

2/20

Alphabets and symbols

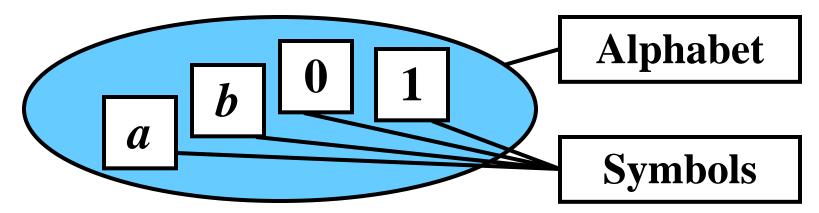
Definition: An *alphabet* is a finite, nonempty set of elements, which are called *symbols*.

2/20

Alphabets and symbols

Definition: An *alphabet* is a finite, nonempty set of elements, which are called *symbols*.

Example:



If we denote this alphabet as Σ , then $\Sigma = \{a, b, 0, 1\}$

String

Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

String

Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

Example: Consider $\Sigma = \{0, 1\}$:

3

String

Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

String

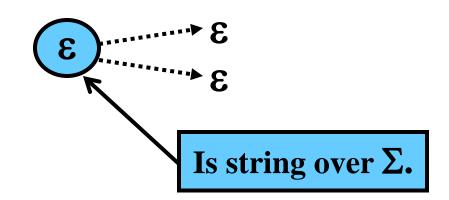
Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.



String

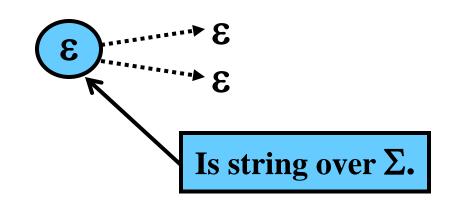
Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.



String

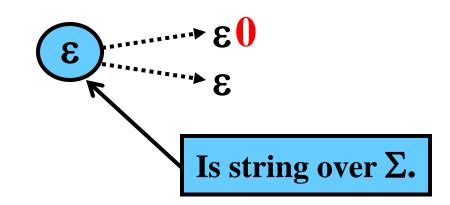
Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.



String

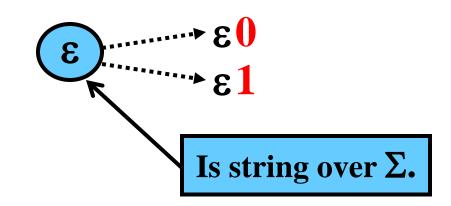
Gist: $x = a_1 a_2 \dots a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.



String

Gist: $x = a_1 a_2 \dots a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

$$ε_{\bullet} \\ ε_{\bullet} \\ ε_{$$

String

Gist: $x = a_1 a_2 \dots a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

String

Gist: $x = a_1 a_2 \dots a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

$$\varepsilon \longrightarrow \varepsilon 0 = 0 \longleftrightarrow 0$$

$$\varepsilon 1 = 1 \in 0$$
Is string over Σ .

String

Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

$$\varepsilon \longrightarrow \varepsilon 0 = 0 \longrightarrow 0$$

$$\varepsilon 1 = 1 \longrightarrow 1$$
Is string over Σ .

String

Gist: $x = a_1 a_2 \dots a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

$$\varepsilon_{1} = 0$$

$$\varepsilon_{1} = 0$$

$$\varepsilon_{1} = 1$$

String

Gist: $x = a_1 a_2 \dots a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

$$\varepsilon \longrightarrow \varepsilon 0 = 0 \longleftrightarrow 01$$

$$\varepsilon 1 = 1 \longleftrightarrow 10$$

$$Is string over \Sigma.$$

String

Gist: $x = a_1 a_2 \dots a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.

String

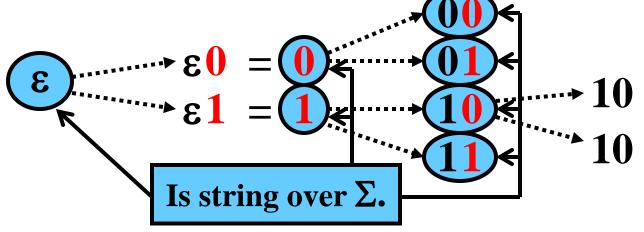
Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.



String

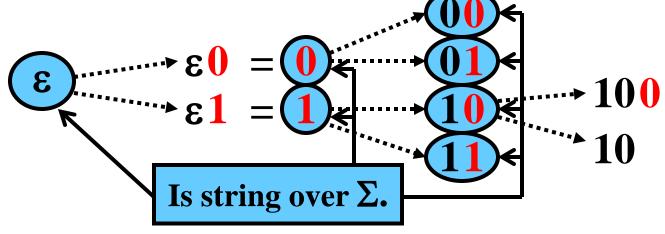
Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.



String

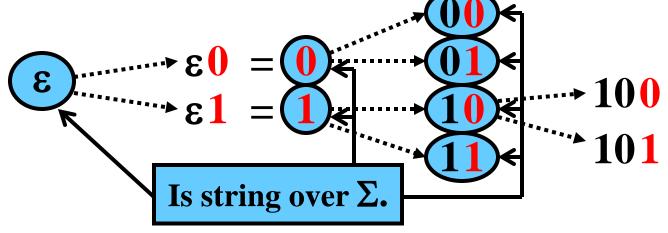
Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.



String

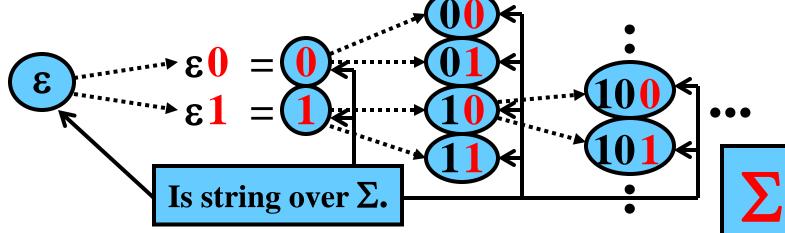
Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.



String

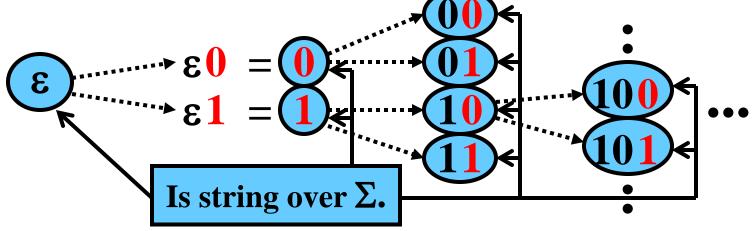
Gist: $x = a_1 a_2 ... a_n$

Definition: Let Σ be an alphabet.

1) ϵ is a string over Σ

2) if x is a string over Σ and $a \in \Sigma$ then xa is a string over Σ

Note: ε denotes *the empty string* that contains no symbols.



Length of String

Gist: $|a_1a_2...a_n| = n$

Definition: Let *x* be a string over Σ . The *length* of x, |x|, is defined as follows: 1) if $x = \varepsilon$, then |x| = 0**2**) if $x = a_1 \dots a_n$, then |x| = nfor some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1, ..., nNote: The length of *x* is the number of all symbols in *x*. **Example:** Consider *x* =1010 Task: |x|

Length of String

Gist: $|a_1a_2...a_n| = n$

Definition: Let *x* be a string over Σ . The *length* of x, |x|, is defined as follows: 1) if $x = \varepsilon$, then |x| = 0**2**) if $x = a_1 \dots a_n$, then |x| = nfor some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1, ..., nNote: The length of *x* is the number of all symbols in *x*. **Example:** Consider *x* =1010 **Task:** |x|x = 1010

Length of String

Gist: $|a_1a_2...a_n| = n$

Definition: Let *x* be a string over Σ . The *length* of x, |x|, is defined as follows: 1) if $x = \varepsilon$, then |x| = 0**2**) if $x = a_1 \dots a_n$, then |x| = nfor some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1, ..., nNote: The length of *x* is the number of all symbols in *x*. **Example:** Consider *x* =1010 **Task:** |x|x = 1010 $a_1a_2a_3a_4$

Length of String

Gist: $|a_1a_2...a_n| = n$

Definition: Let *x* be a string over Σ . The *length* of x, |x|, is defined as follows: 1) if $x = \varepsilon$, then |x| = 0**2**) if $x = a_1 \dots a_n$, then |x| = nfor some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1, ..., nNote: The length of *x* is the number of all symbols in *x*. **Example:** Consider *x* =1010 **Task:** |x|x = 1010 $a_1a_2a_3a_4 \rightarrow n = 4$, thus $|\mathbf{x}| = 4$

5/20

Concatenation of Strings

Gist: xy

Definition: Let *x* and *y* be two strings over Σ .

The *concatenation* of *x* and *y* is *xy*.

Note: $x\varepsilon = \varepsilon x = x$

5/20

Concatenation of Strings

Gist: xy

Definition: Let x and y be two strings over Σ .

The *concatenation* of *x* and *y* is *xy*.

Note: $x\varepsilon = \varepsilon x = x$

Examples:

Concatenation of 101 and 001 is 101001 Concatenation of ε and 001 is ε 001 = 001

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as **1**) $x^0 = \varepsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10**Task:** x^3

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1) $x^0 = \varepsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^3 $x^3 = xx^2 = 10x^2$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1)
$$x^0 = \epsilon$$
 2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: $x^3 = xx^2 = 10x^2$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1)
$$x^0 = \epsilon$$
 2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

Task: x^3 $x^3 = xx^2 = \mathbf{10}x^2$ $x^2 = xx^1 = \mathbf{10}x^1$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let x be a string over Σ . For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as

1) $x^0 = \epsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^3 $x^3 = xx^2 = \mathbf{10}x^2$ $x^2 = xx^1 = \mathbf{10}x^1$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1) $x^0 = \epsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^3 $x^3 = xx^2 = \mathbf{10}x^2$ $x^2 = xx^1 = \mathbf{10}x^1$ $x^1 = xx^0 = \mathbf{10}x^0$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1)
$$x^0 = \varepsilon$$
 2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^3 $x^3 = xx^2 = 10x^2$ $x^2 = xx^1 = 10x^1$ $x^1 = xx^0 = 10x^0$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1)
$$x^0 = \epsilon$$
 2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^{3} $x^{3} = xx^{2} = \mathbf{10}x^{2}$ $x^{2} = xx^{1} = \mathbf{10}x^{1}$ $x^{1} = xx^{0} = \mathbf{10}x^{0}$ $x^{0} = \mathbf{\epsilon}$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1) $x^0 = \varepsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^{3} $x^{3} = xx^{2} = \mathbf{10}x^{2}$ $x^{2} = xx^{1} = \mathbf{10}x^{1}$ $x^{1} = xx^{0} = \mathbf{10}x^{0}$ $x^{0} = \mathbf{\epsilon}$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1)
$$x^0 = \varepsilon$$
 2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^{3} $x^{3} = xx^{2} = \mathbf{10}x^{2}$ $x^{2} = xx^{1} = \mathbf{10}x^{1}$ $x^{1} = xx^{0} = \mathbf{10}x^{0}$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1)
$$x^0 = \varepsilon$$
 2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^{3} $x^{3} = xx^{2} = \mathbf{10}x^{2}$ $x^{2} = xx^{1} = \mathbf{10}x^{1}$ $x^{1} = xx^{0} = \mathbf{10}x^{0}$ $x^{1} = \mathbf{10}\varepsilon = \mathbf{10}$ $x^{0} = \varepsilon$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let *x* be a string over Σ . For $i \ge 0$, the *i*-th *power* of *x*, x^i , is defined as

1)
$$x^0 = \epsilon$$
 2) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^3 $x^3 = xx^2 = 10x^2$ $x^2 = xx^1 = 10x^1$ $x^1 = xx^0 = 10x^0$ $x^1 = 10\varepsilon = 10$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as **1**) $x^0 = \varepsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^{3} $x^{3} = xx^{2} = \mathbf{10}x^{2}$ $x^{2} = xx^{1} = \mathbf{10}x^{1}$ $x^{1} = xx^{0} = \mathbf{10}x^{0}$ $x^{0} = \mathbf{\epsilon}$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as **1**) $x^0 = \varepsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10

Task: x^{3} $x^{3} = xx^{2} = \mathbf{10}x^{2}$ $x^{2} = xx^{1} = \mathbf{10}x^{1}$ $x^{1} = xx^{0} = \mathbf{10}x^{0}$ $x^{1} = \mathbf{10}\varepsilon = \mathbf{10}$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as **1**) $x^0 = \varepsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

Task: x^{3} $x^{3} = xx^{2} = \mathbf{10}x^{2}$ $x^{2} = xx^{1} = \mathbf{10}x^{1}$ $x^{1} = xx^{0} = \mathbf{10}x^{0}$ $x^{1} = \mathbf{10}\varepsilon = \mathbf{10}$

Power of String

Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as **1**) $x^0 = \varepsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider x = 10

Task: x^{3} $x^{3} = xx^{2} = \mathbf{10}x^{2}$ $x^{2} = xx^{1} = \mathbf{10}x^{1}$ $x^{1} = xx^{0} = \mathbf{10}x^{0}$ $x^{1} = \mathbf{10}\varepsilon = \mathbf{10}$

Power of String

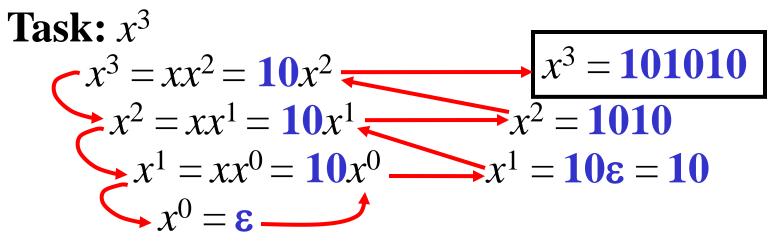
Gist: $x^i = \underbrace{xx \dots x}_{i-\text{times}}$

Definition: Let x be a string over Σ .

For $i \ge 0$, the *i*-th *power* of x, x^i , is defined as **1**) $x^0 = \varepsilon$ **2**) if $i \ge 1$ then $x^i = xx^{i-1}$

Note: $x^i x^j = x^j x^i = x^{i+j}$, where $i, j \ge 0$

Example: Consider *x* =10



Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider *x* =1010 Task: reversal(*x*)

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal() = , so

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal(a_1) = a_1 , so

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal(a_1a_2) = a_2a_1 , so

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal($a_1a_2a_3$) = $a_3a_2a_1$, so

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal($a_1a_2a_3a_4$) = $a_4a_3a_2a_1$, so

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal($a_1a_2a_3a_4$) = $a_4a_3a_2a_1$, so reversal() =

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal($a_1a_2a_3a_4$) = $a_4a_3a_2a_1$, so reversal(1) = 1

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal($a_1a_2a_3a_4$) = $a_4a_3a_2a_1$, so reversal(1 0) = 01

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal($a_1a_2a_3a_4$) = $a_4a_3a_2a_1$, so reversal(1 0 1) = 1 0 1

Reversal of String

Gist: reversal $(a_1...a_n) = a_n...a_1$ **Definition:** Let *x* be a string over Σ . The *reversal* of *x*, *reversal*(*x*), is defined as: 1) if $x = \varepsilon$ then reversal $(\varepsilon) = \varepsilon$ 2) if $x = a_1...a_n$ then reversal $(a_1...a_n) = a_n...a_1$ for some $n \ge 1$, and $a_i \in \Sigma$ for all i = 1,...,n

Example: Consider x = 1010Task: reversal(x) reversal($a_1a_2a_3a_4$) = $a_4a_3a_2a_1$, so reversal(1 0 1 0) = 0 1 0 1

Prefix of String

Gist: *x* **is a prefix of** *xz*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *prefix* of *y* if there is a string *z* over Σ so

xz = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper prefix* of y.

Prefix of String

Gist: *x* **is a prefix of** *xz*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *prefix* of *y* if there is a string *z* over Σ so

xz = y

Note: if $x \notin {\epsilon, y}$ then x is *proper prefix* of y.

Prefix of String

Gist: *x* **is a prefix of** *xz*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *prefix* of *y* if there is a string *z* over Σ so

xz = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper prefix* of y.

Prefix of String

Gist: *x* **is a prefix of** *xz*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *prefix* of *y* if there is a string *z* over Σ so

xz = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper prefix* of y.

Prefix of String

Gist: *x* **is a prefix of** *xz*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *prefix* of *y* if there is a string *z* over Σ so

xz = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper prefix* of y.

Prefix of String

Gist: *x* **is a prefix of** *xz*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *prefix* of *y* if there is a string *z* over Σ so

xz = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper prefix* of y.

8/20

Prefix of String

Gist: *x* **is a prefix of** *xz*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *prefix* of *y* if there is a string *z* over Σ so

xz = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper prefix* of y.

Example: Consider 1010 **Task:** All prefixes of **1010**

Prefixes of 1010 -

Prefix of String

Gist: *x* is a prefix of *xz*

Definition: Let *x* and *y* be two strings over Σ ; *x* is *prefix* of *y* if there is a string *z* over Σ so

xz = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper prefix* of y.

Example: Consider 1010Task: All prefixes of 1010Prefixes of 1010 $\begin{bmatrix} \varepsilon \\ 1 \\ 10 \\ 101 \end{bmatrix}$ Proper prefixes of 1010

Suffix of String

Gist: *x* is a suffix of *zx*

Definition: Let x and y be two strings over Σ ;

x is suffix of y if there is a string z over Σ so

zx = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper suffix* of y.

Suffix of String

Gist: *x* is a suffix of *zx*

Definition: Let x and y be two strings over Σ ;

x is suffix of y if there is a string z over Σ so

zx = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper suffix* of y.

Suffix of String

Gist: *x* is a suffix of *zx*

Definition: Let x and y be two strings over Σ ;

x is suffix of y if there is a string z over Σ so

zx = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper suffix* of y.

Suffix of String

Gist: *x* is a suffix of *zx*

Definition: Let x and y be two strings over Σ ;

x is suffix of y if there is a string z over Σ so

zx = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper suffix* of y.

Suffix of String

Gist: *x* is a suffix of *zx*

Definition: Let x and y be two strings over Σ ;

x is suffix of y if there is a string z over Σ so

zx = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper suffix* of y.

Suffix of String

Gist: *x* is a suffix of *zx*

Definition: Let x and y be two strings over Σ ;

x is suffix of y if there is a string z over Σ so

zx = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper suffix* of y.

Suffix of String

Gist: *x* is a suffix of *zx*

Definition: Let x and y be two strings over Σ ;

x is suffix of y if there is a string z over Σ so

zx = y

Note: if $x \notin {\epsilon, y}$ then x is *proper suffix* of y.

Example: Consider 1010 Task: All suffixes of 1010 Suffixes of 1010

Suffix of String

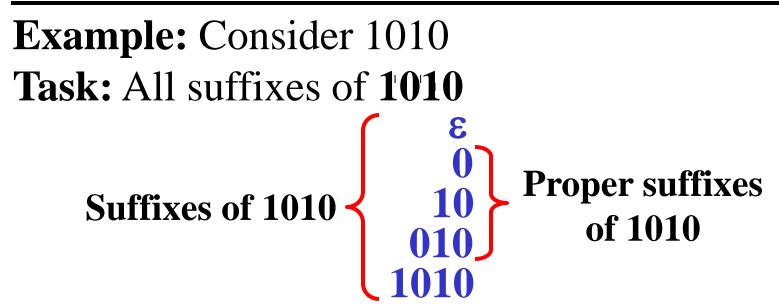
Gist: *x* is a suffix of *zx*

Definition: Let x and y be two strings over Σ ;

x is suffix of y if there is a string z over Σ so

zx = y

Note: if $x \notin {\varepsilon, y}$ then x is *proper suffix* of y.



Substring

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

3

Substring

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*. Note: if $x \notin \{\varepsilon, y\}$ then *x* is *proper substring* of *y*. **Example:** Consider 1010 **Task:** All substrings of **1**010

3

Substring

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*. **Note:** if $x \notin \{\varepsilon, y\}$ then *x* is *proper substring* of *y*.

Example: Consider 1010

Task: All substrings of 1 0 1 0

3

Substring

Substring

Substring

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Substring

Substring

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1 0 1 0

3

Substring

Gist: x is a substring of zxz' **Definition:** Let x and y be two strings over Σ ; x is substring of y if there are two string z, z' over Σ so zxz' = y. **Note:** if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y. **Example:** Consider 1010 Task: All substrings of 1010

ε 1,0

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' **over** Σ so *zxz*' = *y*. **Note:** if $x \notin \{\varepsilon, y\}$ then *x* is *proper substring* of *y*.

Example: Consider 1010

Task: All substrings of **1010**

Substring

Substring

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*. Note: if $x \notin \{\varepsilon, y\}$ then *x* is *proper substring* of *y*. **Example:** Consider 1010 **Task:** All substrings of **1010**

> ε 1,0 10,01 101

Substring

Gist: x is a substring of zxz' **Definition:** Let x and y be two strings over Σ ; x is substring of y if there are two string z, z' over Σ so zxz' = y. **Note:** if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y. **Example:** Consider 1010 Task: All substrings of 1010

ε 1,0 10,01 101

Substring

Gist: x is a substring of zxz' **Definition:** Let x and y be two strings over Σ ; x is substring of y if there are two string z, z' over Σ so zxz' = y. **Note:** if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y. **Example:** Consider 1010 Task: All substrings of 1 0 1 0 3 1,0 10,01

101

Substring

Gist: x is a substring of zxz' **Definition:** Let x and y be two strings over Σ ; x is substring of y if there are two string z, z' over Σ so zxz' = y. **Note:** if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y. **Example:** Consider 1010 Task: All substrings of 1 0 1 0 3 1,0 10,01

101, 010

Substring

Gist: x is a substring of zxz' **Definition:** Let x and y be two strings over Σ ; x is substring of y if there are two string z, z' over Σ so zxz' = y. **Note:** if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y. **Example:** Consider 1010 Task: All substrings of 1010 3

1,0 10,01 101,010

Substring

Gist: x is a substring of zxz' **Definition:** Let x and y be two strings over Σ ; x is substring of y if there are two string z, z' over Σ so zxz' = y. **Note:** if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y. **Example:** Consider 1010 Task: All substrings of **1010** 3

1,0 10,01 101,010

Substring

Gist: x is a substring of zxz' **Definition:** Let x and y be two strings over Σ ; x is substring of y if there are two string z, z' over Σ so zxz' = y. **Note:** if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y. **Example:** Consider 1010 Task: All substrings of **1010** 3

1,0 10,01 101,010 1010

Substring

Gist: *x* is a substring of *zxz*' **Definition:** Let *x* and *y* be two strings over Σ ; *x* is *substring* of *y* if there are two string *z*, *z*' over Σ so *zxz*' = *y*.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

```
Task: All substrings of 1010
```

```
ε
1, 0
10, 01
101, 010
1010
```

Substring

Gist: *x* is a substring of *zxz*'

Definition: Let *x* and *y* be two strings over Σ ;

x is substring of y if there are two string z, z'

over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Substrings of 1010

10, 01101, 010

Substring

Gist: *x* is a substring of *zxz*'

Definition: Let *x* and *y* be two strings over Σ ;

x is substring of y if there are two string z, z'

over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Substrings of 1010

10, 01101, 010

Substring

Gist: x is a substring of zxz'

Definition: Let *x* and *y* be two strings over Σ ;

x is substring of y if there are two string z, z'

over Σ so zxz' = y.

Note: if $x \notin \{\varepsilon, y\}$ then x is *proper substring* of y.

Example: Consider 1010

Task: All substrings of 1010

Substrings of 1010

Languages

Gist: $L \subseteq \Sigma^*$

Definition: Let Σ^* denote the set of all strings

over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ .

Note: Σ^+ denote the set $\Sigma^* - \{\varepsilon\}$.

Example: Consider $\Sigma = \{0, 1\}$:

Languages

Gist: $L \subseteq \Sigma^*$ **Definition:** Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ . **Note:** Σ^+ denote the set $\Sigma^* - \{\varepsilon\}$. **Example:** Consider $\Sigma = \{0, 1\}$: Set Σ^*

Languages

Gist: $L \subseteq \Sigma^*$ **Definition:** Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ . **Note:** Σ^+ denote the set $\Sigma^* - \{\varepsilon\}$. **Example:** Consider $\Sigma = \{0, 1\}$: Set Σ^* 01 11 000 00 001 1 3 010 10 100 011

Languages

Gist: $L \subseteq \Sigma^*$ **Definition:** Let Σ^* denote the set of all strings over Σ . Every subset $L \subset \Sigma^*$ is a *language* over Σ . **Note:** Σ^+ denote the set $\Sigma^* - \{\varepsilon\}$. **Example:** Consider $\Sigma = \{0, 1\}$: Set Σ^* 01 11 000 00 001 1 3 010 10 100 011

Languages

Gist: $L \subseteq \Sigma^*$ **Definition:** Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ . **Note:** Σ^+ denote the set $\Sigma^* - \{\varepsilon\}$. **Example:** Consider $\Sigma = \{0, 1\}$: Set Σ^* 01 11 000 00 001 010 10 100 011 $L_2 = \{\varepsilon\}$

Languages

Gist: $L \subseteq \Sigma^*$ **Definition:** Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ . **Note:** Σ^+ denote the set $\Sigma^* - \{\varepsilon\}$. **Example:** Consider $\Sigma = \{0, 1\}$: Set Σ^* 01 11 000 00 001 010 10 100 011 $L_2 = \{\varepsilon\}$ $L_3 = \{x: |x| = 1\}$

Languages

Gist: $L \subseteq \Sigma^*$ **Definition:** Let Σ^* denote the set of all strings over Σ . Every subset $L \subseteq \Sigma^*$ is a *language* over Σ . **Note:** Σ^+ denote the set $\Sigma^* - \{\varepsilon\}$. **Example:** Consider $\Sigma = \{0, 1\}$: Set Σ^* 01 000 11 00 001 010 10 100 011 $L_2 = \{\varepsilon\}$ $L_1 =$ $L_3 = \{x: |x| = 1\}$ $L_4 = \{x: 10 \text{ is substring of } x\}$

Languages

Gist: $L \subseteq \Sigma^*$ **Definition:** Let Σ^* denote the set of all strings over Σ . Every subset $L \subset \Sigma^*$ is a *language* over Σ . **Note:** Σ^+ denote the set $\Sigma^* - \{\varepsilon\}$. **Example:** Consider $\Sigma = \{0, 1\}$: Set Σ^* 01 000 11 00 001 3 010 10 100 011 $L_2 = \{\varepsilon\}$ $L_1 =$ $L_4 = \{x: 10 \text{ is substring of } x\}$ $L_3 = \{x: |x| = 1\}$ L_1, L_2, L_3, L_4 are languages over Σ

12/26

Finite and Infinite Languages

Gist: finite language contains a finite number of strings

Definition: A language, *L*, is *finite* if *L* contains a finite number of strings; otherwise, *L* is *infinite*.

Note: Let S be a set; card(S) is the number of its members.

12/20

Finite and Infinite Languages

Gist: finite language contains a finite number of strings

Definition: A language, *L*, is *finite* if *L* contains a finite number of strings; otherwise, *L* is *infinite*.

Note: Let *S* be a set; card(*S*) is the number of its members. Examples:

- $L_1 = \emptyset$ is **finite** because $card(L_1) = \mathbf{0}$
- $L_2 = \{\varepsilon\}$ is **finite** because card $(L_2) = 1$
- $L_3 = \{x: |x| = 1\} = \{0, 1\}$ is finite because

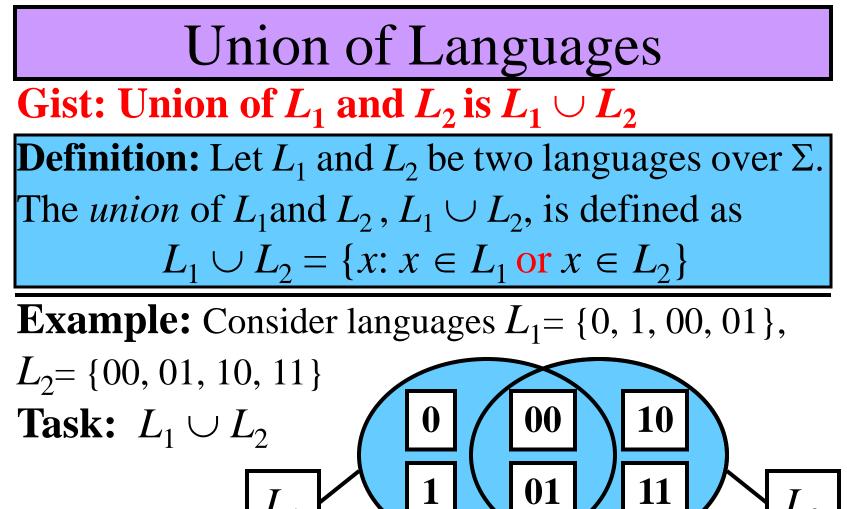
 $\operatorname{card}(L_3) = 2$

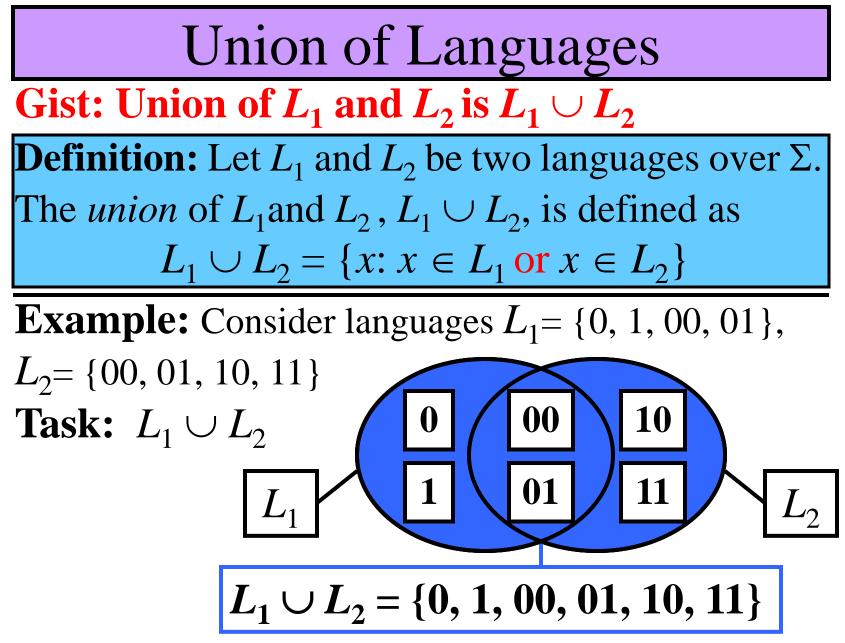
• $L_4 = \{x: 10 \text{ is substring of } x\} = \{10, 010, 100, \dots \}$ is infinite

Union of Languages **Gist: Union of L_1 and L_2 is L_1 \cup L_2 Definition:** Let L_1 and L_2 be two languages over Σ .

The *union* of L_1 and L_2 , $L_1 \cup L_2$, is defined as $L_1 \cup L_2 = \{x: x \in L_1 \text{ or } x \in L_2\}$

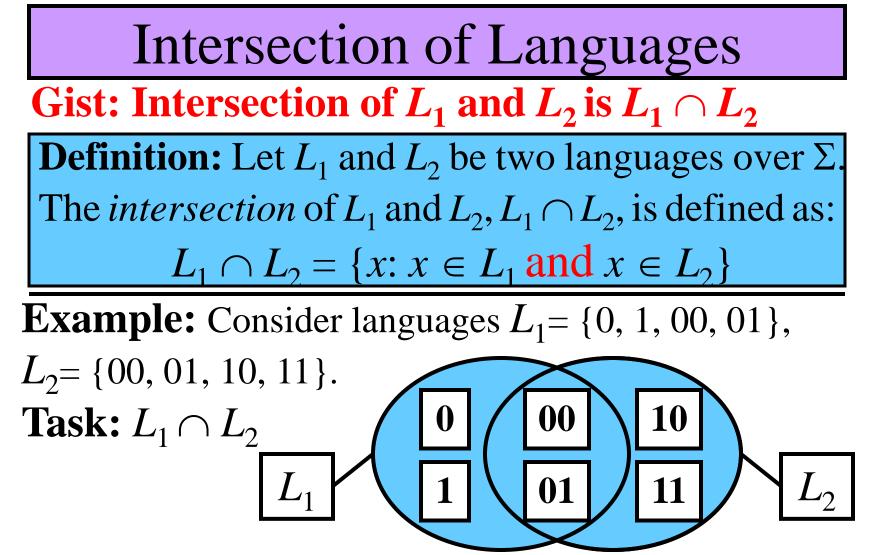
Example: Consider languages $L_1 = \{0, 1, 00, 01\},$ $L_2 = \{00, 01, 10, 11\}$ **Task:** $L_1 \cup L_2$

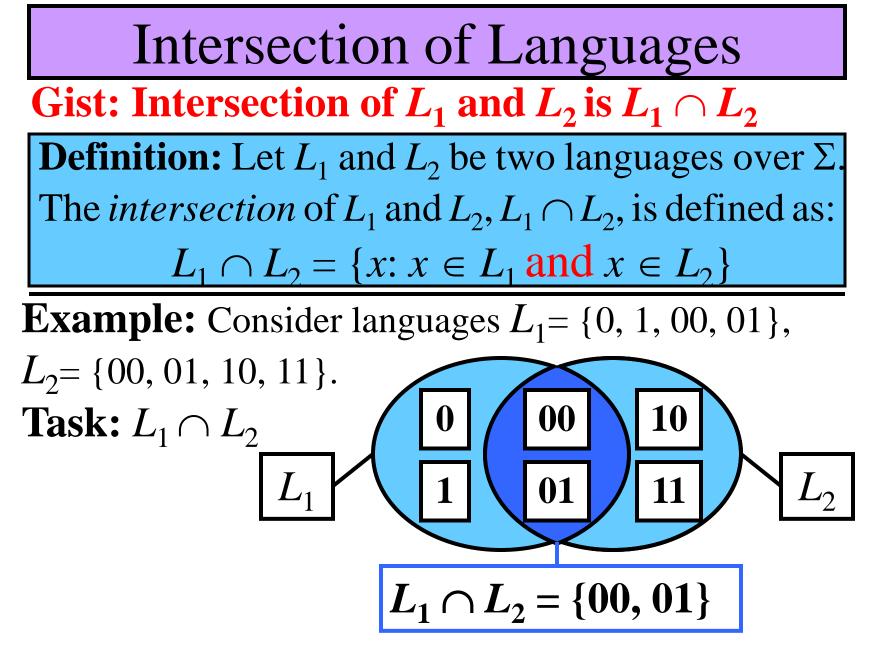




Intersection of Languages Gist: Intersection of L_1 and L_2 is $L_1 \cap L_2$ **Definition:** Let L_1 and L_2 be two languages over Σ . The *intersection* of L_1 and L_2 , $L_1 \cap L_2$, is defined as: $L_1 \cap L_2 = \{x: x \in L_1 \text{ and } x \in L_2\}$ **Example:** Consider languages $L_1 = \{0, 1, 00, 01\},\$ $L_2 = \{00, 01, 10, 11\}.$

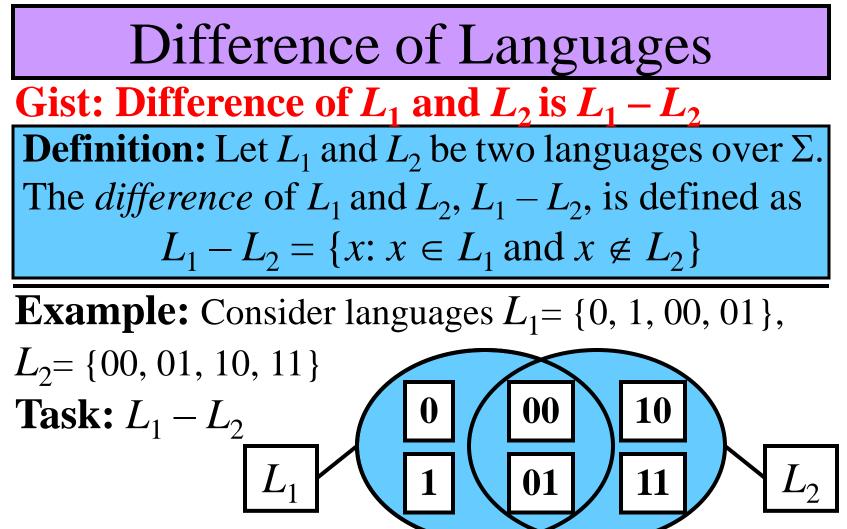
Task: $L_1 \cap L_2$

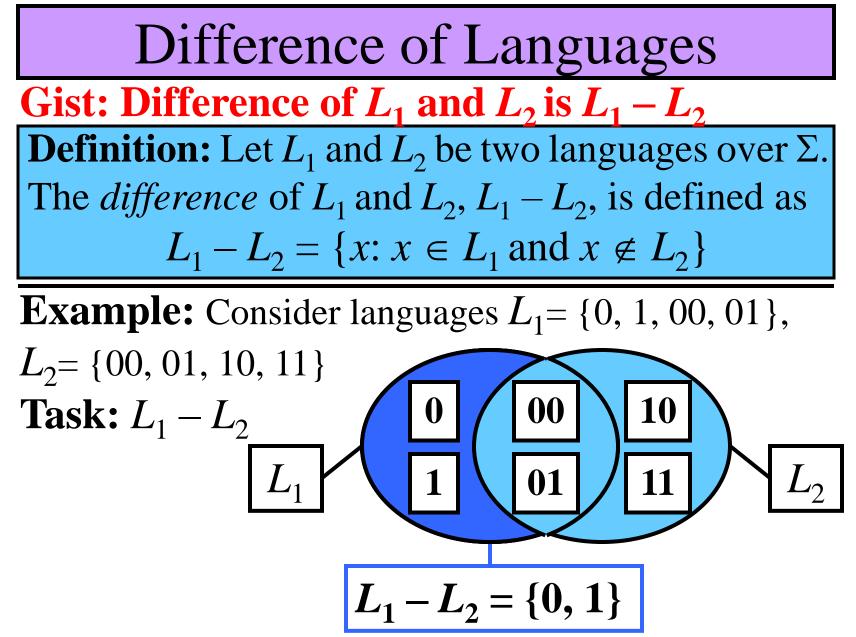




Difference of Languages Gist: Difference of L_1 **and** L_2 **is** $L_1 - L_2$ **Definition:** Let L_1 and L_2 be two languages over Σ . The *difference* of L_1 and L_2 , $L_1 - L_2$, is defined as $L_1 - L_2 = \{x: x \in L_1 \text{ and } x \notin L_2\}$ **Example:** Consider languages $L_1 = \{0, 1, 00, 01\},$

 $L_{2} = \{00, 01, 10, 11\}$ **Task:** $L_{1} - L_{2}$





Complement of Language

Gist: $\overline{L} = \Sigma^* - L$

Definition: Let *L* be a languages over Σ . The *complement* of *L*, *L*, is defined as $\overline{L} = \Sigma^* - L$

Example: Consider language $L = \{0, 1, 01, 10\}$ **Task:** \overline{L}

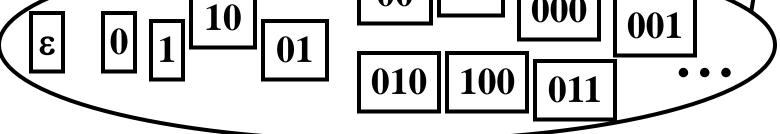
16/20

Complement of Language

Gist: $\overline{L} = \Sigma^* - L$

Definition: Let *L* be a languages over Σ . The *complement* of *L*, *L*, is defined as $\overline{L} = \Sigma^* - L$

Example: Consider language $L = \{0, 1, 01, 10\}$ Task: L Σ^*



16/20

Complement of Language

Gist: $\overline{L} = \Sigma^* - L$

Definition: Let *L* be a languages over Σ . The *complement* of *L*, *L*, is defined as $\overline{L} \equiv \Sigma^* - L$

Example: Consider language $L = \{0, 1, 01, 10\}$ Task: \overline{L} \sum^* 1] 00 000 10 001 01 010

100

011

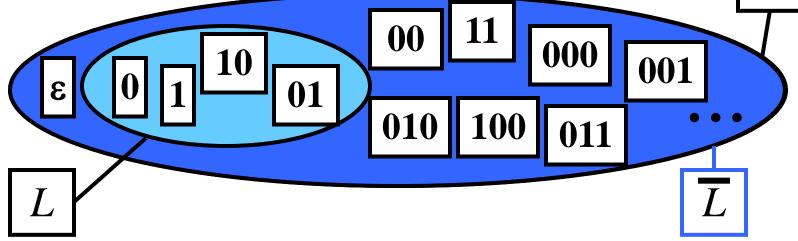
16/20

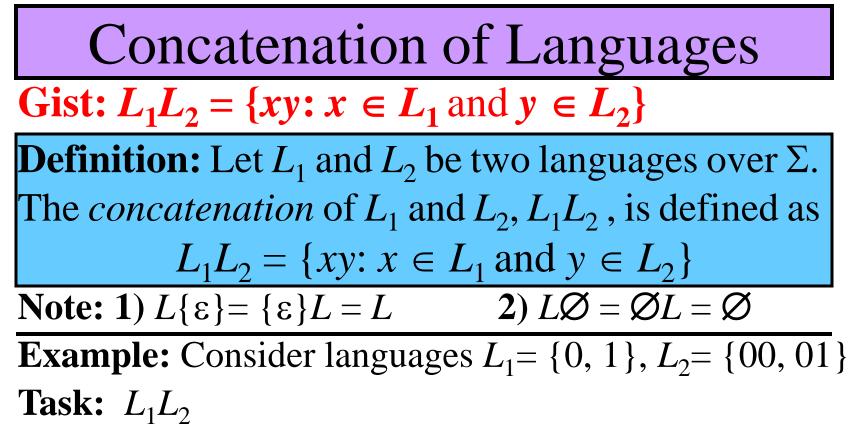
Complement of Language

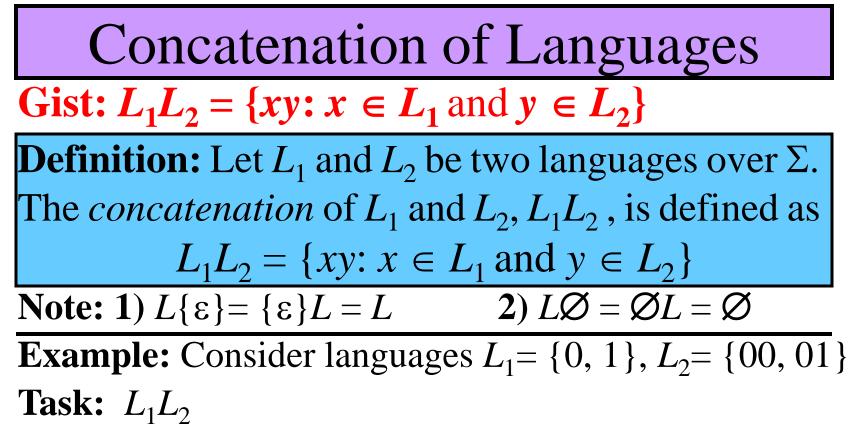
Gist: $\overline{L} = \Sigma^* - L$

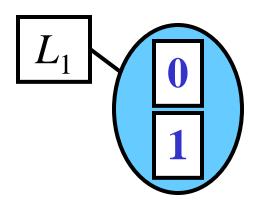
Definition: Let *L* be a languages over Σ . The *complement* of *L*, *L*, is defined as $\overline{L} = \Sigma^* - L$

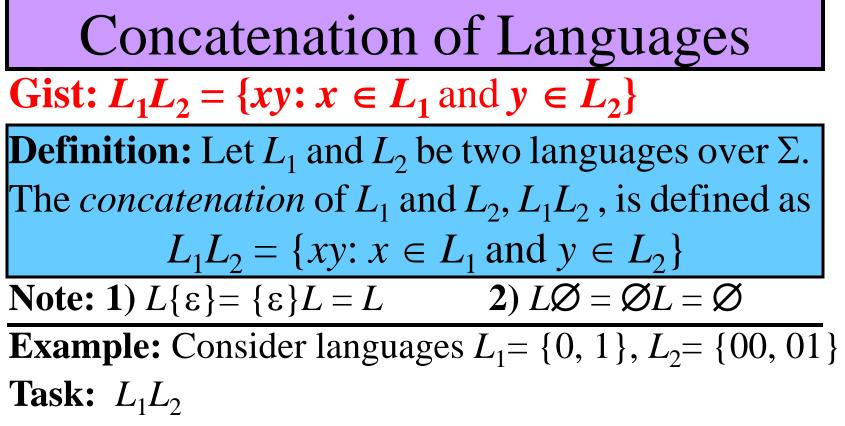
Example: Consider language $L = \{0, 1, 01, 10\}$ **Task:** L

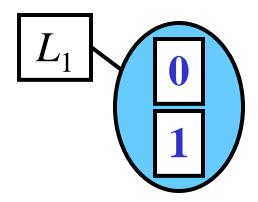


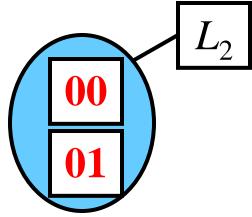


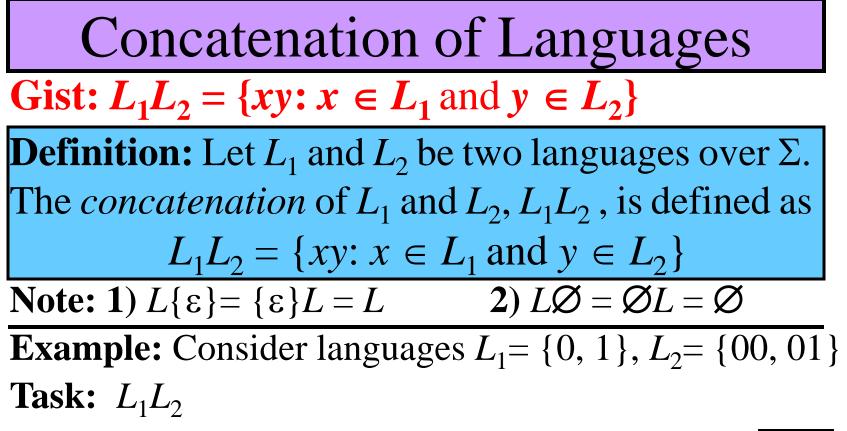


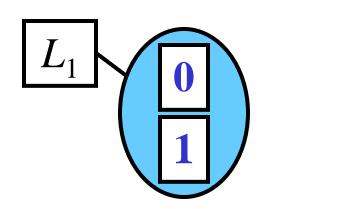


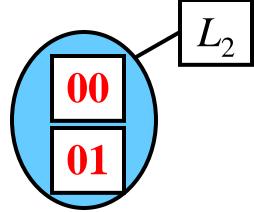


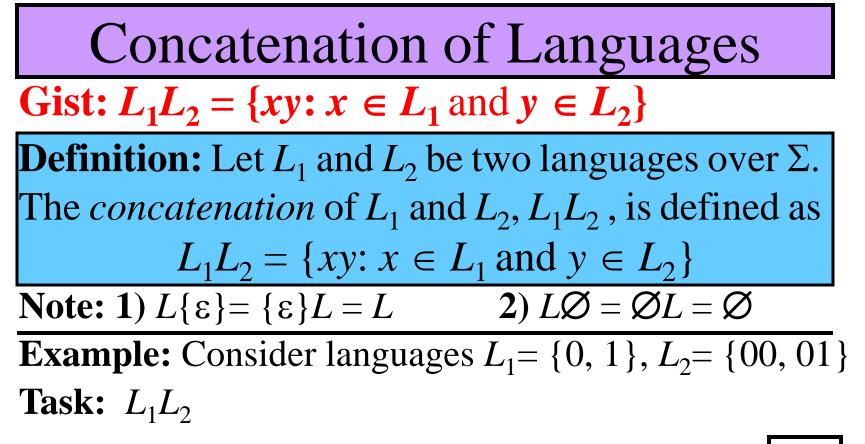


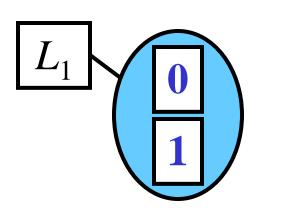


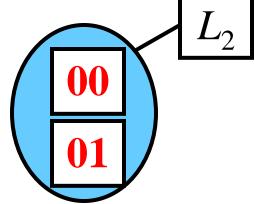


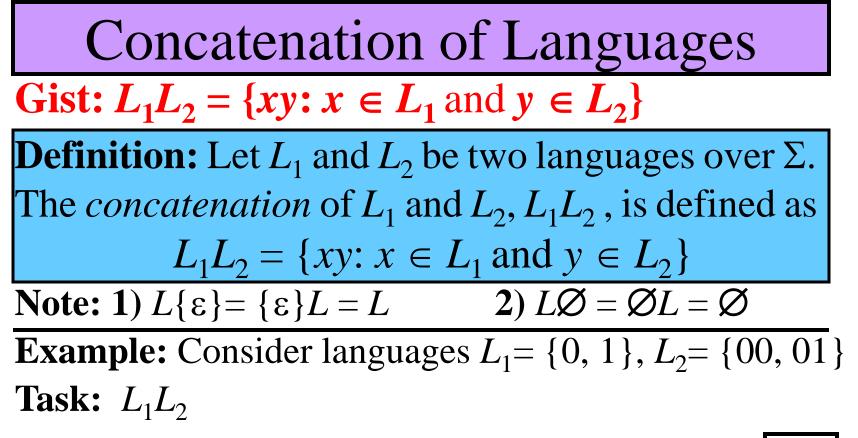


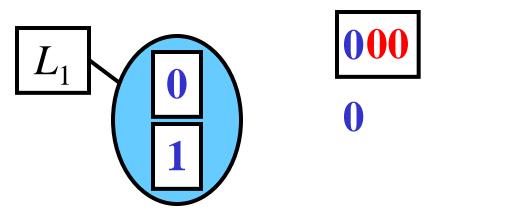


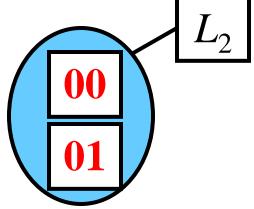


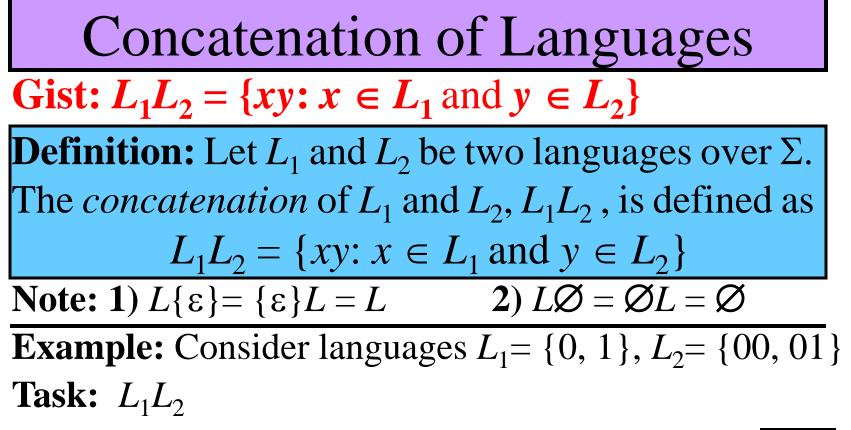


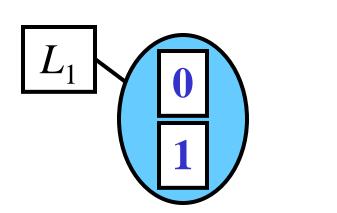


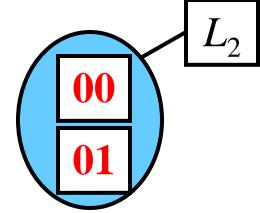


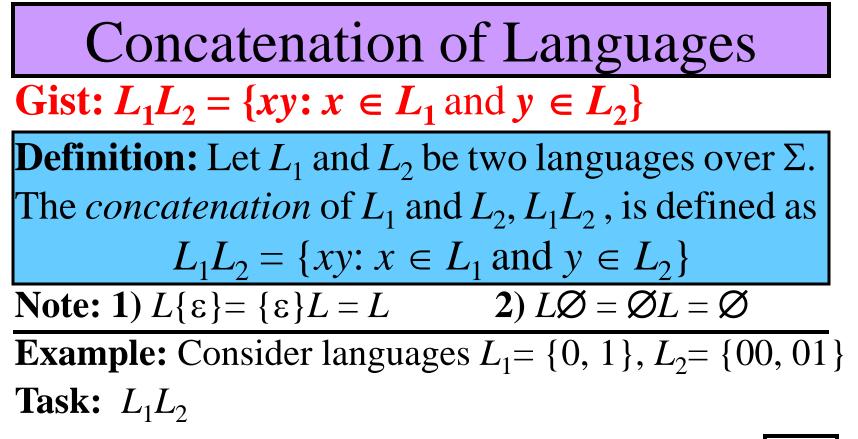


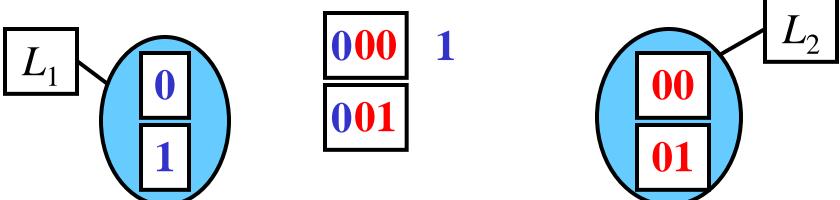


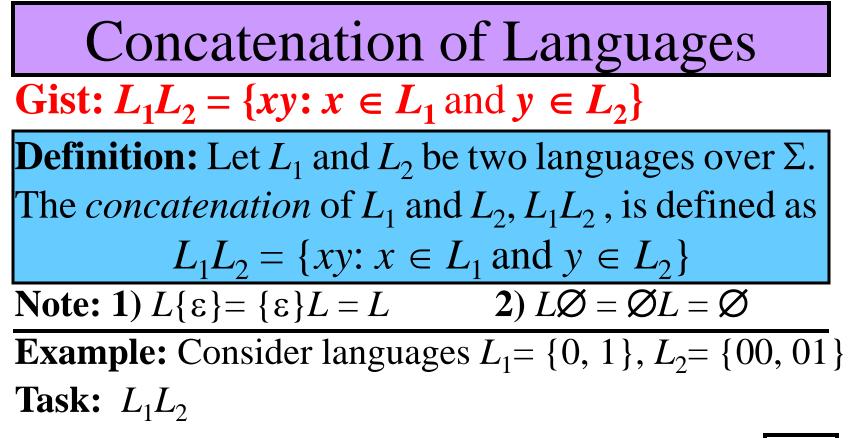


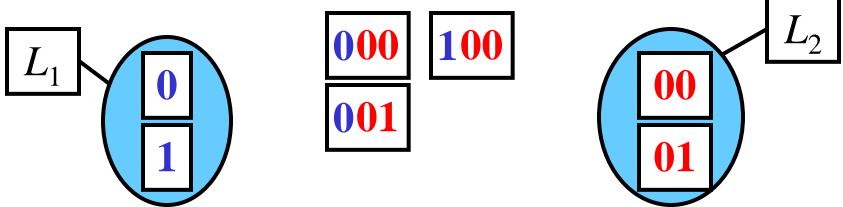


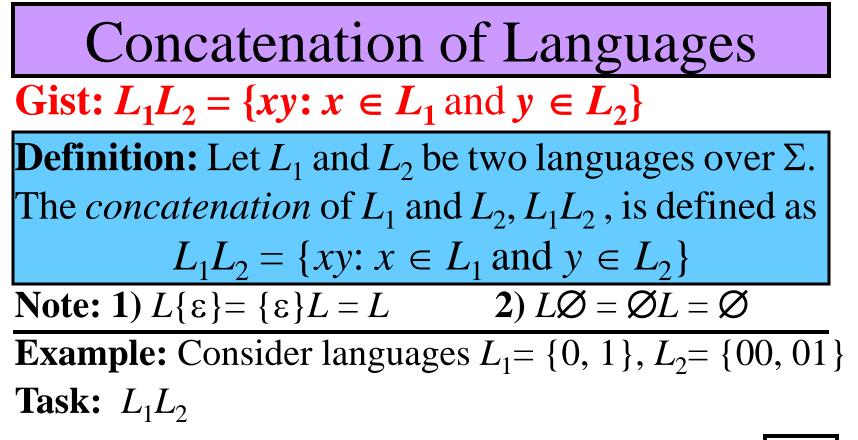


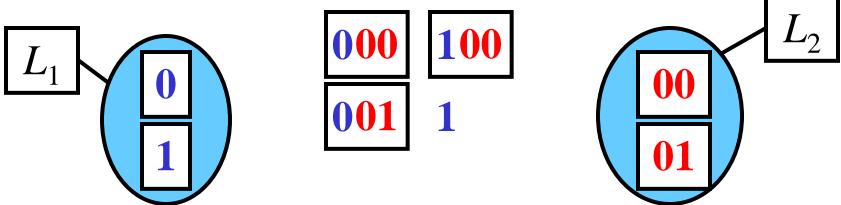


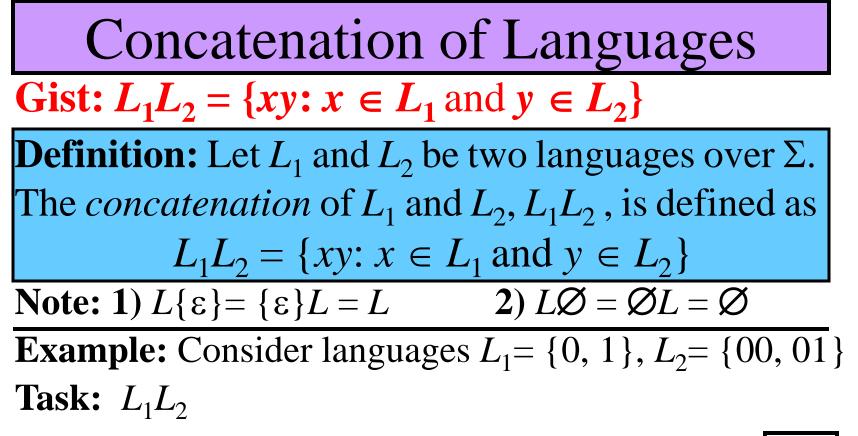


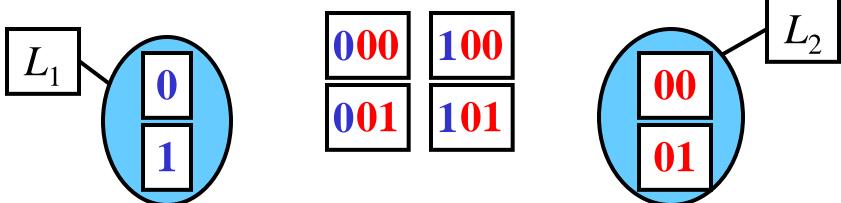


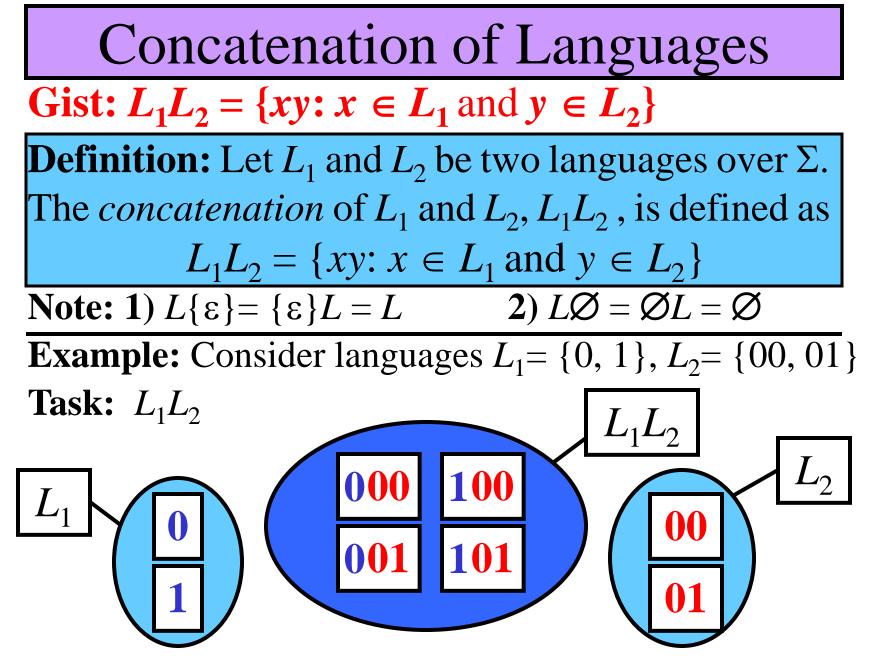






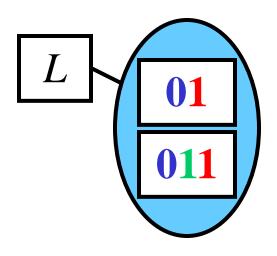






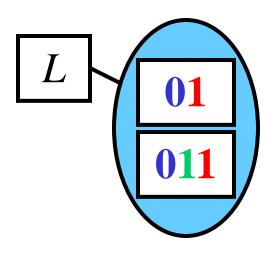
18/20

18/20

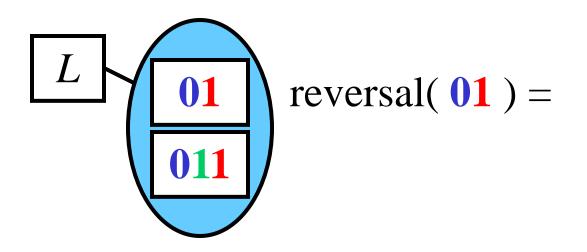


18/20

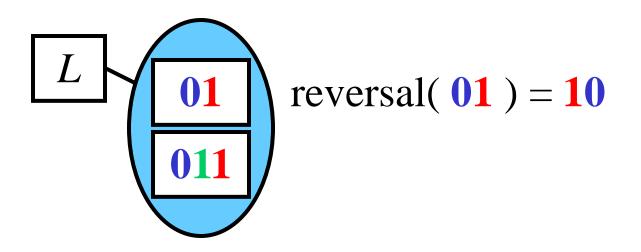
01



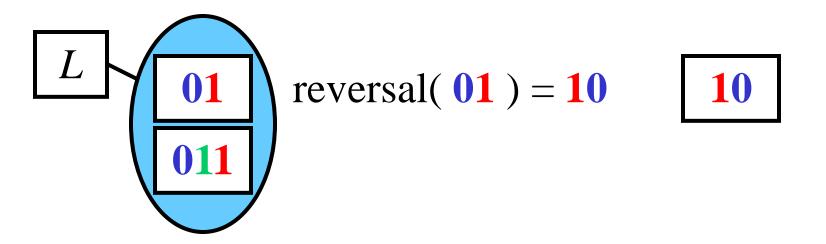
18/20



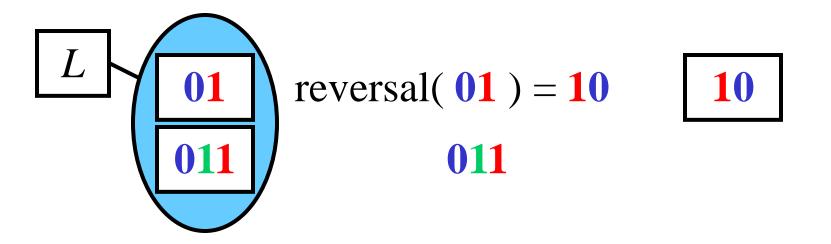
18/20



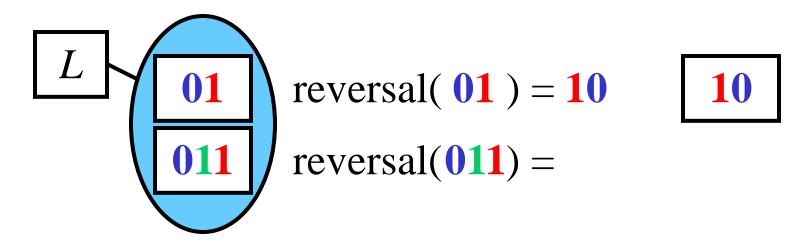
18/20



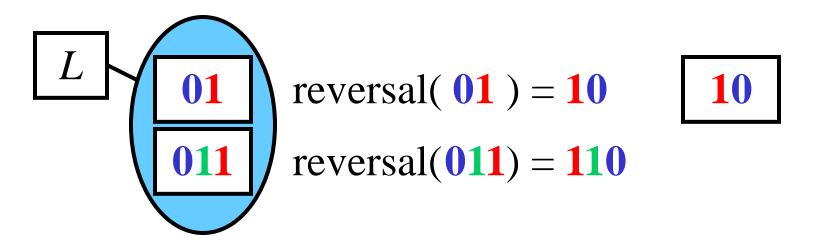
18/20



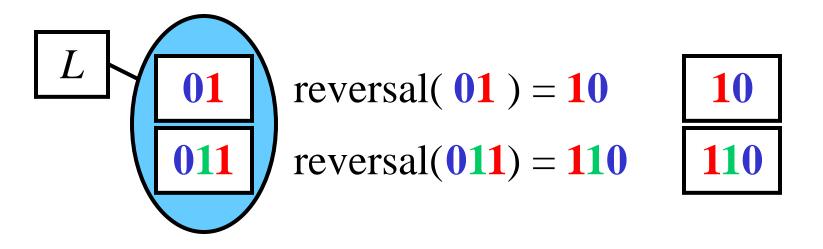
18/20



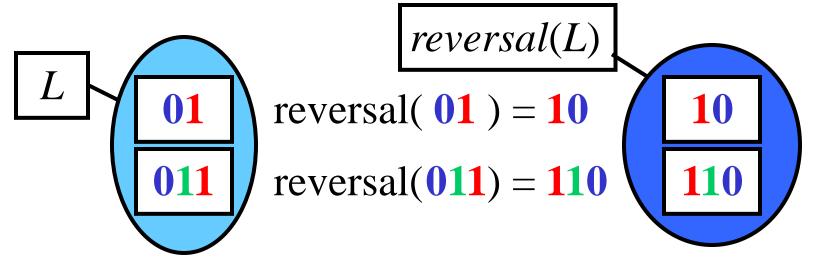
18/20



18/20



18/20



Power of Language

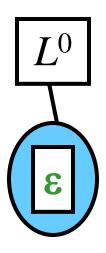
Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

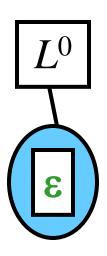
Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

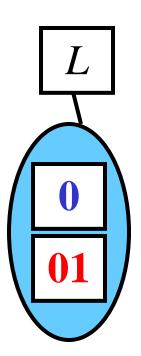


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$





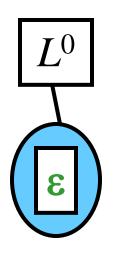
Power of Language

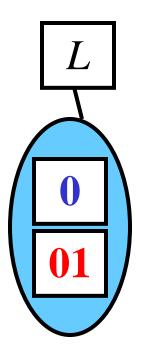
Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

Example: Consider $L=\{0, 01\}$ **Task:** L^2

3

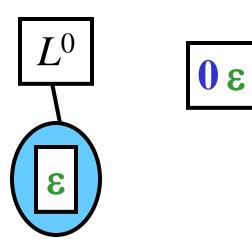


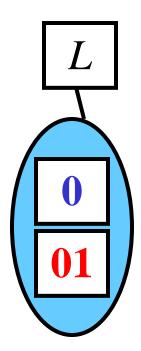


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

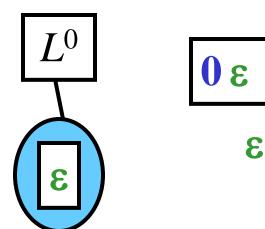


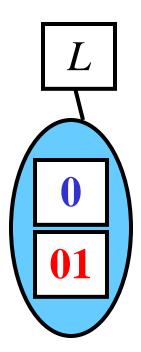


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

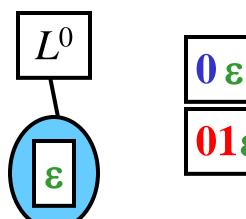


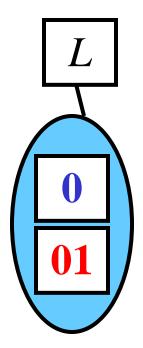


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

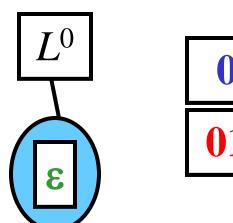


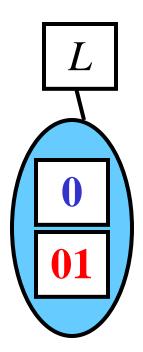


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

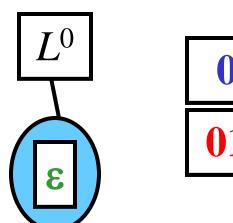


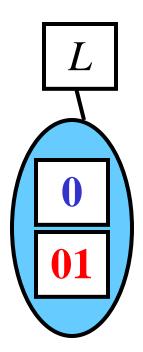


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$



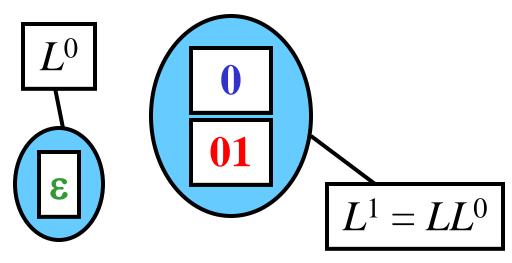


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

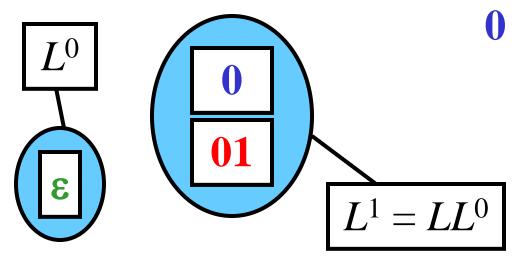
Ι,

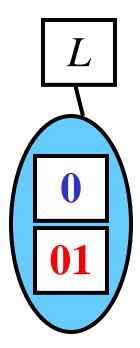


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

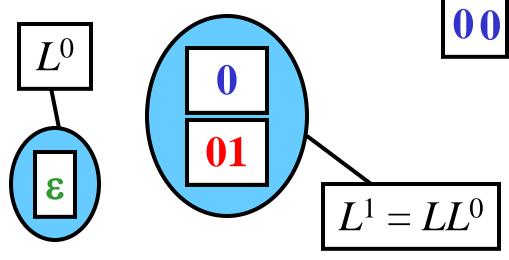


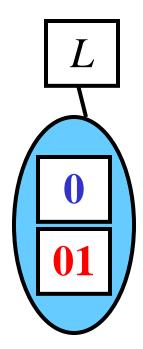


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

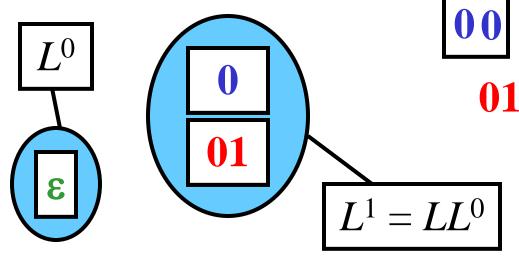


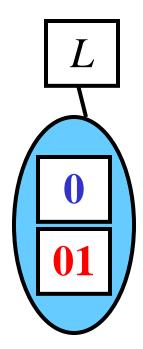


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

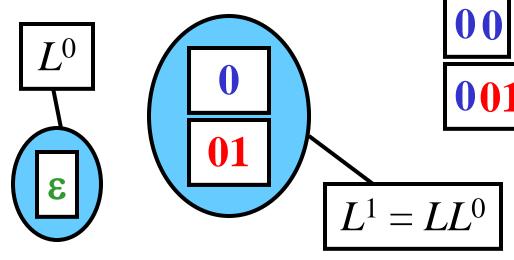


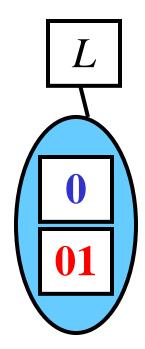


Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

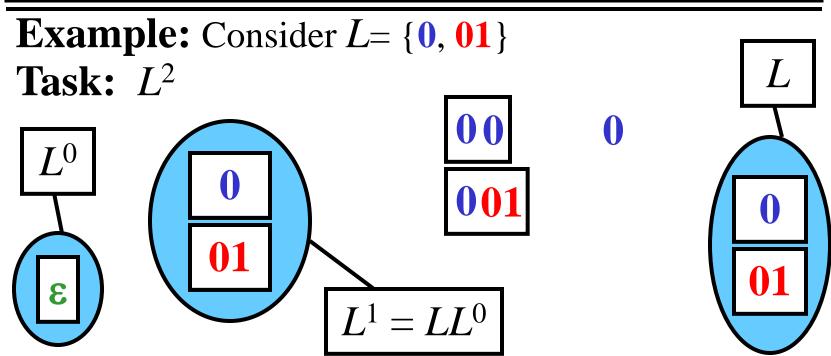
Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$





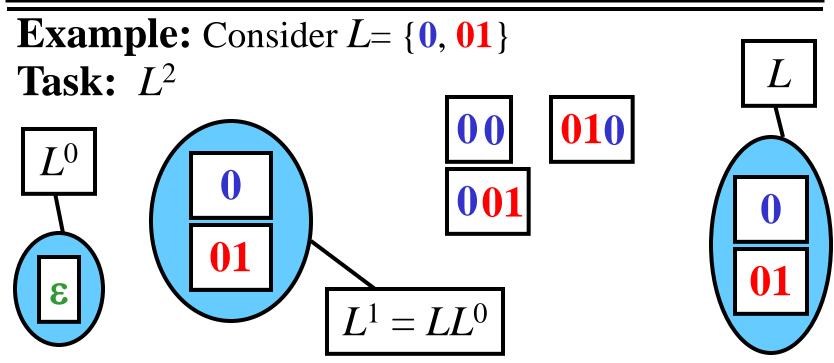
Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$



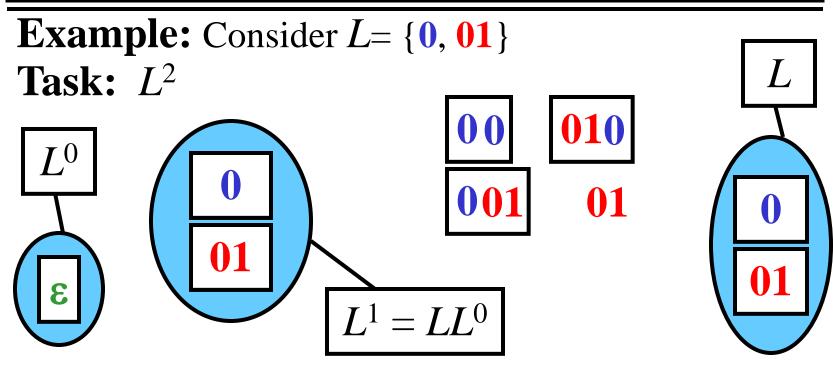
Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$



Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$



Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$

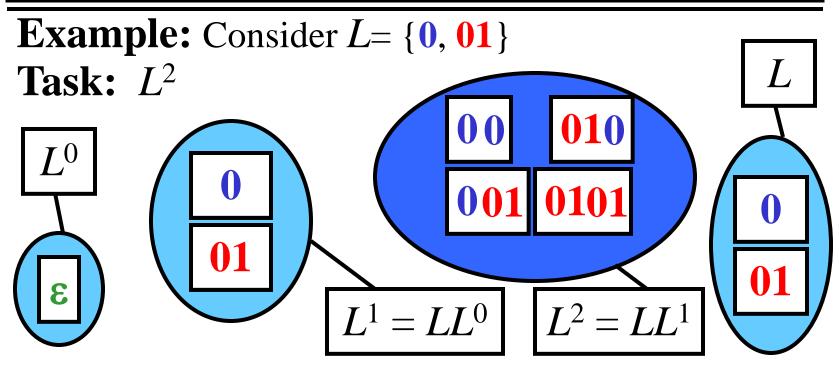
Definition: Let *L* be a language over Σ . For $i \ge 0$, the *i*-th *power* of *L*, L^i , is defined as: **1**) $L^0 = \{\varepsilon\}$ **2**) if $i \ge 1$ then $L^i = LL^{i-1}$

L

Example: Consider $L = \{0, 01\}$ Task: L^2 $\begin{bmatrix} L^0 \\ 0 \\ 0 \\ 01 \\ 01 \\ 01 \\ 01 \\ 0101 \end{bmatrix}$

Power of Language

Gist: $L^i = \underbrace{LL...L}_{i-\text{times}}$



20/20

Iteration of Language Gist: $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots \cup L^i \cup \ldots$ $L^+ = L^1 \cup L^2 \cup \ldots \cup L^i \cup \ldots$ **Definition:** Let *L* be a language over Σ . The *iteration* of *L*, L^* , and the *positive iteration* of *L*, L^+ , are defined as $L^* = \bigcup_{i=0}^{\infty} L^i$, $L^+ = \bigcup_{i=1}^{\infty} L^i$

Note: 1)
$$L^+ = LL^* = L^*L$$

2)
$$L^* = L^+ \cup \{\varepsilon\}$$

Example:

Consider language $L = \{0, 01\}$ over $\Sigma = \{0, 1\}$. **Task:** L^* and L^+

20/20

Iteration of Language Gist: $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots \cup L^i \cup \ldots$ $L^+ = L^1 \cup L^2 \cup \ldots \cup L^i \cup \ldots$ **Definition:** Let *L* be a language over Σ . The *iteration* of *L*, L^* , and the *positive iteration* of *L*, L^+ , are defined as $L^* = \bigcup_{i=0}^{\infty} L^i$, $L^+ = \bigcup_{i=1}^{\infty} L^i$

Note: 1)
$$L^+ = LL^* = L^*L$$

2)
$$L^* = L^+ \cup \{\varepsilon\}$$

Example:

Consider language $L = \{0, 01\}$ over $\Sigma = \{0, 1\}$. **Task:** L^* and L^+

 $L^{0} = \{ \mathbf{\varepsilon} \}, L^{1} = \{ \mathbf{0}, \mathbf{01} \}, L^{2} = \{ \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101} \}, \dots$ $L^{*} = L^{0} \cup L^{1} \cup L^{2} \cup \dots = \{ \mathbf{\varepsilon}, \mathbf{0}, \mathbf{01}, \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101}, \dots \}$ $L^{+} = L^{1} \cup L^{2} \cup \dots = \{ \mathbf{0}, \mathbf{01}, \mathbf{00}, \mathbf{001}, \mathbf{010}, \mathbf{0101}, \dots \}$