ TMΨ × 0ℕ by 〈w〉, 〈M, w〉, 〈M, N〉, and 〈M, i〉, respectively 

(as an exercise, encode and decode the members of 0ℕ similarly to encoding the machine in TMΨ). 
Even more generally, for any automaton or grammar, X, discussed in Chapters 2 through 8, 〈X〉 
represents its code analogical to 〈M〉.

Out of all the terminology introduced in Convention 9.13, we just need 〈M〉 and 〈M, w〉 in 
the rest of Chapter 9.

9.3.2 Construction of Universal Turing Machines

We are now ready to construct U—that is, a universal TM (see Section 9.3). As a matter of fact, 
we construct two versions of U. #e !rst version, denoted by TM-AcceptanceU, simulates every M ∈ 

TMΨ on w ∈ Δ* so TM-AcceptanceU accepts 〈M, w〉 i" M accepts w. In other words, L(TM-AcceptanceU) = 

TM-AcceptanceL with

 TM-AcceptanceL = {〈M, w〉| M ∈ TMΨ, w ∈ Δ*, M accepts w} 

#e other version, denoted by TM-HaltingU, simulates every M ∈ TMΨ on w ∈ Δ* in such a way 
that TM-HaltingU accepts 〈M, w〉 i" M halts on w (see Convention 9.8). To rephrase this in terms of 
formal languages, L(TM-HaltingU) = TM-HaltingL with

 TM-HaltingL = {〈M, w〉| M ∈ TMΨ, w ∈ Δ*, M halts on w}
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Convention 9.14 Strictly speaking, in the proof of �eorem 9.15, we should state that TM-AcceptanceU 
works on 〈M, w〉 so it "rst interprets 〈M, w〉 as M and w; then, it simulates the moves of M on w. 
However, instead of a long and obvious statement like this, we just state that TM-AcceptanceU runs M on w. 
In a similar manner, we shorten the other proofs of results concerning TMs in the sequel whenever no 
 confusion exists.

!eorem 9.15 �ere exists TM-AcceptanceU ∈ TMΨ such that L(TM-AcceptanceU) = TM-AcceptanceL.

Proof. On every input 〈M, w〉, TM-AcceptanceU works so it runs M on w. TM-AcceptanceU accepts 〈M, w〉 if 
and when it "nds out that M accepts w; otherwise, TM-AcceptanceU keeps simulating the moves of M 
in this way.

Observe that TM-AcceptanceU represents a procedure, not an algorithm because if M loops on w, 
so does TM-AcceptanceU on 〈M, w〉. As a matter of fact, in Section 10.2.3 of Chapter 10, we dem-
onstrate that no TM can halt on every input and, simultaneously, act as a universal TM (see 
�eorem 10.43). To reformulate this in terms of formal languages, no TM accepts TM-AcceptanceL 
in such a way that it halts on all strings. Indeed, for all X ∈ TMΨ satisfying TM-AcceptanceL = L(X ), 
Δ* – TM-AcceptanceL necessarily contains a string on which X loops.

By analogy with the proof of �eorem 9.15, we next obtain TM-HaltingU that accepts TM-HaltingL, 
de"ned earlier.

!eorem 9.16 �ere exists TM-HaltingU ∈ TMΨ such that L(TM-HaltingU) = TM-HaltingL.

Proof. On every 〈M, w〉, TM-HaltingU works so it runs M on w. TM-HaltingU accepts 〈M, w〉 i# M halts w, 
which means that M either accepts w or rejects w (see Convention 9.8). �us, TM-HaltingU loops on 〈M, w〉 
i# M loops on w, which means that 〈M, w〉 ∉ TM-Halting L. Observe that L(TM-HaltingU) = TM-HaltingL.

Exercises

 1. �is chapter contains results whose proofs are only sketched or even completely omitted. 
�ese results include �eorems 9.5 and 9.12, Example 9.2, and Convention 9.13. Complete 
them.

 2. Construct three equivalent TMs; A, B, and C; so A accepts every input string by in"nitely 
many sequences of moves, B accepts every input string by exactly two sequences of moves, 
and C is deterministic. Give a rigorous proof that A, B, and C are equivalent.

 3. Consider the TM M from Example 9.1. Construct an equivalent TM that has fewer rules 
than M has. Give a proof that both TMs are equivalent.

 4. Consider each of languages (i) through (xxiii). Construct a TM that accepts it. De"ne the 
constructed TM strictly formally. Give a rigorous proof that veri"es the construction.

 i. {aibjck| i, j, k ≥ 0 and i < j < k}
 ii. {aibjai| i, j ≥ 0 and j = i2}
 iii. {ai| i is not a prime}
 iv. {w| w ∈ {a, b, c}* and (occur(w, a) ≠ occur(w, b) or occur(w, b) ≠ occur(w, c))}
 v. {aibiaj| i, j ≥ 0 and j ≠ i}
 vi. {aibicj| i, j ≥ 0 and i ≠ j ≠ 2i}
 vii. {aibjck| i, j, k ≥ 0, i ≠ j, k ≠ i, and j ≠ k}
 viii. {aibjcjdi| i, j ≥ 0 and j ≠ i}
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 ix. {aib2ici| i ≥ 0}
 x. {ww| w ∈ {a, b}*}
 xi. {wvw| v, w ∈ {a, b}*, reversal(v) = w}
 xii. {0i10i10i10i| i ≥ 1}
 xiii. {wcv| v, w ∈ {a, b}* and w = vv}
 xiv. {aibiai| i, j ≥ 1}
 xv. {aibj| i ≥ 0 and j ≥ 1}
 xvi. {aibjck| i, j, k ≥ 0 and i = j or j = k}
 xvii. {aibjcibj| i ≥ 0 and j ≥ 1}
 xviii. {ajcabiaj| i, j ≥ 0}
 xix. {x| x ∈ {a, b}*, aa ∈ substring(x), occur(x, a) = occur(x, b)}
 xx. {x| x ∈ {a, b, c}*, occur(x, a) ≥ occur(x, b) ≥ occur(x, c)}
 xxi. {x| x ∈ {a, b}*, occur(x, a) = 2occur(x, b)}
 xxii. {x| x ∈ {a, b}*, occur(x, b) ≥ occur(x, a), |x| is divisible by 3}
 xxiii. {x| x ∈ {a, b, c}*, occur(x, a) ≥ occur(x, b) i! occur(x, c) < occur(x, a)}
 5 S. Introduce a graph-based representation for TMs. "en, by using this representation, describe 

the TMs constructed in Exercise 4.
 6. Consider the TM binary code in Section 9.3. Introduce an alternative binary code for TMs and 

rephrase all the discussion given in Section 9.3 in terms of this alternative code. "en, introduce 
a ternary code for this purpose and reformulate Section 9.3 in terms of this ternary code.

 7. Consider the basic de#nition of a TM, M (see De#nition 9.1). Restrict this de#nition so M 
changes the position of its tape head to the left or to the right during every single move; in 
other words, it never keeps its head stationary during any move. De#ne this restriction rigor-
ously. Construct an algorithm that turns any TM to an equivalent TM restricted in this way. 
Verify this algorithm formally.

 8. Generalize the de#nition of a TM by allowing a set of start states. Formalize this generaliza-
tion. Construct an algorithm that turns any TM generalized in this way to an equivalent 
one-start-state TM, which satis#es De#nition 9.1.

 9. During every move, a simple TM cannot simultaneously change its state, the tape symbol, 
and the position of its head; otherwise, it works just like any TM. Formalize the notion of 
a simple TM. Construct an algorithm that converts any TM to an equivalent simple TM. 
Verify this algorithm by a rigorous proof.

 10. During a single move, a long-reading TM can read a string, consisting of several tape sym-
bols. Formalize this generalization. Construct an algorithm that turns any TM generalized 
in this way to an equivalent TM, de#ned according to De#nition 9.1. Verify this algorithm 
by a rigorous proof.

 11 S. A two-way TM M has its tape in#nite both to the right and to the left. Initially, M occurs 
in its start state with an input string w placed on the tape. "e tape head occurs over the 
leftmost symbol of w. Starting from this initial con#guration, M works by analogy with the 
basic model of a TM (see De#nition 9.1). As opposed to this basic model, however, M can 
always make a left move because its tape is in#nite to both directions.

  Formalize the notion of a two-way TM. Construct an algorithm that turns any two-way 
TM M to an equivalent TM, de#ned according to De#nition 9.1. Verify this algorithm by a 
rigorous proof.

 12 S. Let k ∈ ℕ. A k-head TM M is a TM with k tape heads over a single tape. A move made by M 
depends on the current state and the k symbols scanned by the tape heads. During a move, 
M changes its state and rewrites the k scanned symbols; in addition, M can change the posi-
tion of any of its heads to the left or to the right. Consider the special case when n tape heads 
occur at the same tape position, for some n ∈ {2, …, k}; at this point, M makes the next move 
only if all these n tape heads rewrite the scanned tape symbol to the same symbol. Initially, 
the tape contains the input string, each of the k heads scans its leftmost symbol, and M is in 
its start state. If from this initial con#guration, M can make a sequence of moves that ends 
in a #nal state, then M accepts the input string. "e language accepted by M consists of all 
strings that M accepts in this way.
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  Formalize the notion of a k-head TM. Construct an algorithm that turns any k-head TM 
M to an equivalent one-head TM (see De!nition 9.1). Verify this algorithm by a rigorous proof.

 13. Let k ∈ ℕ. A k-tape TM M represents a TM with k tapes, each of which has its read-write 
tape head. A move made by M depends on the current state and on the k symbols scanned 
by the k tape heads. During a move, M can change the current state and rewrite any of the 
k scanned symbols; in addition, it can change the position of any of its k heads. Initially, 
the !rst tape contains the input string, the other tapes are blank, each read-write head scans 
the leftmost symbol, and M occurs in its start state. If from this initial con!guration, M 
can make a sequence of moves that ends in a !nal state, then M accepts the input string. 
"e set of all strings that M accepts represents the language accepted by M.

  Formalize the notion of a k-tape TM. Construct an algorithm that turns any k-tape TM 
M to an equivalent one-tape TM, de!ned according to De!nition 9.1.

 14. We often accept a language whose strings satisfy a certain condition by a k-head TM because 
its multiple heads usually simplify verifying that a given input string w satis!es the condi-
tion in question. Typically, a veri!cation of this kind is carried out so some of the k heads 
keep a !nger on particular symbols on the tape while the other heads synchronously read 
some other symbols and, thereby, verify the condition. Consider each of the one-tape TMs 
constructed in Exercise 4. Denote the TM by I. Construct an equivalent k-head TM O (see 
Exercise 12) so O has fewer states, tape symbols, or rules than I has.

 15. Reformulate and solve Exercise 14 in terms of two-way and k-tape TMs, introduced in 
Exercises 11 and 13, respectively.

 16. Write a program that decides whether a given TM is deterministic.
 17. Write a program that simulates any deterministic TM, M. Observe that in a general case, a 

program like this may enter an in!nite loop because M may loop endlessly.
 18. Write a program that simulates a universal TM (see Section 9.3). Just like in Exercise 17, a 

program like this may loop endlessly on some inputs.
 19. Consider PDAs (see Section 6.3). Extend them to two-PDAs by adding another pushdown to 

them. Formalize this extension. Introduce table- and graph-based representations for them.
 20 S. Construct an algorithm that turns any TM to an equivalent two-PDA (see Exercise 19).
 21 S. As any two-PDA can be seen as a procedure, by the Church–Turing thesis, there exists an 

equivalent TM to it. "is exercise, however, asks to demonstrate this result e#ectively by 
constructing an algorithm that converts any two-PDA to an equivalent TM.

Solutions to Selected Exercises

 5. Let M = (Σ, R) be any TM. In a pictorial way, M can be speci!ed by its state diagram, which 
represents a labeled directed graph such that each node is labeled with a state q ∈ Q. To 
symbolically state that a state s is the start state, we point to it with an arrow. Final states are 
doubly circled. For two nodes q, p ∈ Q, there is an edge (q, p) if there is a rule r ∈ R with q 
and p on its left-hand side and its right-hand side, respectively. If r is of the form qX → Yp ∈ 
R, where X, Y ∈ Γ, then it is labeled by 〈X/Y, right〉, which says that M moves from q to p, 
rewrites X as Y on the tape, and moves its head to the right. Represent all other possible forms 
of rules analogically. Complete this solution by yourself.

 11. Before giving the solution to this exercise, we intuitively sketch what we mean by the notion 
of a k-tract tape of a TM, where k ∈ ℕ, because the rest of Section IV, including this solution, 
makes use of it in what follows. Loosely speaking, at each position of a k-tract tape, there 
occurs a symbol X represented by a k-tuple (X1, …, Xk). On a k-tract tape organized like this, 
the ith track contains the string consisting of the ith components of these k-tuples, where 
1 ≤ i ≤ k. We can realize X recorded so its k elements, X1 through Xk, are vertically written 
above each other at this tape position; pictorially, a k-tract tape, organized in this way, can 
be sketched as in the !gure below.

  Regarding Exercise 11, we only sketch an algorithm that converts any two-way TM I 
to an equivalent TM O, which satis!es De!nition 9.1. Let a1…an be the input string of M 
with each ai being an input symbol. By S, we denote the tape position at which a1 initially 
occurs. O uses a two-track tape, so at each tape position, there occur two symbols above each 
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other—an upper symbol and a lower symbol. First, O places a1…an as the n upper symbols 
on the !rst tape track while setting all the n corresponding lower symbols to blanks on the 
second track. If I makes a move at S or to the right of S, O straightforwardly simulates this 
move within the !rst track. If M makes a move with its tape head to the left of S, O simulates 
this move by using the lower symbols placed on the second track (in the direction opposite 
to the direction in which I moves). Moves I and II deserve our special attention:

 I. When I makes a move from S to the left, O !rst leaves the leftmost upper symbol on 
the !rst tape track for the leftmost lower symbol on the second tape track, after which 
it simulates the move. Analogically, when I makes a move during which it enters S from 
the left, O !rst leaves the !rst lower symbol for the !rst upper symbol, after which it 
performs the move simulation.

 II. If I extends its tape at either end of the tape, O extends its tape by two blanks placed 
above each other on both tracks.

Naturally, O accepts a1…an when and if I accepts it.
 12. We only sketch how to convert any k-head TM I to an equivalent one-head TM O, satisfying 

De!nition 9.1. O uses a (k+1)-tract tape (see the solution to Exercise 11). Denote the tracks 
t0, t1, … , tk. Track t0 corresponds to the original tape of I. "e other tracks correspond to the 
k heads. "at is, tj is completely blank except for a single occurrence of a state placed at the 
tape position corresponding to the symbol scanned by the jth head of I, where j = 1, …, k. 
Consequently, the entire tape holds k state occurrences, all of which specify the same state, 
which coincides with the current state of the simulated TM I. To simulate a move in I, O 
sweeps right t1 through tk on its tape to !nd out whether I has a rule applicable in the current 
con!guration. If not, O rejects. If it has a rule r, O simulates the move according to r on t0 
and updates t1, … , tk accordingly. O accepts its input when and if I does.

 20. We give only a gist of an algorithm that turns any TM to an equivalent two-PDA (see 
Exercise 19). Let I be a TM. From I, construct a two-PDA O that simulates I by using its two 
pushdowns as follows. O stores the symbols to the left of the tape head onto one pushdown so 
that symbols closer to the tape head appear closer to the pushdown top than symbols further 
from the tape head. Analogously, O stores the symbols to the right of the tape head onto the 
other pushdown. By using these two pushdowns, O simulates moves made by I. O accepts its 
input if and when I accepts it.

 21. We only sketch an algorithm that turns any two-PDA to an equivalent TM. Let I be a two-
PDA. From I, construct a three-tape TM O (see Exercise 13), which uses its tapes as follows. 
"e !rst tape contains the input string of I. "e second tape simulates one pushdown of I 
while the third tape simulates the other pushdown of I. By using its tapes in this way, O 
simulates I move by move. O accepts its input if and when I does. Convert O to an equivalent 
one-tape TM (see Exercise 13). "e resulting TM is equivalent to I.
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