

Regular Expressions (RE): Definition

Gist: Expressions with operators ., +, and * that denote concatenation, union, and

iteration, respectively.

Definition: Let Σ be an alphabet. The *regular expressions* over Σ and the *languages they denote* are defined as follows:

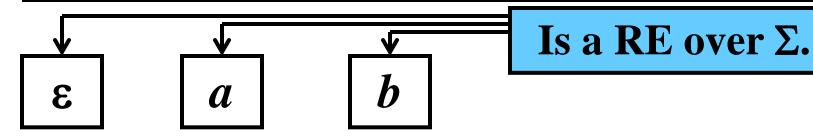
- \varnothing is a RE denoting the empty set
- ε is a RE denoting {ε}
- *a*, where $a \in \Sigma$, is a RE denoting $\{a\}$
- Let *r* and *s* be regular expressions denoting the languages L_r and L_s , respectively; then
 - (*r.s*) is a RE denoting $L = L_r L_s$
 - (r+s) is a RE denoting $L = L_r \cup L_s$
 - (r^*) is a RE denoting $L = L_r^*$

Regular Expressions: Example

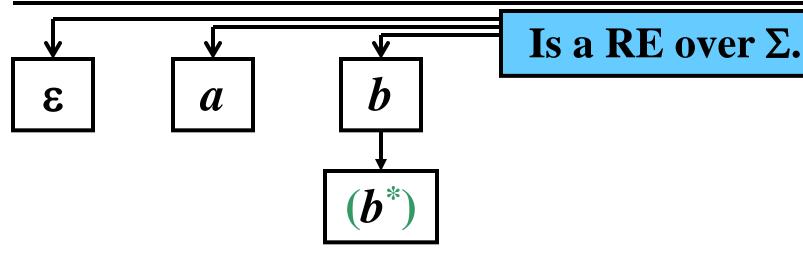
Regular Expressions: Example

Regular Expressions: Example

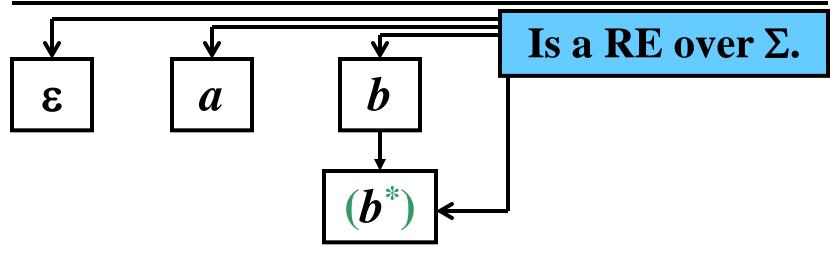
Regular Expressions: Example



Regular Expressions: Example



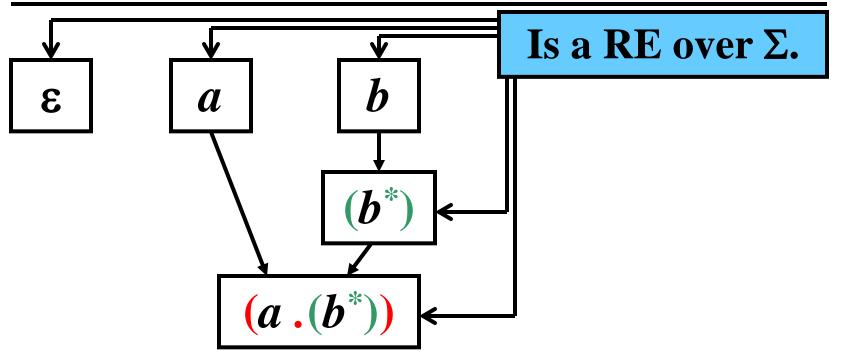
Regular Expressions: Example



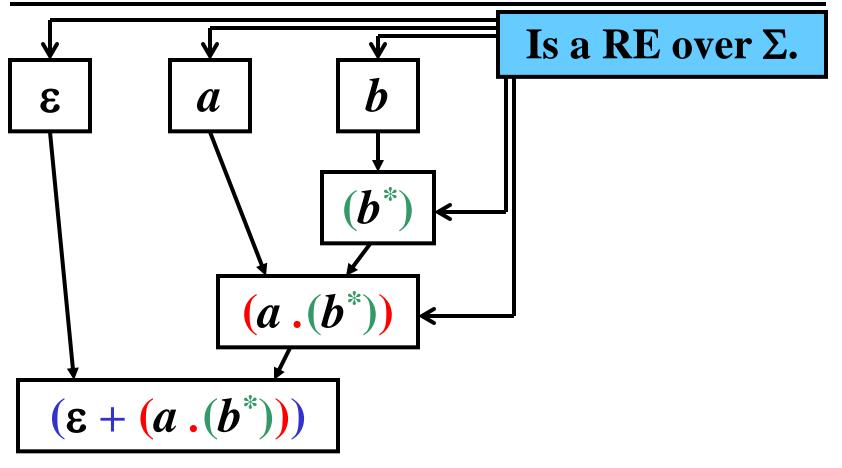
Regular Expressions: Example



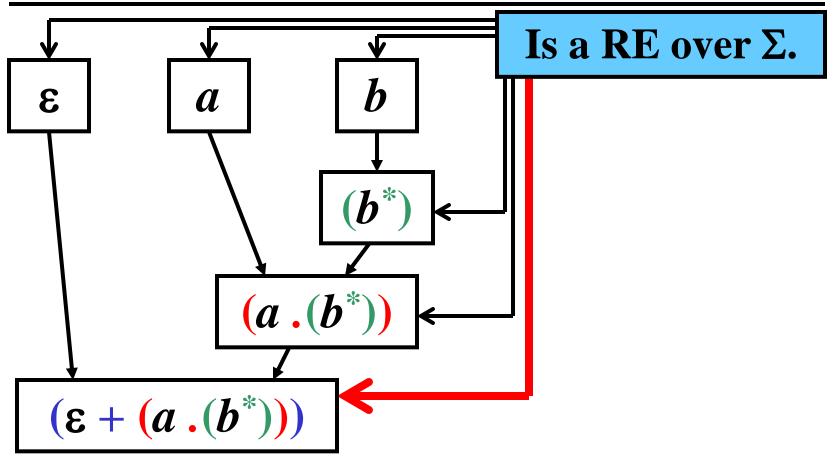
Regular Expressions: Example



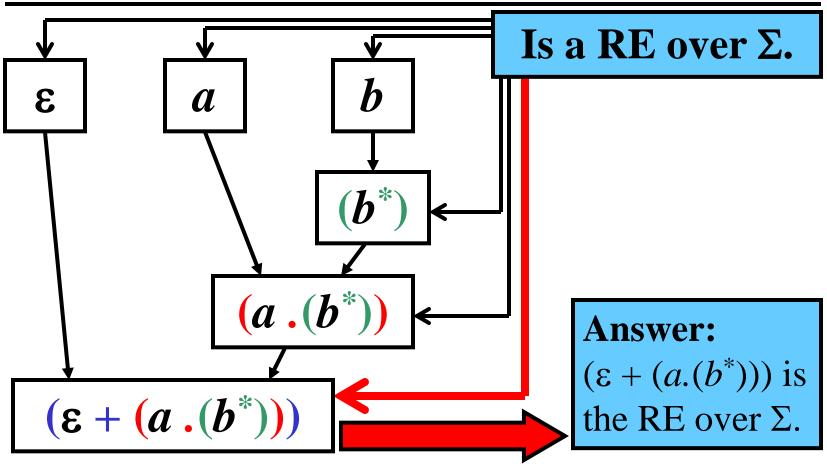
Regular Expressions: Example



Regular Expressions: Example



Regular Expressions: Example



Simplification

1) Reduction of the number of parentheses by

Precedences:
$$* > . > +$$

2) Expression *r.s* is simplified to *rs*3) Expression *rr*^{*} or *r*^{*}*r* is simplified to *r*⁺

Example:

 $((a.(a^*)) + ((b^*).b))$ can be written as $a.a^* + b^*.b$,

and $a \cdot a^* + b^* \cdot b$ can be written as $a^+ + b^+$

Regular Language (RL)

Gist: Every RE denotes a regular language Definition: Let *L* be a language. *L* is a *regular language* (RL) if there exists a regular expression *r* that denotes *L*.

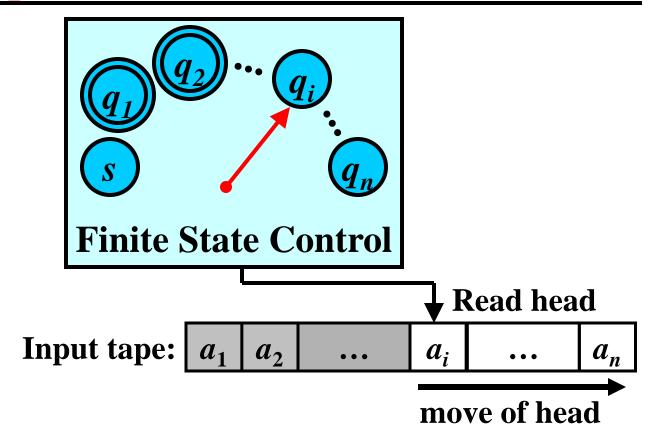
Denotation: L(r) means the language denoted by r.

Examples:

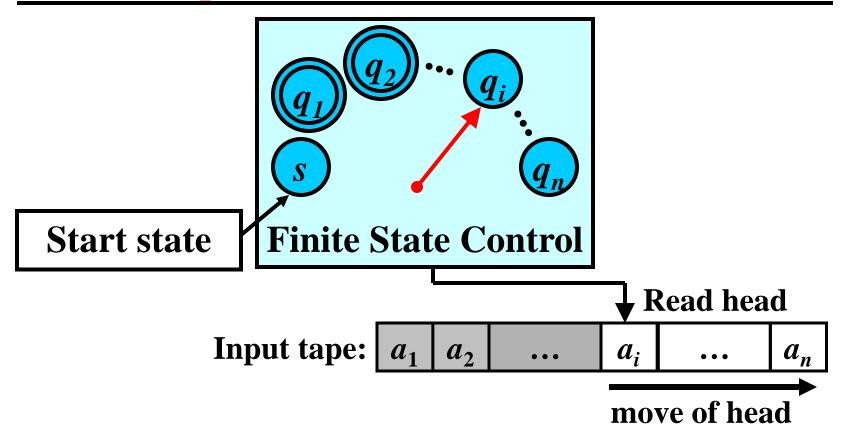
 $r_{1} = ab + ba$ denotes $L_{1} = \{ab, ba\}$ $r_{2} = a^{+}b^{*}$ denotes $L_{2} = \{a^{n}b^{m}: n \ge 1, m \ge 0\}$ $r_{3} = ab(a + b)^{*}$ denotes $L_{3} = \{x: ab \text{ is prefix of } x\}$ $r_{4} = (a + b)^{*}ab(a + b)^{*} \text{ denotes } L_{4} = \{x: ab \text{ is substring of } x\}$

 L_1, L_2, L_3, L_4 are regular languages over Σ

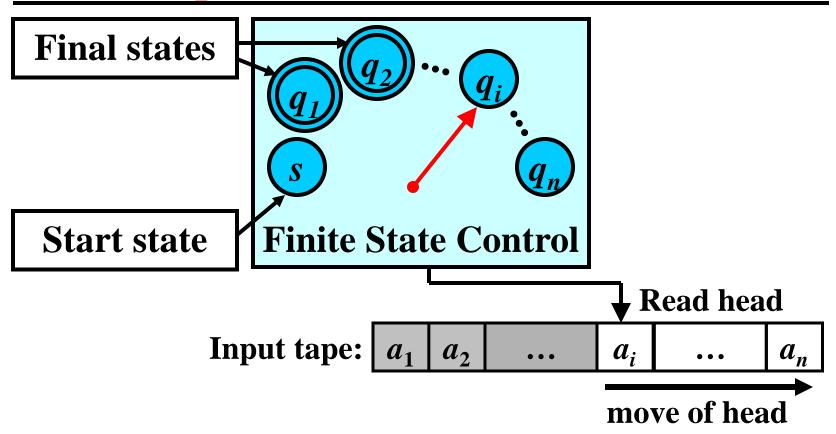
Finite Automata (FA)



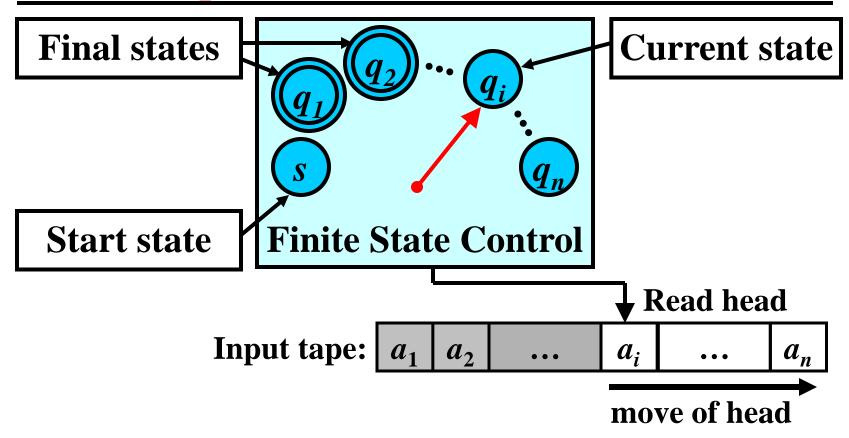
Finite Automata (FA)



Finite Automata (FA)



Finite Automata (FA)



7/29

Finite Automata: Definition

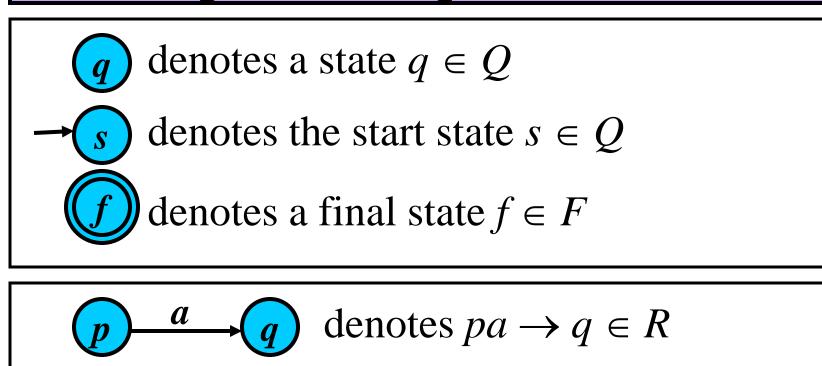
Definition: A finite automaton (FA) is a 5-tuple: $M = (Q, \Sigma, R, s, F)$, where

- Q is a finite set of states
- Σ is an *input alphabet*
- *R* is a *finite set of rules* of the form: $pa \rightarrow q$, where $p, q \in Q, a \in \Sigma \cup \{\varepsilon\}$
- $s \in Q$ is the start state
- $F \subseteq Q$ is a set of *final states*

Mathematical note on rules:

- Strictly mathematically, *R* is a relation from $Q \times (\Sigma \cup \{\varepsilon\})$ to *Q*
- Instead of (pa, q), however, we write the rule as $pa \rightarrow q$
- $pa \rightarrow q$ means that with a, M can move from p to q
- if $a = \varepsilon$, no symbol is read

Graphical Representation

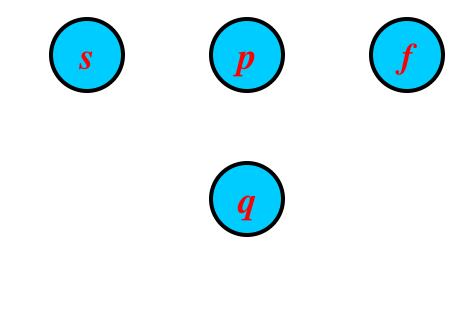


$$M = (Q, \Sigma, R, s, F),$$
 where:

$$M = (Q, \Sigma, R, s, F),$$

where:

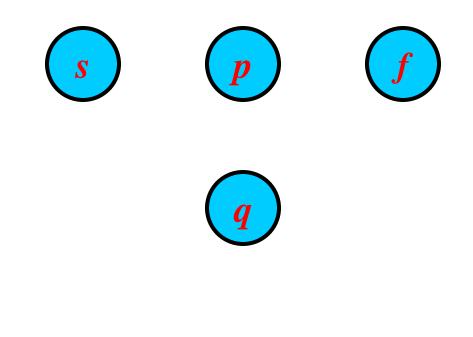
•
$$Q = \{s, p, q, f\};$$



$$M = (Q, \Sigma, R, s, F),$$

where:

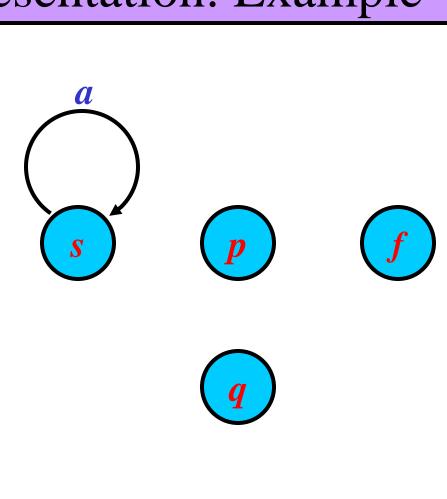
- $Q = \{s, p, q, f\};$ $\Sigma = \{a, b, c\};$



$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$



Graphical Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

 $s \rightarrow p$,

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$

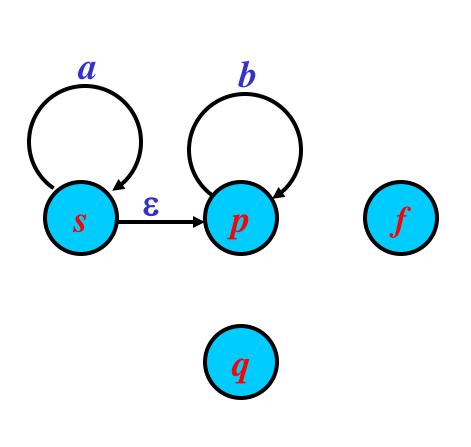
$$\frac{a}{s}$$

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{ a, b, c \};$
- $R = \{ sa \rightarrow s,$

$$s \to p, \\ pb \to p,$$



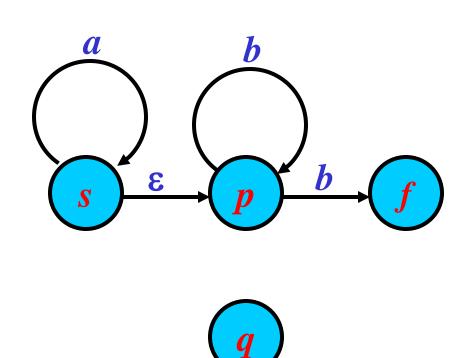
$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$

$$s \rightarrow p,$$

 $pb \rightarrow p,$
 $pb \rightarrow f,$



$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$

$$s \rightarrow p,$$

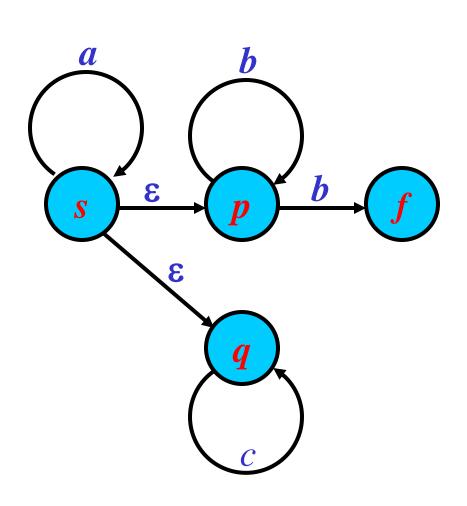
 $pb \rightarrow p,$
 $pb \rightarrow f,$
 $s \rightarrow q,$

$$a$$
 b b f b f

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$
 - $s \rightarrow p,$ $pb \rightarrow p,$ $pb \rightarrow f,$ $s \rightarrow q,$
 - $qc \rightarrow q$,



$$M = (Q, \Sigma, R, s, F),$$

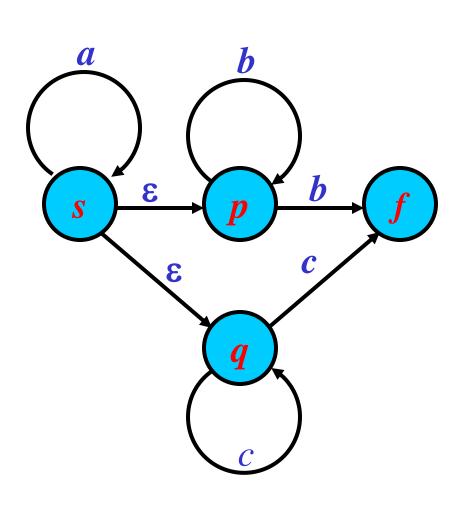
where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ \mathbf{sa} \to \mathbf{s},$

$$s \rightarrow p,$$

 $pb \rightarrow p,$
 $pb \rightarrow f,$
 $s \rightarrow q,$

$$qc \rightarrow q, \\ qc \rightarrow f,$$



$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$

$$s \rightarrow p,$$

$$pb \rightarrow p,$$

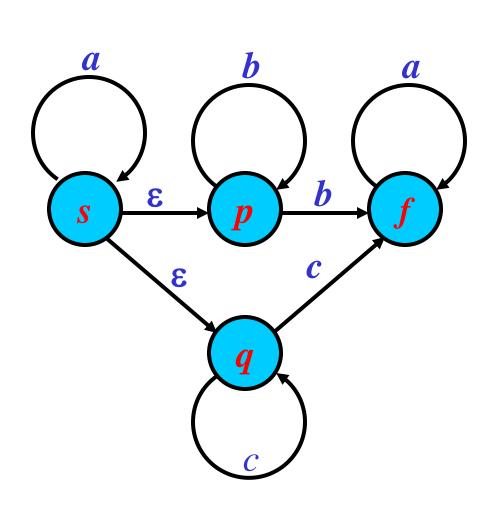
$$pb \rightarrow f,$$

$$s \rightarrow q,$$

$$ga \rightarrow q$$

$$qc \rightarrow q,$$

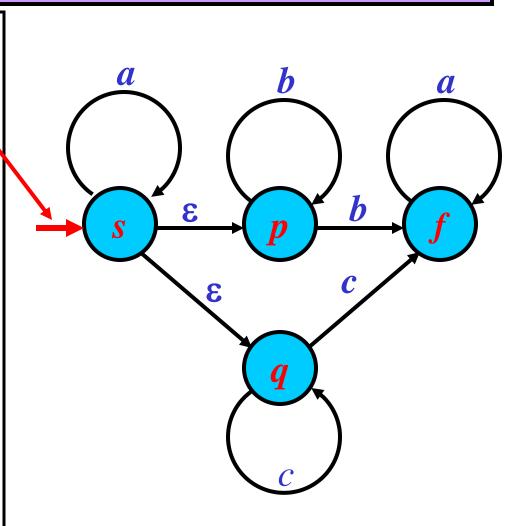
 $qc \rightarrow f,$
 $fa \rightarrow f \};$



$$M = (Q, \Sigma, R, s, F),$$

where:

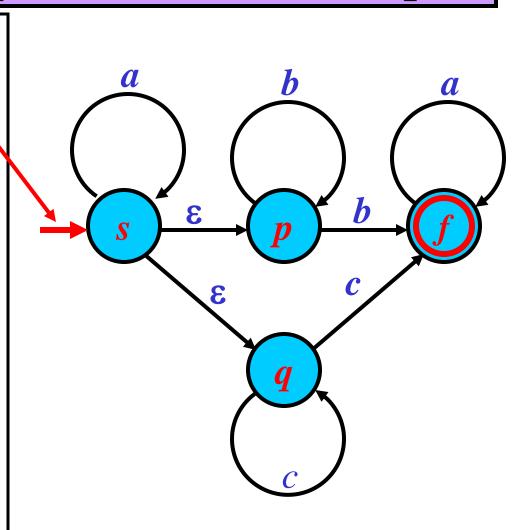
- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$
 - $s \rightarrow p,$ $pb \rightarrow p,$ $pb \rightarrow f,$ $s \rightarrow q,$
 - $qc \rightarrow q,$ $qc \rightarrow f,$ $fa \rightarrow f$ };



$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$
 - $s \rightarrow p,$ $pb \rightarrow p,$ $pb \rightarrow f,$ $s \rightarrow q,$
 - $qc \rightarrow q$,
 - $\begin{array}{c} qc \rightarrow f, \\ fa \rightarrow f \end{array}; \\ F \quad (f) \end{array}$
- $F = \{ f \}$

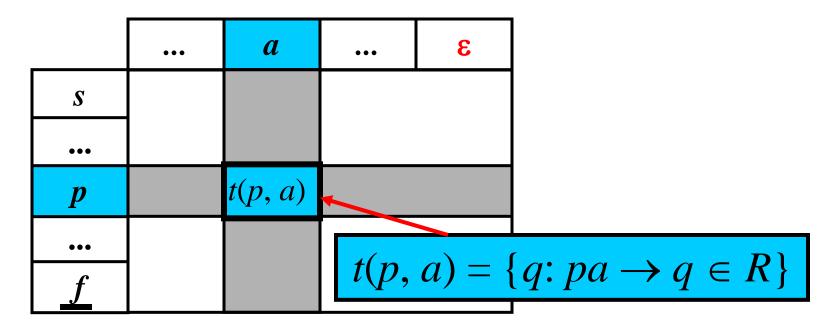


Tabular Representation

States of Q

Member of $\Sigma \cup \{\varepsilon\}$

- Columns:
- Rows:
- **First row:** The start state
- Underscored: Final states



Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$
 where:

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F)$$
,
where:

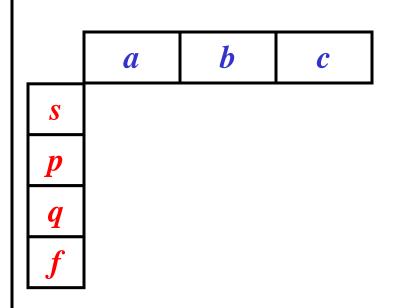
• $Q = \{s, p, q, f\};$

s p q f

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$



$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$

	a	b	С	3
S				
p				
<i>q</i>				
f				

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$

	a	b	С	3
S	Ø	Ø	Ø	Ø
p	Ø	Ø	Ø	Ø
q	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$

	a	b	С	3
S	{ S }	Ø	Ø	Ø
p	Ø	Ø	Ø	Ø
q	Ø	Ø	Ø	Ø
ſ	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s, s , s \rightarrow p, s \}$

	a	b	С	3
S	{ S }	Ø	Ø	{ p }
p	Ø	Ø	Ø	Ø
q	Ø	Ø	Ø	Ø
ſ	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$
 - $\begin{array}{c} s \rightarrow p, \\ pb \rightarrow p, \end{array}$

	a	b	С	3
S	{ S }	Ø	Ø	{ p }
p	Ø	{ p }	Ø	Ø
q	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$
 - $s \rightarrow p,$
 $pb \rightarrow p,$
 $pb \rightarrow f,$

	a	b	С	3
S	{ S }	Ø	Ø	{ p }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	Ø	Ø
f	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$

•
$$R = \{ sa \rightarrow s,$$

$$s \rightarrow p,$$

 $pb \rightarrow p,$
 $pb \rightarrow f,$
 $s \rightarrow q,$

	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	Ø	Ø
ſ	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$

•
$$R = \{ sa \to s,$$

$$s \rightarrow p,$$

 $pb \rightarrow p,$
 $pb \rightarrow f,$
 $s \rightarrow q,$
 $qc \rightarrow q,$

 ~ 1

	а	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q }	Ø
f	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$

•
$$R = \{ sa \to s,$$

$$pb \rightarrow p,$$

 $pb \rightarrow f,$
 $s \rightarrow q,$

 $r \rightarrow n$

$$qc \rightarrow q,$$

 $qc \rightarrow f,$

	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q , f }	Ø
f	Ø	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F),$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$

•
$$R = \{ sa \to s,$$

$$s \rightarrow p,$$

$$pb \rightarrow p,$$

$$pb \rightarrow f,$$

$$s \rightarrow q,$$

$$qc \rightarrow q,$$

$$qc \rightarrow f,$$

$$fa \rightarrow f \};$$

 ~ 1

	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q , f }	Ø
f	{ f }	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F)$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\};$
- $R = \{ sa \rightarrow s,$
 - $s \rightarrow p,$ $pb \rightarrow p,$ $pb \rightarrow f,$ $s \rightarrow q,$ $qc \rightarrow q,$

 $qc \rightarrow f$,

 $fa \rightarrow f$ };

	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q , f }	Ø
ſ	$\{f\}$	Ø	Ø	Ø

Tabular Representation: Example

$$M = (Q, \Sigma, R, s, F)$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{ a, b, c \};$

•
$$R = \{ sa \rightarrow s,$$

$$c = \{ sa \to s, \\ s \to p, \\ pb \to p, \}$$

 $pb \rightarrow f$,

 $s \rightarrow q$,

 $qc \rightarrow q$,

 $qc \rightarrow f$,

 $fa \rightarrow f$ };

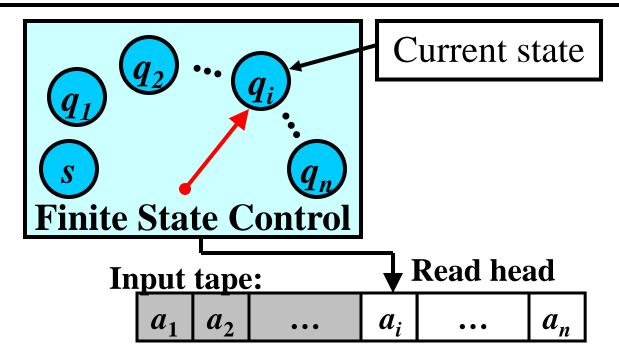
	a	b	С	3
S	{ S }	Ø	Ø	{ p , q }
p	Ø	{ p , f }	Ø	Ø
q	Ø	Ø	{ q , f }	Ø
f	$\{f\}$	Ø	Ø	Ø

•
$$F = \{ f \}$$

Gist: Instance description of FA

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA.

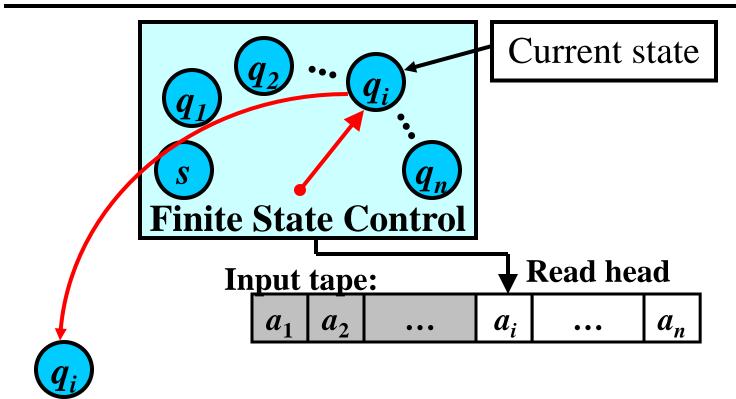
A configuration of M is a string $\chi \in Q\Sigma^*$



Gist: Instance description of FA

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA.

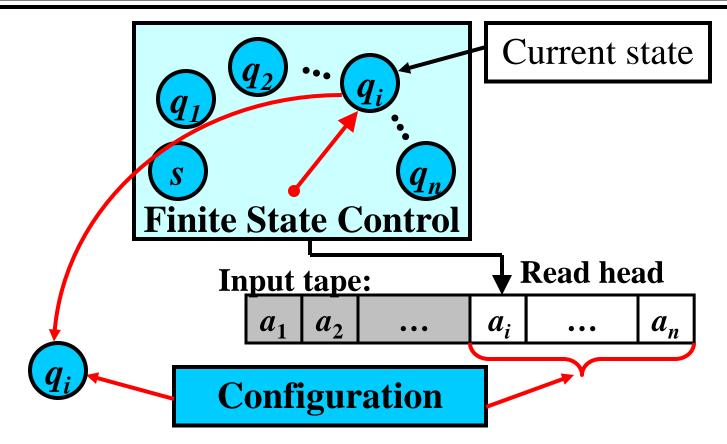
A configuration of M is a string $\chi \in Q\Sigma^*$



Gist: Instance description of FA

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA.

A configuration of M is a string $\chi \in Q\Sigma^*$



Move

Gist: Computational step of FA Definition: Let *pax* and *qx* be two configurations of *M*, where *p*, $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, and $x \in \Sigma^*$. Let $r = pa \rightarrow q \in R$ be a rule. Then *M* makes a *move* from *pax* to *qx* according to *r*, written as *pax* /– *qx* [*r*] or, simply, *pax* /– *qx* **Note:** if $a = \varepsilon$, no input symbol is read

Configuration:

Move

Gist: Computational step of FA Definition: Let *pax* and *qx* be two configurations of *M*, where *p*, $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, and $x \in \Sigma^*$. Let $r = pa \rightarrow q \in R$ be a rule. Then *M* makes a *move* from *pax* to *qx* according to *r*, written as *pax* /– *qx* [*r*] or, simply, *pax* /– *qx* **Note:** if $a = \varepsilon$, no input symbol is read

Configuration:

Rule: $pa \rightarrow q$

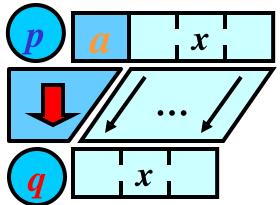
Move

Gist: Computational step of FA Definition: Let *pax* and *qx* be two configurations of *M*, where *p*, $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, and $x \in \Sigma^*$. Let $r = pa \rightarrow q \in R$ be a rule. Then *M* makes a *move* from *pax* to *qx* according to *r*, written as *pax* /– *qx* [*r*] or, simply, *pax* /– *qx* **Note:** if $a = \varepsilon$, no input symbol is read

Configuration:

Rule: $pa \rightarrow q$

New configuration:



Sequence of Moves 1/2

Gist: Several consecutive computational steps

Definition: Let χ be a configuration. *M* makes *zero moves* from χ to χ ; in symbols, $\chi \mid -0 \chi$ [ε] or, simply, $\chi \mid -0 \chi$

Definition: Let $\chi_0, \chi_1, ..., \chi_n$ be a sequence of configurations, $n \ge 1$, and $\chi_{i-1} \models \chi_i [r_i], r_i \in R$, for all i = 1, ..., n; that is, $\chi_0 \models \chi_1 [r_1] \models \chi_2 [r_2] ... \models \chi_n [r_n]$ Then *M* makes *n* moves from χ_0 to χ_n : $\chi_0 \models {}^n \chi_n [r_1 ... r_n]$ or, simply, $\chi_0 \models {}^n \chi_n$

Sequence of Moves 2/2

 $\Lambda_n LPJ$

If
$$\chi_0 \models \chi_n [\rho]$$
 for some $n \ge 1$, then
 $\chi_0 \models \chi_n [\rho]$.
If $\chi_0 \models \chi_n [\rho]$ for some $n \ge 0$, then
 $\chi_0 \models \chi_n [\rho]$

()

Example: Consider

pabc $[-qbc \ [1: pa \rightarrow q], \text{ and } qbc \ [-rc \ [2: qb \rightarrow r].$ Then, *pabc* $[-^2 rc \ [1 \ 2],$ *pabc* $[-^+ rc \ [1 \ 2],$ *pabc* $[-^* rc \ [1 \ 2],$

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

 $M = (Q, \Sigma, R, \mathbf{s}, F)$:

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

$$M = (Q, \Sigma, R, s, F):$$

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

$$M = (Q, \Sigma, R, s, F):$$

$$sa_1a_2...a_n \mid -q_1a_2...a_n \mid -\dots \mid -q_{n-1}a_n \mid -q_n$$
w

Accepted Language

Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^* f, f \in F \}$$

$$M = (Q, \Sigma, R, s, F):$$

$$sa_1a_2...a_n |-q_1a_2...a_n| - ... |-q_{n-1}a_n| - q_n$$

$$W$$

16/29

Accepted Language

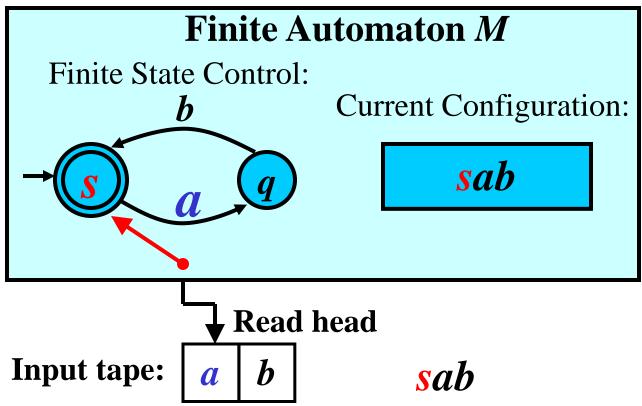
Gist: *M* accepts *w* if it can completely read *w* by a sequence of moves from *s* to a final state

Definition: Let $M = (Q, \Sigma, R, s, F)$ be a FA. The *language accepted by M*, L(M), is defined as:

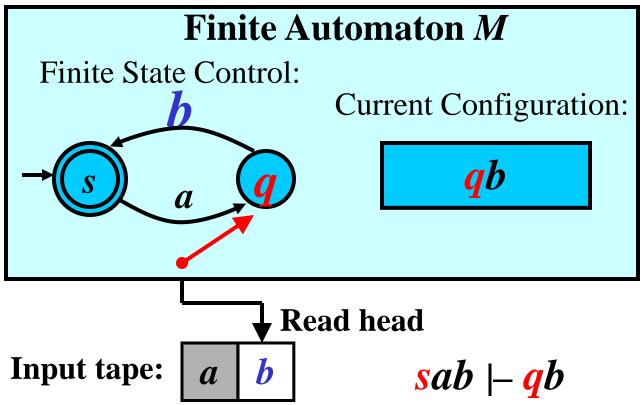
$$L(M) = \{ w : w \in \Sigma^*, sw \mid -^*f, f \in F \}$$

 $M = (Q, \Sigma, R, s, F):$ if $q_n \in F$ then $w \in L(M)$; otherwise, $w \notin L(M)$ $sa_1a_2...a_n \mid -q_1a_2...a_n \mid -... \mid -q_{n-1}a_n \mid -q_n$

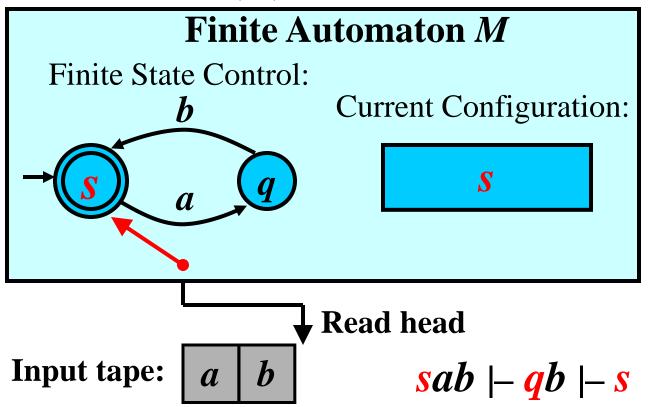
FA: Example 1/3



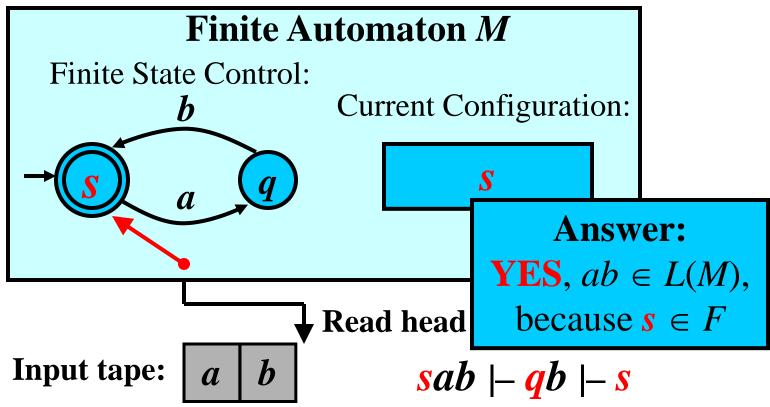
FA: Example 2/3



FA: Example 3/3



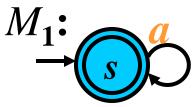
FA: Example 3/3

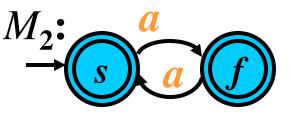


Equivalent Models

Definition: Two models for languages, such as FAs, are equivalent if they both specify the same language.

Example:



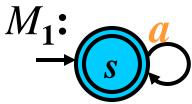


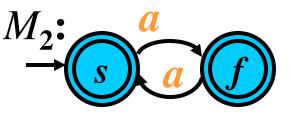
Question: Is M_1 equivalent to M_2 ?

Equivalent Models

Definition: Two models for languages, such as FAs, are equivalent if they both specify the same language.

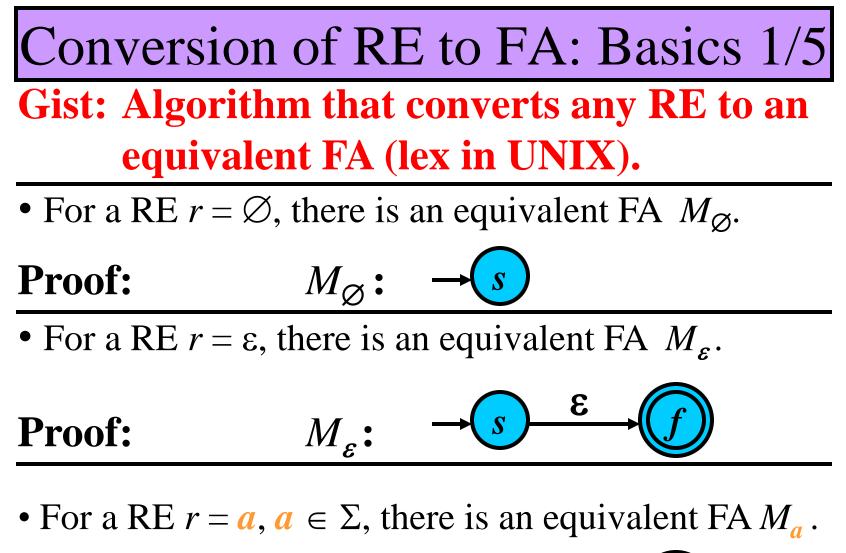
Example:





Question: Is M_1 equivalent to M_2 ?

Answer: M_1 and M_2 are equivalent because $L(M_1) = L(M_2) = \{a^n : n \ge 0\}$



Proof: $M_a: \rightarrow S \xrightarrow{a} f$

22/29

RE to FA: Concatenation 2/5

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction:

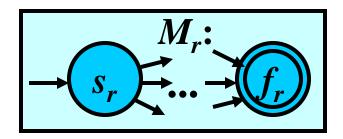
22/29

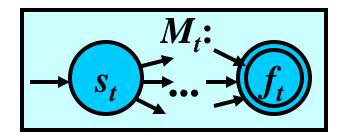
RE to FA: Concatenation 2/5

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $\overline{Q_r \cap Q_t} = \emptyset$.

Construction: $M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t)$



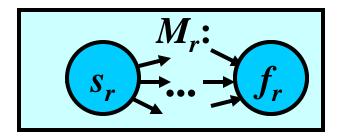


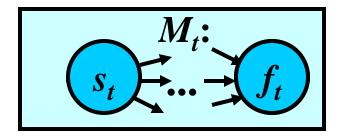
22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $\overline{Q_r \cap Q_t} = \emptyset$.

Construction: $M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t)$



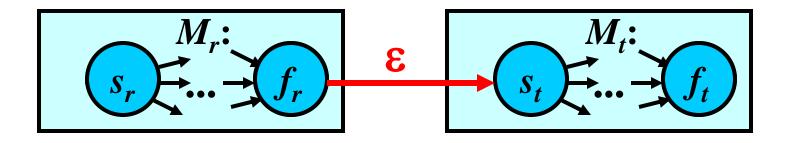


22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE r.t, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction: $M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \rightarrow s_t\},$

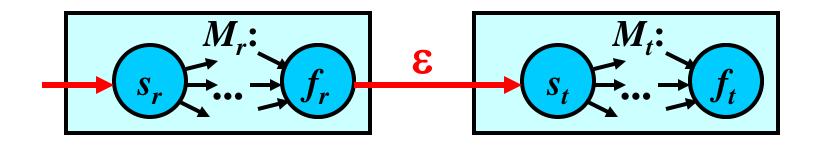


22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE r.t, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction: $M_{rt} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \rightarrow s_t\}, s_r,$

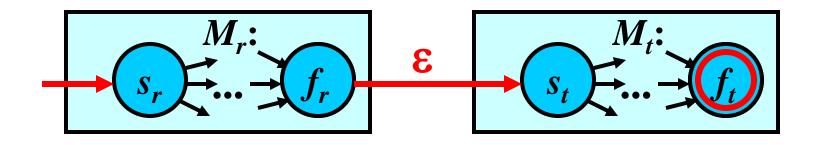


22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE *r.t*, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction: $M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \rightarrow s_t\}, s_r, \{f_t\})$



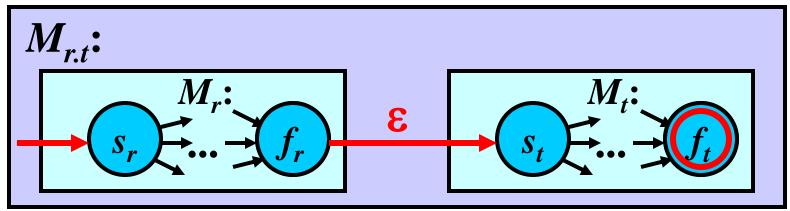
22/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be a RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- Then, for the RE r.t, there exists an equivalent FA $M_{r.t}$

Proof: Let $Q_r \cap Q_t = \emptyset$.

Construction:

$$M_{r,t} = (Q_r \cup Q_t, \Sigma, R_r \cup R_t \cup \{f_r \to s_t\}, s_r, \{f_t\})$$



23/29

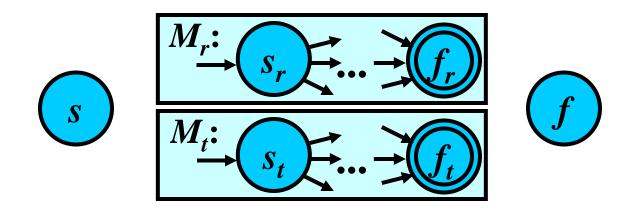
- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. Construction

23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

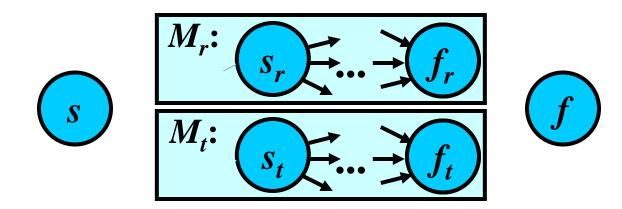
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t)$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

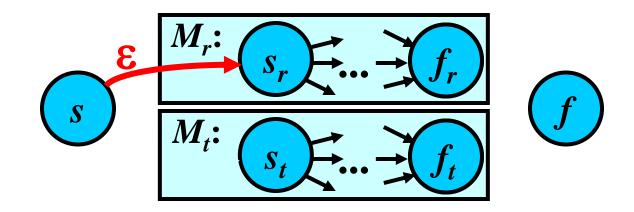
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t)$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

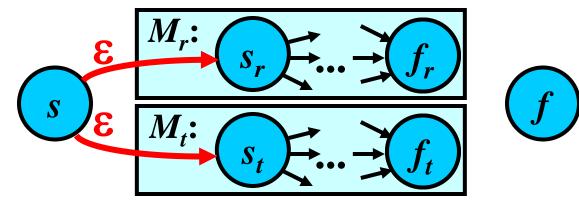
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, f\})$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

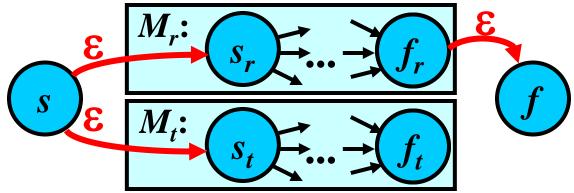
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f\})$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

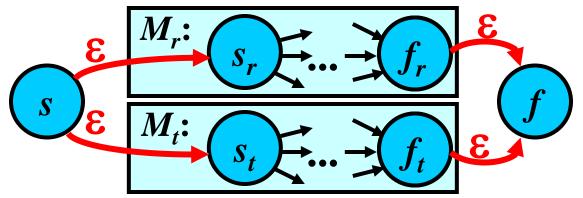
Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, \}$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. **Construction** $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\},$



23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. Construction $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \to s_r, s \to s_t, f_r \to f, f_t \to f\}, s,$ $S \to S_t, f_r \to f, f_t \to f\}, s,$

S,

 M_t :

23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. Construction $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\}, S, \{f\})$ 3 М_: S_r M_t : S,

23/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- Let *t* be RE over Σ and $M_t = (Q_t, \Sigma, R_t, s_t, \{f_t\})$ be an FA such that $L(M_t) = L(t)$.
- For a RE r + t, there exists an equivalent FA M_{r+t}

Proof: Let $Q_r \cap Q_t = \emptyset$, $s, f \notin Q_r \cup Q_t$. Construction $M_{r+t} = (Q_r \cup Q_t \cup \{s, f\}, \Sigma, R_r \cup R_t \cup \{s \rightarrow s_r, s \rightarrow s_t, f_r \rightarrow f, f_t \rightarrow f\}, s, \{f\})$ $M_{r+t}: \underset{K_r \rightarrow K_r}{\bigotimes} M_r: \underset{K_r \rightarrow K_r}{\bigwedge} M_r: \underset{K_r \rightarrow$

S_f

24/29

RE to FA: Iteration 4/5

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

• For the RE r^* , there exists an equivalent FA M_{r^*}

Proof: Let $s, f \notin Q_r$. **Construction:**

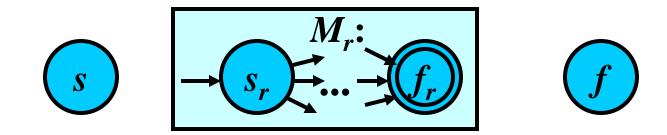
24/29

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

• For the RE r^* , there exists an equivalent FA M_{r^*}

Proof: Let $s, f \notin Q_r$. Construction:

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r$$



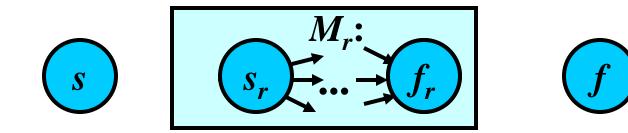
24/29

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

• For the RE r^* , there exists an equivalent FA M_{r^*}

Proof: Let $s, f \notin Q_r$. **Construction:**

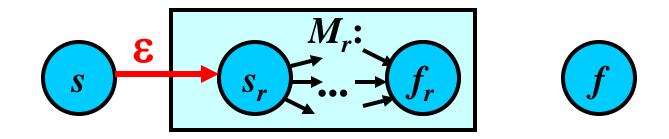
$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r$$



24/29

- Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.
- For the RE r^* , there exists an equivalent FA M_{r^*} **Proof:** Let $s, f \notin Q_r$. **Construction:**

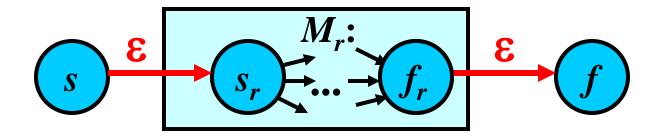
$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r,$$



24/29

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

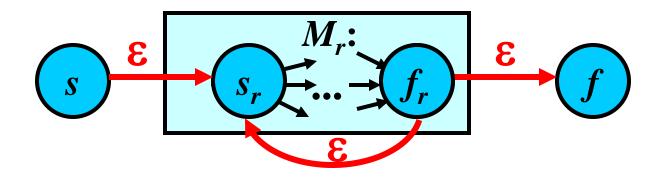
$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f,$$



24/29

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

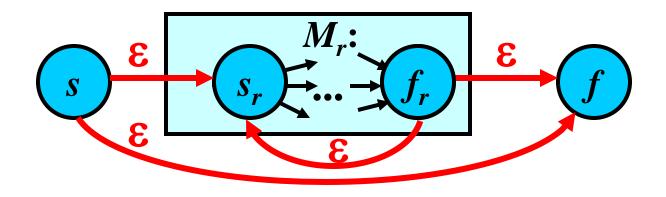
$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, f_r \to s_r,$$



24/29

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

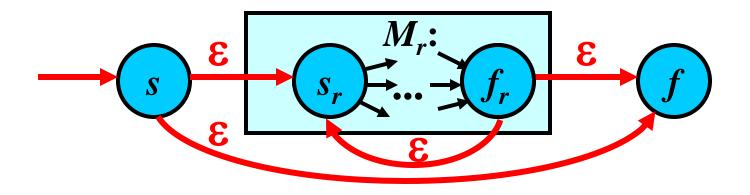
$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\},$$



24/29

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

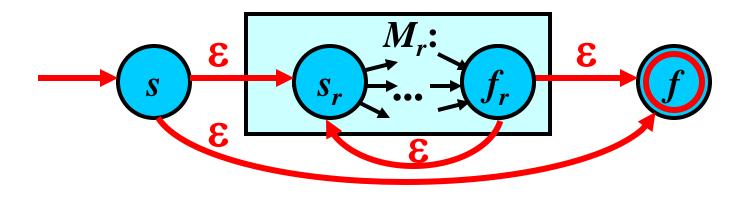
$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\}, S,$$



24/29

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

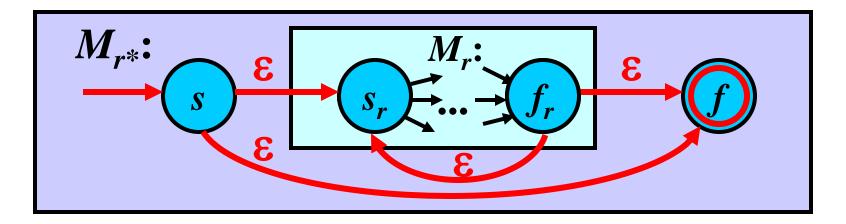
$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\}, s, \{f\})$$



24/29

• Let *r* be a RE over Σ and $M_r = (Q_r, \Sigma, R_r, s_r, \{f_r\})$ be an FA such that $L(M_r) = L(r)$.

$$M_{r^*} = (Q_r \cup \{s, f\}, \Sigma, R_r \cup \{s \to s_r, f_r \to f, f_r \to s_r, s \to f\}, s, \{f\})$$



25/29

RE to FA: Completion 5/5

- **Input:** RE r over Σ
- **Output:** FA *M* such that L(r) = L(M)
- Method:
- From "inside" of *r*, repeatedly use the next rules to construct *M*:
 - for RE \emptyset , construct FA M_{\emptyset}
 - for RE ε , construct FA M_{ε}
 - for RE $a \in \Sigma$, construct FA M_a
 - let for REs r and t, there already exist FAs M_r and M_t, respectively; then,
 - for RE *r.t*, construct FA $M_{r.t}$ (see 2/5)

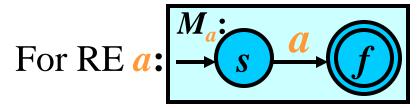
► (see 1/5)

(see 4/5)

- for RE r + t, construct FA M_{r+t} (see 3/5)
- for RE r^* construct FA M_{r^*}

26/29

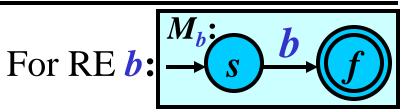
26/29



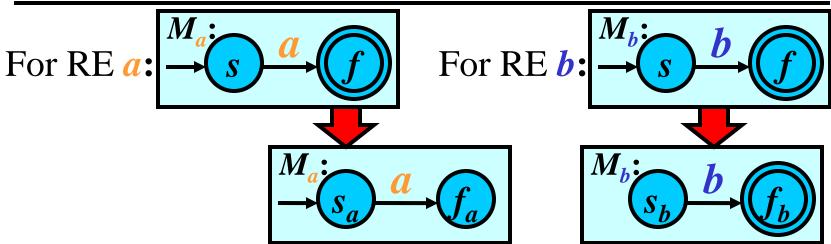
26/29

Transform RE $r = ((ab) + (cd))^*$ to an equivalent FA M

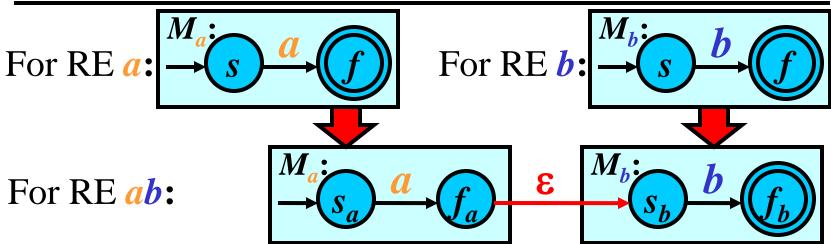
For RE a: M_a : a f



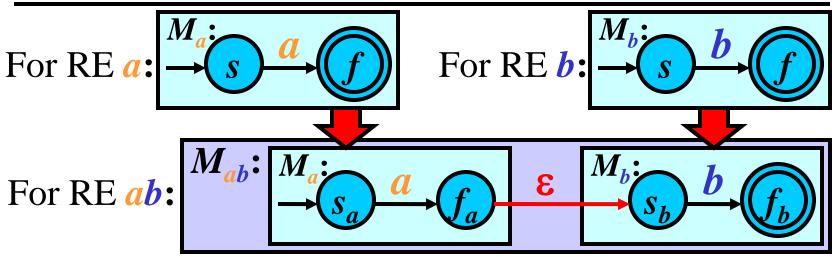
26/29



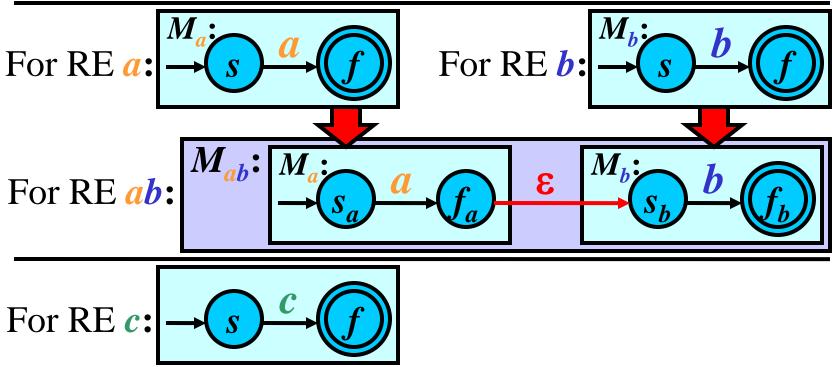
26/29



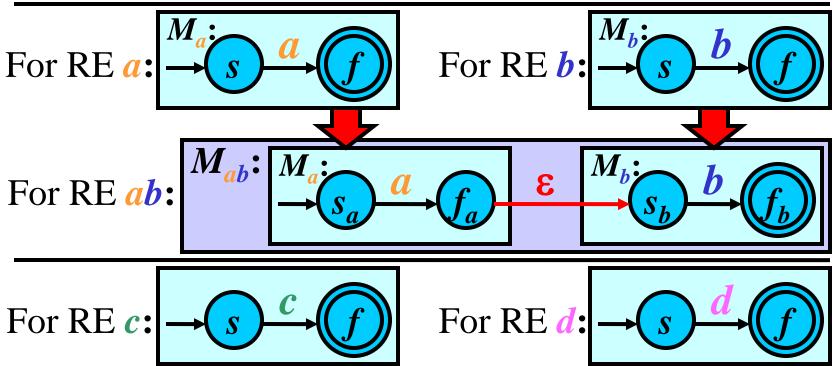
26/29



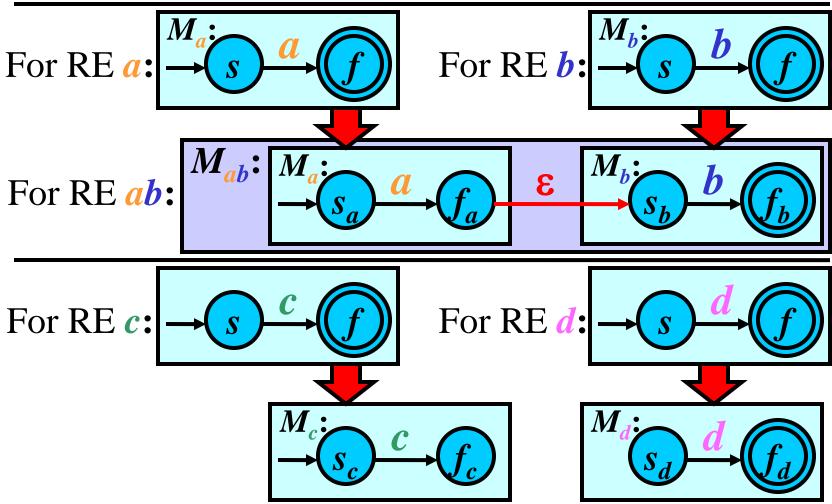
26/29



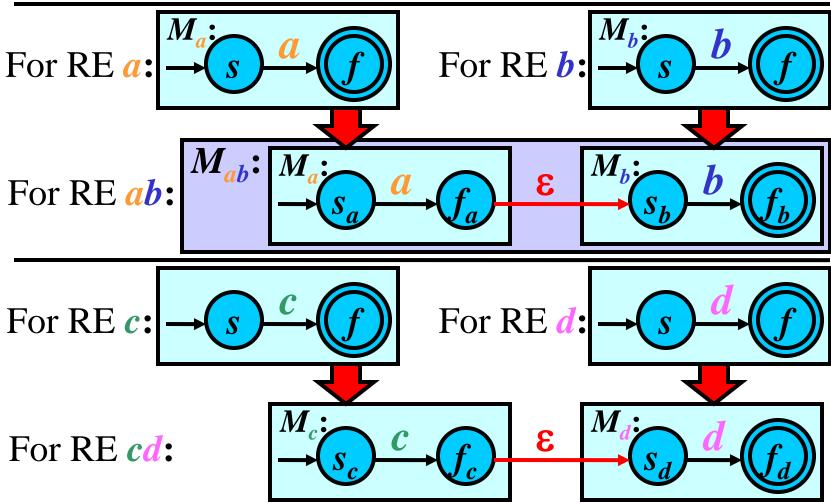
26/29



26/29

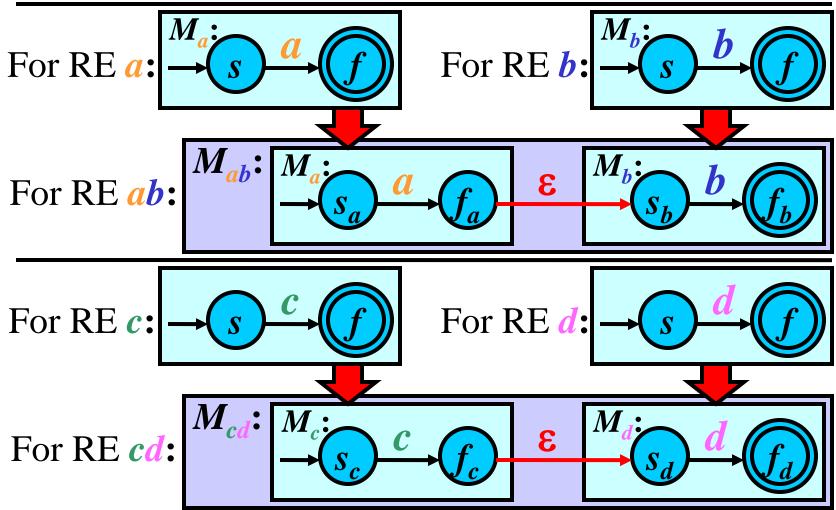


26/29



26/29

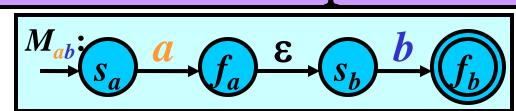
Transform RE $r = ((ab) + (cd))^*$ to an equivalent FA M



27/29

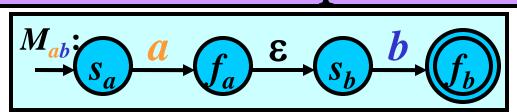
27/29

For RE *ab*:

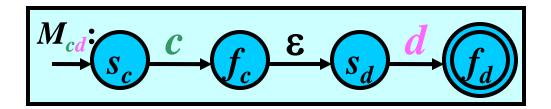


27/29

For RE *ab*:



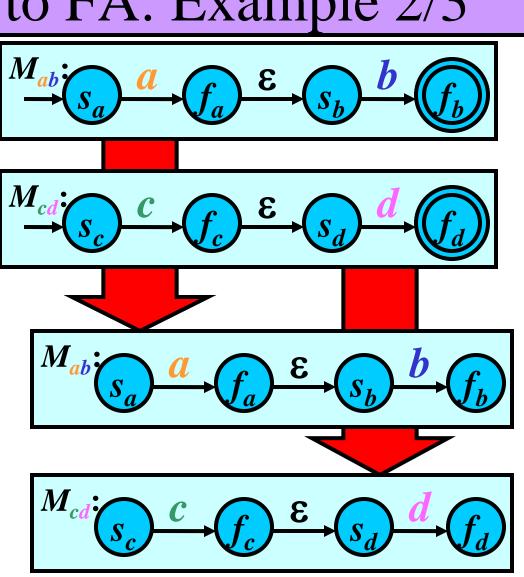
For RE *cd*:



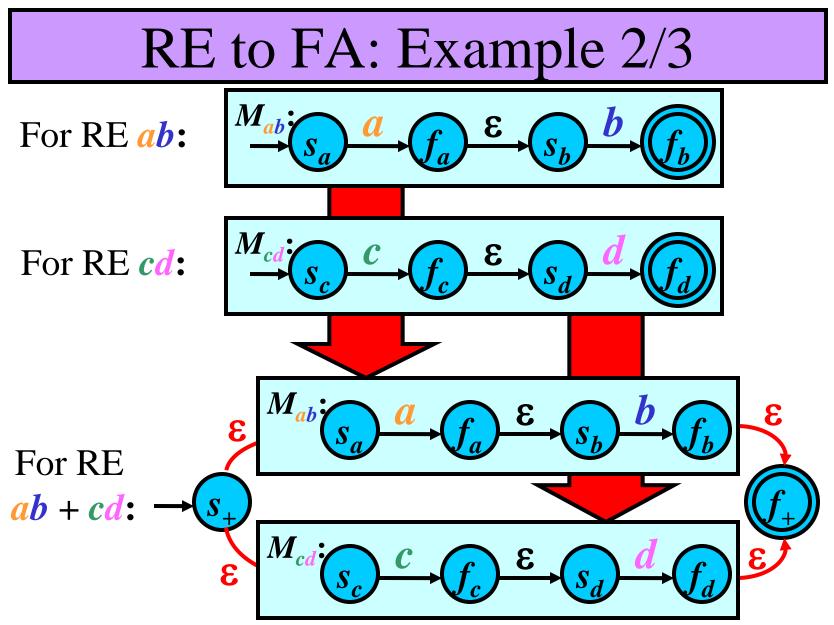
27/29

For RE *ab*:

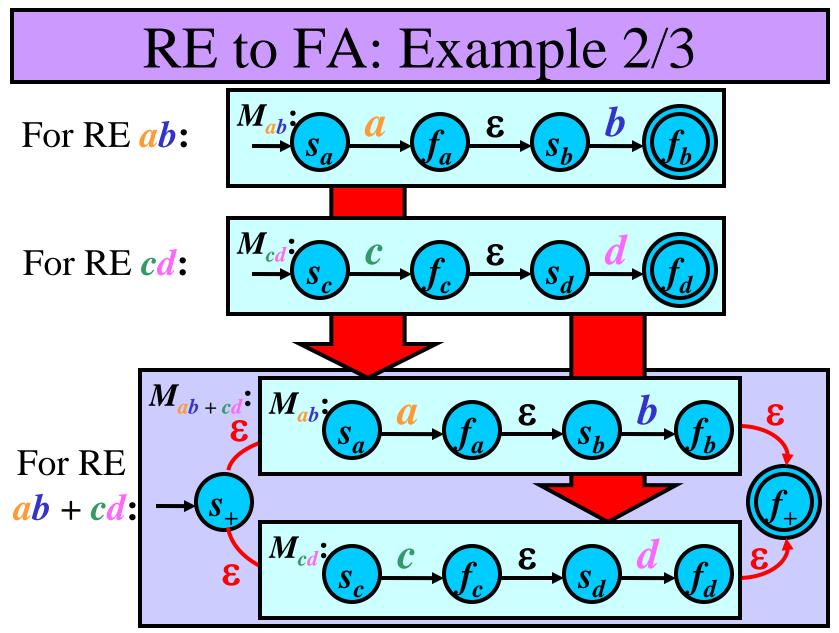
For RE *cd*:



27/29



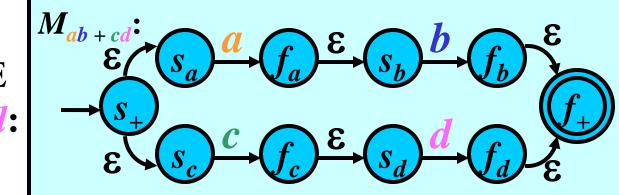
27/29



28/29

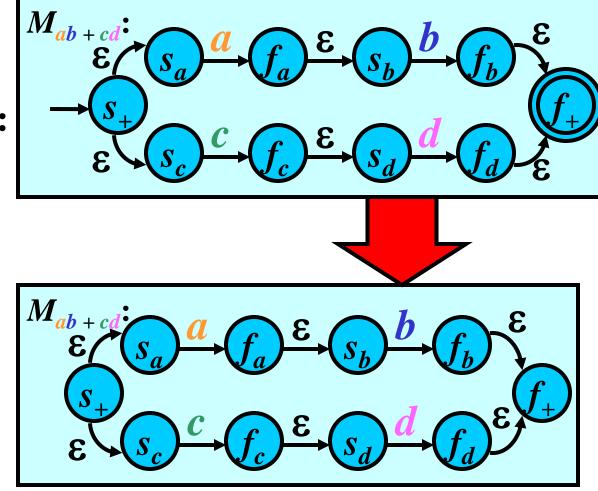
28/29

For RE *ab* + *cd*:

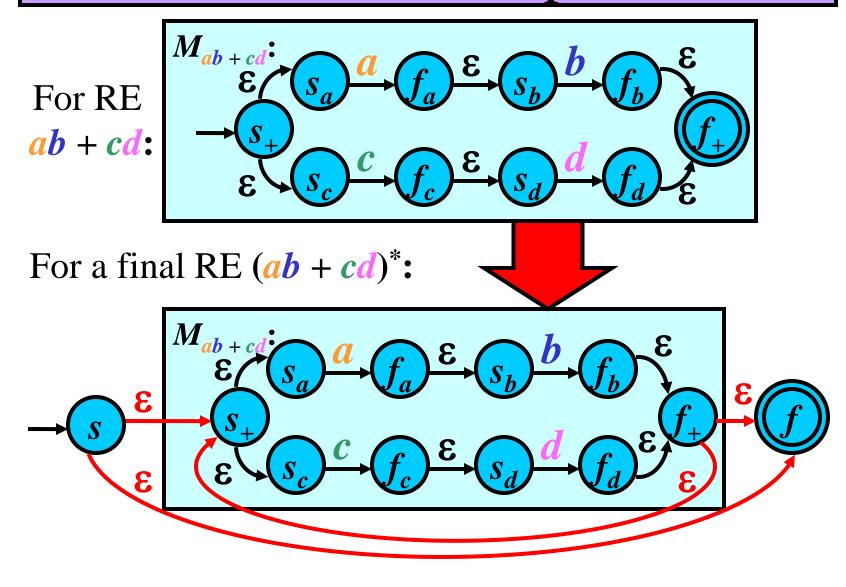


28/29

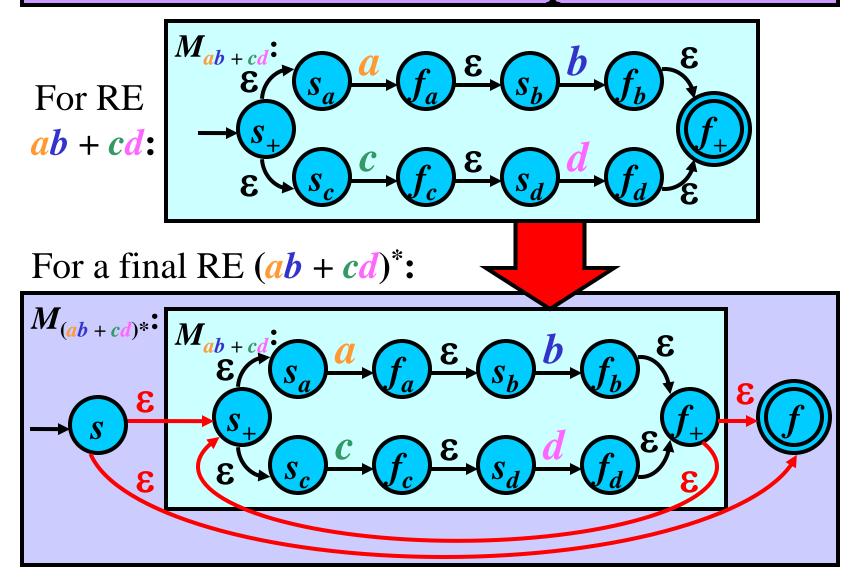
For RE *ab* + *cd*:



28/29



28/29



29/29

Models for Regular Languages

Theorem: For every RE *r*, there is an FA *M* such that L(r) = L(M).

Proof is based on the previous algorithm.

Theorem: For every FA *M*, there is an RE *r* such that L(M) = L(r).

Proof: See page 210 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for regular languages are
1) Regular expressions 2) Finite Automata