Properties of Regular Languages

Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

- Let L be a RL. Then, there is $k \geq 1$ such that if $z \in L$ and $|z| \geq k$, then there exist $u, v, w: z=u v w$, 1) $v \neq \varepsilon$ 2) $|u v| \leq k$ 3) for each $m \geq 0, u \nu^{m} w \in L$

Example: for RE $r=a b^{*} c, L(r)$ is regular. There is $k=3$ such that $\mathbf{1}), 2$) and $\mathbf{3}$) holds.

Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

- Let L be a RL. Then, there is $k \geq 1$ such that if $z \in L$ and $|z| \geq k$, then there exist $u, v, w: z=u v w$, 1) $v \neq \varepsilon$ 2) $|u v| \leq k$ 3) for each $m \geq 0, u \nu^{m} w \in L$

Example: for $\mathrm{RE} r=a b^{*} c, L(r)$ is regular. There is $\boldsymbol{k}=3$ such that $\mathbf{1}$), 2) and $\mathbf{3}$) holds.

- for $z=a b c: z \in L(r) \&|z| \geq 3: u v^{0} w=a b^{0} c=a c \in L(r)$

$$
\begin{gathered}
u v^{1} w=a b^{1} c=a b c \in L(r) \\
u v^{2} w=a b^{2} c=a b b c \in L(r) \\
\vdots
\end{gathered}
$$

Pumping Lemma for REs

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

- Let L be a RL. Then, there is $k \geq 1$ such that if $z \in L$ and $|z| \geq k$, then there exist $u, v, w: z=u v w$, 1) $v \neq \varepsilon$ 2) $|u v| \leq k$ 3) for each $m \geq 0, u \nu^{m} w \in L$

Example: for RE $r=a b^{*} c, L(r)$ is regular.
There is $\boldsymbol{k}=3$ such that $\mathbf{1}), \mathbf{2}$) and $\mathbf{3}$) holds.

- for $z=a b c: z \in L(r) \&|z| \geq 3: u v^{0} w=a b^{0} c=a c \in L(r)$

$$
\begin{gathered}
u v^{1} w=a b^{1} c=a b c \in L(r) \\
u v^{2} w=a b^{2} c \bar{\vdots}=a b c \in L(r) \\
\vdots
\end{gathered}
$$

- for $z=a b b c: z \in L(r) \&|z| \geq 3: u v^{0} w=a b^{0} b c=a b c \in L(r)$ $u v^{1} w=a b^{1} b c=a b b c \in L(r)$
$u v^{2} w=a b^{2} b c=a b b b c \in L(r)$

$$
v \neq \varepsilon,|u v|=2 \leq 3
$$

Pumping Lemma: Illustration

- $L=$ any regular language:

Pumping Lemma: Illustration

- $L=$ any regular language:

Pumping Lemma: Illustration

- $L=$ any regular language:

Pumping Lemma: Illustration

- $L=$ any regular language:

Pumping Lemma: Illustration

- $L=$ any regular language:

Pumping Lemma: Illustration

- $L=$ any regular language:
$z \quad \in L$

Pumping Lemma: Illustration

- $L=$ any regular language:

Proof of Pumping Lemma 1/3

- Let L be a regular language. Then, there exists DFA $M=(Q, \Sigma, R, s, F)$, and $L=L(M)$.
- For $z \in L(M), M$ makes $|z|$ moves and M visits $|z|+1$ states:
- for $z=a_{1} a_{2} \ldots a_{n}$:

$$
s \overparen{s a_{1} a_{2} \ldots a_{n}}\left|-q_{1} a_{2} \ldots a_{n}\right|-\ldots\left|-q_{n-1} a_{n}\right|-q_{n}
$$

Proof of Pumping Lemma 2/3

- Let $k=\operatorname{card}(Q)$ (the number of states).

For each $z \in L$ and $|z| \geq k, M$ visits $k+1$ or more states. As $k+1>\operatorname{card}(Q)$, there exists a state q that M visits at least twice.

- For z exist u, v, w such that $z=u v w$:

Proof of Pumping Lemma 2/3

- Let $\boldsymbol{k}=\operatorname{card}(Q)$ (the number of states).

For each $z \in L$ and $|z| \geq k, M$ visits $k+1$ or more states. As $k+1>\operatorname{card}(Q)$, there exists a state q that M visits at least twice.

- For z exist u, v, w such that $z=u v w$:

Proof of Pumping Lemma 2/3

- Let $\boldsymbol{k}=\operatorname{card}(Q)$ (the number of states).

For each $z \in L$ and $|z| \geq k, M$ visits $k+1$ or more states. As $k+1>\operatorname{card}(Q)$, there exists a state q that M visits at least twice.

- For z exist u, v, w such that $z=u v w$:

Proof of Pumping Lemma 2/3

- Let $\boldsymbol{k}=\operatorname{card}(Q)$ (the number of states).

For each $z \in L$ and $|z| \geq k, M$ visits $k+1$ or more states. As $k+1>\operatorname{card}(Q)$, there exists a state q that M visits at least twice.

- For z exist u, v, w such that $z=u v w$:

Proof of Pumping Lemma 2/3

- Let $\boldsymbol{k}=\operatorname{card}(Q)$ (the number of states).

For each $z \in L$ and $|z| \geq k, M$ visits $k+1$ or more states. As $k+1>\operatorname{card}(Q)$, there exists a state q that M visits at least twice.

- For z exist u, v, w such that $z=u v w$:

$$
s z=s u v w|-q v w|-\left.i q w\right|^{*} f, f \in F
$$

Proof of Pumping Lemma 3/3

- There exist moves:
(1.) $s u \mid-{ }^{i} q$; (2.) $\left.q v\right|^{i} q$; (3. $\left.q w\right|^{*} f, f \in F$, so

Proof of Pumping Lemma 3/3

- There exist moves:
(1.) $s u \mid-{ }^{i} q$; (2. $\left.q v\right|^{j} q$; 3. $\left.q w\right|^{*} f, f \in F$, so
- for $m=0, u v^{m} w=u v^{0} w=u w$,

SUW

6/26

Proof of Pumping Lemma 3/3

- There exist moves:
(1.) $s u \mid-{ }^{i} q$; (2. $\left.q v\right|^{j} q$; (3. $\left.q w\right|^{*} f, f \in F$, so
- for $m=0, u v^{m_{w}}=u v^{0} w=u w$,

6/26

Proof of Pumping Lemma 3/3

- There exist moves:
(1.) $s u \mid-{ }^{i} q$; (2.) $\left.q v\right|^{i} q$; (3. $\left.q w\right|^{*} f, f \in F$, so
- for $m=0, u v^{m} w=u v^{0} w=u w$,

6/26

Proof of Pumping Lemma 3/3

- There exist moves:
(1.) $s u \mid-{ }^{i} q$; (2.) $\left.q v\right|^{i} q$; (3. $\left.q w\right|^{*} f, f \in F$, so
- for $m=0, u v^{m} w=u v^{0} w=u w$,

- for each $m>0$,
$s u v^{m} w$

6/26

Proof of Pumping Lemma 3/3

- There exist moves:
(1.) $s u \mid-{ }^{i} q$; (2.) $\left.q v\right|^{j} q$; (3. $\left.q w\right|^{*} f, f \in F$, so
- for $m=0, u v^{m} w=u v^{0} w=u w$,

- for each $m>0$,
$\operatorname{suv} v_{W}{ }_{-1 .}^{-i} q v^{m_{W}}$

6/26

Proof of Pumping Lemma 3/3

- There exist moves:
(1.) $s u \mid-i q$; (2. $\left.q v\right|^{i} q$; 3. $q w \mid-^{*} f, f \in F$, so
- for $m=0, u v^{m} w=u v^{0} w=u w$,

- for each $m>0$,

6/26

Proof of Pumping Lemma 3/3

- There exist moves:
(1.) $s u \mid-i q$; (2. $\left.q v\right|^{i} q$; 3. $q w \mid-^{*} f, f \in F$, so
- for $m=0, u v^{m} w=u v^{0} w=u w$,

- for each $m>0$,

Proof of Pumping Lemma 3/3

- There exist moves:
(1.) $s u \mid-i q$; (2. $\left.q v\right|^{i} q$; 3. $q w \mid-^{*} f, f \in F$, so
- for $m=0, u v^{m} w=u v^{0} w=u w$,

- for each $m>0$,

Summary:

1) $q v \mid-{ }^{j} q, j \geq 1$; therefore, $|v| \geq 1$, so $v \neq \varepsilon$
2) $s u v\left|-{ }^{i} \boldsymbol{q} v\right|-{ }^{j} \boldsymbol{q}, i+j \leq k$; therefore, $|u v| \leq \boldsymbol{k}$
3) For each $m \geq 0: ~ s u v^{m} w \mid-^{*} f, f \in F$, therefore $u v^{m} \mathcal{W} \in L$

QED

Pumping Lemma: Application I

- Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is not regular

Pumping Lemma: Application I

- Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is not regular Assume that L is regular

Pumping Lemma: Application I

- Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is not regular

Assume that L is regular

Consider the PL constant \boldsymbol{k} and select $z \in L$, whose length depends on \boldsymbol{k} so $|z| \geq \boldsymbol{k}$ is surely true.

7/26

Pumping Lemma: Application I

- Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is not regular

Assume that L is regular

Consider the PL constant \boldsymbol{k} and select $z \in L$, whose length depends on \boldsymbol{k} so $|z| \geq \boldsymbol{k}$ is surely true.

For all decompositions of z into $\boldsymbol{u} \boldsymbol{v} \boldsymbol{w}, v \neq \varepsilon,|u v| \leq k$, show: there exists $m \geq 0$ such that $\boldsymbol{u} \boldsymbol{v}^{m} \boldsymbol{w} \notin \boldsymbol{L}$ from the pumping lemma, $\left.\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{m}} \boldsymbol{w} \in \boldsymbol{L}\right\}$

7/26

Pumping Lemma: Application I

- Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is not regular

Assume that L is regular

Consider the PL constant \boldsymbol{k} and select $z \in L$, whose length depends on \boldsymbol{k} so $|z| \geq \boldsymbol{k}$ is surely true.

For all decompositions of z into $\boldsymbol{u} \boldsymbol{v} \boldsymbol{w}, v \neq \varepsilon,|u v| \leq k$, show: there exists $m \geq 0$ such that $\boldsymbol{u} \boldsymbol{v}^{m} \boldsymbol{w} \notin \boldsymbol{L}$ from the pumping lemma, $\left.\boldsymbol{u} \boldsymbol{\nu}^{\boldsymbol{m}} \boldsymbol{w} \in L\right\}$

Pumping Lemma: Application I

- Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is not regular Assume that L is regular

Consider the PL constant \boldsymbol{k} and select $z \in L$, whose length depends on \boldsymbol{k} so $|z| \geq \boldsymbol{k}$ is surely true.

For all decompositions of \boldsymbol{z} into $\boldsymbol{u} \boldsymbol{v} \boldsymbol{w}, v \neq \varepsilon,|u v| \leq k$, show: there exists $m \geq 0$ such that $\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{m}} \boldsymbol{w} \notin \boldsymbol{L}$ from the pumping lemma, $\left.\boldsymbol{u} \boldsymbol{\nu}^{m} \boldsymbol{w} \in \boldsymbol{L}\right\}$

Therefore, L is not regular

Pumping Lemma: Example

Prove that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular:

1) Assume that L is regular. Let $k \geq 1$ be the pumping lemma constant for L.
2) Let $z=a^{k} \boldsymbol{b}^{k}: a^{k} \boldsymbol{b}^{k} \in L,|z|=\left|a^{k} \boldsymbol{b}^{k}\right|=2 k \geq k$
3) All decompositions of z into $u v \boldsymbol{v}, v \neq \varepsilon,|u v| \leq k$:

Pumping Lemma: Example

Prove that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular:

1) Assume that L is regular. Let $k \geq 1$ be the pumping lemma constant for L.
2) Let $z=a^{k} \boldsymbol{b}^{k}: a^{k} \boldsymbol{b}^{k} \in L,|z|=\left|a^{k} \boldsymbol{b}^{k}\right|=2 k \geq k$
3) All decompositions of z into $u v \boldsymbol{v}, v \neq \varepsilon,|u v| \leq k$:

Pumping Lemma: Example

Prove that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular:

1) Assume that L is regular. Let $k \geq 1$ be the pumping lemma constant for L.
2) Let $z=a^{k} \boldsymbol{b}^{k}: a^{k} \boldsymbol{b}^{k} \in L,|z|=\left|a^{k} \boldsymbol{b}^{k}\right|=2 k \geq k$
3) All decompositions of z into $u v \boldsymbol{w}, v \neq \varepsilon,|u v| \leq k$:

Pumping Lemma: Example

Prove that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular:

1) Assume that L is regular. Let $k \geq 1$ be the pumping lemma constant for L.
2) Let $z=a^{k} b^{k}: a^{k} b^{k} \in L,|z|=\left|a^{k} b^{k}\right|=2 k \geq k$
3) All decompositions of z into $u v \boldsymbol{w}, v \neq \varepsilon,|u v| \leq k$:

Contradiction!

Pumping Lemma: Example

Prove that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular:

1) Assume that L is regular. Let $k \geq 1$ be the pumping lemma constant for L.
2) Let $z=a^{k} b^{k}: a^{k} b^{k} \in L,|z|=\left|a^{k} b^{k}\right|=2 k \geq k$
3) All decompositions of z into $u v \boldsymbol{w}, v \neq \varepsilon,|u v| \leq k$:

Contradiction!
4) Therefore, L is not regular

Note on Use of Pumping Lemma

- Pumping lemma:
if L is regular exist $k \geq 1$ and \ldots
Main application of the pumping lemma:
- proof by contradiction that L is not regular.

Note on Use of Pumping Lemma

- Pumping lemma:

Main application of the pumping lemma:

- proof by contradiction that L is not regular.
- However, the next implication is incorrect:

- We cannot use the pumping lemma to prove that L is regular.

Pumping Lemma: Application II. 1/3

- We can use the pumping lemma to prove some other theorems.

Illustration:

- Let M be a DFA and k be the pumping lemma constant (k is the number of states in M). Then, $L(M)$ is infinite \Leftrightarrow there exists $z \in L(M), k \leq|z|<2 k$
Proof:

1) there exists $z \in L(M), k \leq|z|<2 k \Rightarrow L(M)$ is infinite:

Pumping Lemma: Application II. 1/3

- We can use the pumping lemma to prove some other theorems.

Illustration:

- Let M be a DFA and k be the pumping lemma constant (k is the number of states in M). Then, $L(M)$ is infinite \Leftrightarrow there exists $z \in L(M), k \leq|z|<2 k$
Proof:

1) there exists $z \in L(M), k \leq|z|<2 k \Rightarrow L(M)$ is infinite:
if $z \in L(M), k \leq|z|$, then by PL:
$z=u \nu w, v \neq \varepsilon$, and for each $m \geq 0: u \nu^{m} w \in L(M)$

Pumping Lemma: Application II. 1/3

- We can use the pumping lemma to prove some other theorems.

Illustration:

- Let M be a DFA and k be the pumping lemma constant (k is the number of states in M). Then, $L(M)$ is infinite \Leftrightarrow there exists $z \in L(M), k \leq|z|<2 k$
Proof:

1) there exists $z \in L(M), k \leq|z|<2 k \Rightarrow L(M)$ is infinite:
if $z \in L(M), k \leq|z|$, then by PL:
$z=u v w, \underbrace{v \neq \varepsilon, ~ a n d ~ f o r ~ e a c h ~} \underbrace{m \geq 0: u v^{m} w \in L(M)}$ $L(M)$ is infinite

Pumping Lemma: Application II. 2/3

2) $L(M)$ is infinite \Rightarrow there exists $z \in L(M), k \leq|z|<2 k$:

- We prove by contradiction, that

there exists $z \in L(M), k \leq|z|<2 k$
a) Prove by contradiction that
- $L(M)$ is infinite \Rightarrow there exists $z \in L(M),|z| \geq k$

Pumping Lemma: Application II. 2/3

2) $L(M)$ is infinite \Rightarrow there exists $z \in L(M), k \leq|z|<2 k$:

- We prove by contradiction, that

there exists $z \in L(M), k \leq|z|<2 k$
a) Prove by contradiction that
- $L(M)$ is infinite \Rightarrow there exists $z \in L(M),|z| \geq k$ Assume that $L(M)$ is infinite and there exists no $z \in L(M),|z| \geq k$

Pumping Lemma: Application II. 2/3

2) $L(M)$ is infinite \Rightarrow there exists $z \in L(M), k \leq|z|<2 k$:

- We prove by contradiction, that

there exists $z \in L(M), k \leq|z|<2 k$
a) Prove by contradiction that
- $L(M)$ is infinite \Rightarrow there exists $z \in L(M),|z| \geq k$

Assume that $L(M)$ is infinite and there exists no $z \in L(M),|z| \geq k$

$$
\text { for all } z \in L(M) \text { holds }|z|<k
$$

Pumping Lemma: Application II. 2/3

2) $L(M)$ is infinite \Rightarrow there exists $z \in L(M), k \leq|z|<2 k$:

- We prove by contradiction, that

there exists $z \in L(M), k \leq|z|<2 k$
a) Prove by contradiction that
- $L(M)$ is infinite \Rightarrow there exists $z \in L(M),|z| \geq k$

Assume that $L(M)$ is infinite and there exists no $z \in L(M),|z| \geq k$

$$
\begin{array}{r}
\text { for all } z \in L(M) \text { holds } \stackrel{\downarrow}{\downarrow}|z|<k \\
L(M) \text { is finite }
\end{array}
$$

Pumping Lemma: Application II. 2/3

2) $L(M)$ is infinite \Rightarrow there exists $z \in L(M), k \leq|z|<2 k$:

- We prove by contradiction, that

there exists $z \in L(M), k \leq|z|<2 k$
a) Prove by contradiction that
- $L(M)$ is infinite \Rightarrow there exists $z \in L(M),|z| \geq k$ Assume that $L(M)$ is infinite and there exists no $z \in L(M),|z| \geq k$

Pumping Lemma: Application II. 3/3
b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$
Assume that there is $z \in L(M),|z| \geq k$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$
Assume that there is $z \in L(M),|z| \geq k$ and there is no $z \in L(M), k \leq|z|<2 k$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$
Assume that there is $z \in L(M),|z| \geq k$ and there is no $z \in L(M), k \leq|z|<2 k$

Let z_{0} be the shortest string satisfying $z_{0} \in L(M),\left|z_{0}\right| \geq k$ Because there exists no $z \in L(M), k \leq|z|<2 k$, so $\left|z_{0}\right| \geq 2 k$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$
Assume that there is $z \in L(M),|z| \geq k$ and there is $n o z \in L(M), k \leq|z|<2 k$

Let z_{0} be the shortest string satisfying $z_{0} \in L(M),\left|z_{0}\right| \geq k$
Because there exists no $z \in L(M), k \leq|z|<2 k$, so $\left|z_{0}\right| \geq 2 k$
If $z_{0} \in L(M)$ and $\left|z_{0}\right| \geq k$, the PL implies: $z_{0}=u v w$,
$|u \nu| \leq k$, and for each $m \geq 0, u \nu^{m} w \in L(M)$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$
Assume that there is $z \in L(M),|z| \geq k$ and there is no $z \in L(M), k \leq|z|<2 k$

Let z_{0} be the shortest string satisfying $z_{0} \in L(M),\left|z_{0}\right| \geq k$
Because there exists no $z \in L(M), k \leq|z|<2 k$, so $\left|z_{0}\right| \geq 2 k$
If $z_{0} \in L(M)$ and $\left|z_{0}\right| \geq k$, the PL implies: $z_{0}=u v w$,
$|u \nu| \leq k$, and for each $m \geq 0, u \nu^{m} w \in L(M)$
$|\boldsymbol{u} \boldsymbol{w}|=\left|z_{0}\right|-||v| \geq \boldsymbol{k}$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$
Assume that there is $z \in L(M),|z| \geq k$ and there is no $z \in L(M), k \leq|z|<2 k$

Let z_{0} be the shortest string satisfying $z_{0} \in L(M),\left|z_{0}\right| \geq k$
Because there exists no $z \in L(M), k \leq|z|<2 k$, so $\left|z_{0}\right| \geq 2 k$
If $z_{0} \in L(M)$ and $\left|z_{0}\right| \geq k$, the PL implies: $z_{0}=u v w$,
$|u v| \leq k$, and for each $m \geq 0, u v^{m} w \in L(M)$
$|\boldsymbol{u} \boldsymbol{w}|=\left|z_{0}\right|-|v| \geq \boldsymbol{k}$
\downarrow
for $m=0: u \nu^{m} w=\boldsymbol{u} \boldsymbol{w} \in \boldsymbol{L}(\boldsymbol{M})$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$
Assume that there is $z \in L(M),|z| \geq k$ and there is no $z \in L(M), k \leq|z|<2 k$

Let z_{0} be the shortest string satisfying $z_{0} \in L(M),\left|z_{0}\right| \geq k$
Because there exists no $z \in L(M), k \leq|z|<2 k$, so $\left|z_{0}\right| \geq 2 k$
If $z_{0} \in L(M)$ and $\left|z_{0}\right| \geq k$, the PL implies: $z_{0}=u v w$,
$|u v| \leq k$, and for each $m \geq 0, u v^{m} w \in L(M)$
$|\boldsymbol{u} \boldsymbol{w}|=\left|z_{0}\right|-|v| \geq \boldsymbol{k} \quad$ for $m=0: u \nu^{m} w=\boldsymbol{u} \boldsymbol{w} \in \boldsymbol{L}(\boldsymbol{M})$
Summary: $u w \in L(M),|u w| \geq k$ and $|u w|<\left|z_{0}\right|$!

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$
Assume that there is $z \in L(M),|z| \geq k$ and there is no $z \in L(M), k \leq|z|<2 k$

Let z_{0} be the shortest string satisfying $z_{0} \in L(M),\left|z_{0}\right| \geq k$
Because there exists no $z \in L(M), k \leq|z|<2 k$, so $\left|z_{0}\right| \geq 2 k$ If $z_{0} \in L(M)$ and $\left|z_{0}\right| \geq k$, the PL implies: $z_{0}=u v w$, $|u v| \leq k$, and for each $m \geq 0, u v^{m} w \in L(M)$
$|\boldsymbol{u} \boldsymbol{w}|=\left|z_{0}\right|-|v| \geq \boldsymbol{k} \quad$ for $m=0: u \nu^{m} \boldsymbol{w}=\boldsymbol{u} \boldsymbol{w} \in \boldsymbol{L}(\boldsymbol{M})$
Summary: $u w \in L(M),|u w| \geq k$ and $|u w|<\left|z_{0}\right|$!
z_{0} is not the shortest string satisfying $z_{0} \in L(M),\left|z_{0}\right| \geq k$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

- there exists $z \in L(M),|z| \geq k \Rightarrow$ there exists $z \in L(M), k \leq|z|<2 k$
Assume that there is $z \in L(M),|z| \geq k$ and there is no $z \in L(M), k \leq|z|<2 k$

Let z_{0} be the shortest string satisfying $z_{0} \in L(M),\left|z_{0}\right| \geq k$
Because there exists no $z \in L(M), k \leq|z|<2 k$, so $\left|z_{0}\right| \geq 2 k$
If $z_{0} \in L(M)$ and $\left|z_{0}\right| \geq k$, the PL implies: $z_{0}=u \nu w$,
$|u v| \leq k$, and for each $m \geq 0, u \nu^{m} w \in L(M)$
$\geq 2 k \leq k \quad \downarrow$
$|\boldsymbol{u} \boldsymbol{w}|=\left|z_{0}\right|-|v| \geq \boldsymbol{k} \quad$ for $m=0: u \nu^{m} w=\boldsymbol{u} \boldsymbol{w} \in \boldsymbol{L}(\boldsymbol{M})$
Summary: $u w \in L(M),|u w| \geq k$ and $|u w|<\left|z_{0}\right|$!
z_{0} is not the shortest string satisfying $z_{0} \in L(M),\left|z_{0}\right| \geq k$

Closure properties $1 / 2$

Definition: The family of regular languages is closed under an operation $\boldsymbol{\sigma}$ if the language resulting from the application of \boldsymbol{o} to any regular languages is also regular.

Closure properties $1 / 2$

Definition: The family of regular languages is closed under an operation \boldsymbol{o} if the language resulting from the application of \boldsymbol{o} to any regular languages is also regular.

Illustration:

- The family of regular languages is closed under union. It means:

Closure properties $1 / 2$

Definition: The family of regular languages is closed under an operation \boldsymbol{o} if the language resulting from the application of \boldsymbol{o} to any regular languages is also regular.

Illustration:

- The family of regular languages is closed under union. It means:

Closure properties $1 / 2$

Definition: The family of regular languages is closed under an operation \boldsymbol{o} if the language resulting from the application of \boldsymbol{o} to any regular languages is also regular.

Illustration:

- The family of regular languages is closed under union. It means:

Closure properties $2 / 2$

Theorem: The family of regular languages is closed under union, concatenation, iteration.

Proof:

- Let L_{1}, L_{2} be two regular languages
- Then, there exist two REs $r_{1}, r_{2}: L\left(r_{1}\right)=\boldsymbol{L}_{1}, L\left(r_{2}\right)=\boldsymbol{L}_{2}$;
- By the definition of regular expressions:
- $r_{1} \cdot r_{2}$ is a RE denoting $\boldsymbol{L}_{\mathbf{1}} \boldsymbol{L}_{\mathbf{2}}$
- $r_{1}+r_{2}$ is a RE denoting $\boldsymbol{L}_{\mathbf{1}} \cup \boldsymbol{L}_{\mathbf{2}}$
- $r_{1}{ }^{*}$ is a RE denoting $L_{\mathbf{1}}{ }^{*}$
- Every RE denotes regular language, so $L_{1} L_{2}, L_{1} \cup L_{2}, L_{1}^{*}$ are a regular languages

Algorithm: FA for Complement

- Input: Complete FA: $M=(Q, \Sigma, R, s, F)$
- Output: Complete FA: $M^{\prime}=\left(Q, \Sigma, R, s, F^{\prime}\right)$,

$$
L\left(M^{\prime}\right)=\overline{L(M)}
$$

- Method:
- F^{\prime} := $Q-F$

Example:

Algorithm: FA for Complement

- Input: Complete FA: $M=(Q, \Sigma, R, s, F)$
- Output: Complete FA: $M^{\prime}=\left(Q, \Sigma, R, s, F^{\prime}\right)$,

$$
L\left(M^{\prime}\right)=\overline{L(M)}
$$

- Method:
- F^{\prime} := $Q-F$

Example:

Algorithm: FA for Complement

- Input: Complete FA: $M=(Q, \Sigma, R, s, F)$
- Output: Complete FA: $M^{\prime}=\left(Q, \Sigma, R, s, F^{\prime}\right)$,

$$
L\left(M^{\prime}\right)=\overline{L(M)}
$$

- Method:
- $F^{\prime}:=Q-F$

Example:

$L(M)=\{x: a b$ is a substring of $x\} ; L\left(M^{\prime}\right)=\{x: a b$ is no substring of $x\}$

FA for Complement: Problem

- Previous algorithm requires a complete FA
- If M is incomplete FA, then M must be converted to a complete FA before we use the previous algorithm Example: Incomplete DFA:

FA for Complement: Problem

- Previous algorithm requires a complete FA
- If M is incomplete FA, then M must be converted to a complete FA before we use the previous algorithm Example: Incomplete DFA:

$$
L\left(M_{1}{ }^{\prime}\right) \neq \overline{L(M)}!-c \notin L(M), c \notin L\left(M_{1}{ }^{\prime}\right)
$$

FA for Complement: Problem

- Previous algorithm requires a complete FA
- If M is incomplete FA, then M must be converted to a complete FA before we use the previous algorithm Example: Incomplete DFA:

$$
L\left(M_{1}{ }^{\prime}\right) \neq \overline{L(M)}!-c \notin L(M), c \notin L\left(M_{1}{ }^{\prime}\right)
$$

Complete DFA:

FA for Complement: Problem

- Previous algorithm requires a complete FA
- If M is incomplete FA, then M must be converted to a complete FA before we use the previous algorithm Example: Incomplete DFA:

$$
L\left(M_{1}{ }^{\prime}\right) \neq \overline{L(M)}!-c \notin L(M), c \notin L\left(M_{1}{ }^{\prime}\right)
$$

$$
L\left(M_{2}{ }^{\prime}\right)=\overline{L(M)}
$$

Complete DFA:

Closure properties: Complement

Theorem: The family of regular languages is closed under complement.

Proof:

- Let L be a regular language
- Then, there exists a complete DFA $M: L(M)=\boldsymbol{L}$
- We can construct a complete DFA $M^{\prime}: L\left(M^{\prime}\right)=\overline{\boldsymbol{L}}$ by using the previous algorithm
- Every FA defines a regular language, so L is a regular language

Closure properties: Intersection

Theorem: The family of regular languages is closed under intersection.

Proof:

- Let L_{1}, L_{2} be two regular languages
- $\overline{L_{1}}, \overline{L_{2}}$ are regular languages
(the family of regular languages is closed under complement)
- $\overline{L_{1}} \cup \overline{L_{2}}$ is a regular language
(the family of regular languages is closed under union)
- $\bar{L}_{1} \cup \bar{L}_{2}$ is a regular language
(the family of regular languages is closed under complement)
- $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ is a regular language (DeMorgan's law)

Boolean Algebra of Languages

Definition: Let a family of languages be closed under union, intersection, and complement. Then, this family represents a Boolean algebra of languages.
Theorem: The family of regular languages is a Boolean algebra of languages.

Proof:

- The family of regular languages is closed under union, intersection, and complement.

Main Decidable Problems

1. Membership problem:

- Instance: FA $M, w \in \Sigma^{*}$; Question: $w \in L(M)$?

2. Emptiness problem:

- Instance: FA M; \quad Question: $L(M)=\varnothing$?

3. Finiteness problem:

- Instance: FA M; \quad Question: Is $L(M)$ finite?

4. Equivalence problem:

- Instance: FA M_{1}, M_{2}; Question: $L\left(M_{1}\right)=L\left(M_{2}\right)$?

Algorithm: Membership Problem

- Input: DFA $M=(Q, \Sigma, R, s, F) ; w \in \Sigma^{*}$
- Output: YES if $w \in L(M)$

NO if $w \notin L(M)$

- Method:
- if $s w \mid-'^{*} f, f \in F$ then write ('YES') else write ('NO')

Summary:

The membership problem for FAs is decidable

Algorithm: Emptiness Problem

- Input: FA $M=(Q, \Sigma, R, s, F)$;
- Output: YES if $L(M)=\varnothing$

NO if $L(M) \neq \varnothing$

- Method:
- if s is nonterminating then write ('YES') else write ('NO')

Summary:

The emptiness problem for FAs is decidable

Algorithm: Finiteness Problem

- Input: DFA $M=(Q, \Sigma, R, s, F)$;
- Output: YES if $L(M)$ is finite

NO if $L(M)$ is infinite

- Method:
- Let $k=\operatorname{card}(Q)$
- if there exist $z \in L(M), k \leq|z|<2 k$ then write ('NO') else write ('YES')
Note: This algorithm is based on
$L(M)$ is infinite \Leftrightarrow there exists $z: z \in L(M), k \leq|z|<2 k$
Summary:
The finiteness problem for FAs is decidable

Decidable Problems: Example

Question: $a b \in L(M)$?

Decidable Problems: Example

 $M: a$Question: $a b \in L(M)$?
$s a b|-s b|-f, f \in F$

Decidable Problems: Example

M:

Question: $a b \in L(M)$?
$s a b|-s b|-f, f \in F$
Answer: YES because $\boldsymbol{s} a \boldsymbol{b} \mid-{ }^{*} f, f \in \boldsymbol{F}$

Decidable Problems: Example M:

Question: $a b \in L(M)$?
$s a b|-s b|-f, f \in F$
Answer: YES because $s a b \mid-{ }^{*} f, f \in \boldsymbol{F}$
Question: $L(M)=\varnothing$?

Decidable Problems: Example M:

Question: $a b \in L(M)$?
$s a b|-s b|-f, f \in F$
Answer: YES because $\boldsymbol{s} \boldsymbol{a} \boldsymbol{b} \mid{ }^{*} f, f \in \boldsymbol{f}$
Question: $L(M)=\varnothing$?
$Q_{0}=\{f\}$

Decidable Problems: Example M:

Question: $a \boldsymbol{b} \in L(M)$?

$s a b|-s b|-f, f \in F$
Answer: YES because $\boldsymbol{s} a b \mid-{ }^{-} f, f \in \boldsymbol{F}$
Question: $L(M)=\varnothing$?
$Q_{0}=\{f\}$

1. $q a^{\prime} \rightarrow f ; q \in Q ; a^{\prime} \in \Sigma: s b \rightarrow f, f a \rightarrow f$
$Q_{1}=\{f\} \cup\{s, f\}=\{f, s\} \ldots s$ is terminating

Decidable Problems: Example M:

Question: $a b \in L(M)$?

$s a b|-s b|-f, f \in F$
Answer: YES because $\boldsymbol{s} a \boldsymbol{b} \mid-{ }^{*} f, f \in \boldsymbol{F}$
Question: $L(M)=\varnothing$?
$Q_{0}=\{f\}$

1. $q a^{\prime} \rightarrow f ; q \in Q ; a^{\prime} \in \Sigma: s b \rightarrow f, f a \rightarrow f$
$Q_{1}=\{f\} \cup\{s, f\}=\{f, s\} \ldots s$ is terminating
Answer: NO because s is terminating

Decidable Problems: Example M:

Question: $a \boldsymbol{b} \in L(M)$?

$s a b|-s b|-f, f \in F$
Answer: YES because $\boldsymbol{s} a \boldsymbol{b} \mid-{ }^{*} f, f \in \boldsymbol{F}$
Question: $L(M)=\varnothing$?
$Q_{0}=\{f\}$

1. $q a^{\prime} \rightarrow f ; q \in Q ; a^{\prime} \in \Sigma: s b \rightarrow f, f a \rightarrow f$
$Q_{1}=\{f\} \cup\{s, f\}=\{f, s\} \ldots s$ is terminating
Answer: NO because s is terminating
Question: Is $L(M)$ finite?

Decidable Problems: Example M:

Question: $a b \in L(M)$?

$s a b|-s b|-f, f \in F$
Answer: YES because $\boldsymbol{s} a \boldsymbol{b} \mid-{ }^{*} f, f \in \boldsymbol{F}$
Question: $L(M)=\varnothing$?
$Q_{0}=\{f\}$

1. $q a^{\prime} \rightarrow f ; q \in Q ; a^{\prime} \in \Sigma: s b \rightarrow f, f a \rightarrow f$
$Q_{1}=\{f\} \cup\{s, f\}=\{f, s\} \ldots s$ is terminating
Answer: NO because s is terminating
Question: Is $L(M)$ finite? $\quad k=\operatorname{card}(\boldsymbol{Q})=2$
All strings $z \in \Sigma^{*}: 2 \leq|z|<4: a a, b b, a b, \ldots$

Decidable Problems: Example M:

Question: $a b \in L(M)$?

$s a b|-s b|-f, f \in F$
Answer: YES because $\boldsymbol{s} \boldsymbol{a b} \mid-{ }^{-*} f, f \in \boldsymbol{F}$
Question: $L(M)=\varnothing$?
$Q_{0}=\{f\}$

1. $q a^{\prime} \rightarrow f ; q \in Q ; a^{\prime} \in \Sigma: s b \rightarrow f, f a \rightarrow f$
$Q_{1}=\{f\} \cup\{s, f\}=\{f, s\} \ldots s$ is terminating
Answer: NO because s is terminating
Question: Is $L(M)$ finite? $\quad k=\operatorname{card}(\boldsymbol{Q})=2$
All strings $z \in \Sigma^{*}: 2 \leq|z|<4: a a, b b, a b \in L(M), \ldots$

Decidable Problems: Example M:

Question: $a \boldsymbol{b} \in L(M)$?

$s a b|-s b|-f, f \in F$
Answer: YES because $\boldsymbol{s} a \boldsymbol{b} \mid-{ }^{*} f, f \in \boldsymbol{F}$
Question: $L(M)=\varnothing$?
$Q_{0}=\{f\}$

1. $q a^{\prime} \rightarrow f ; q \in Q ; a^{\prime} \in \Sigma: s b \rightarrow f, f a \rightarrow f$
$Q_{1}=\{f\} \cup\{s, f\}=\{f, s\} \ldots s$ is terminating
Answer: NO because s is terminating
Question: Is $L(M)$ finite? $\quad k=\operatorname{card}(\boldsymbol{O})=2$
All strings $z \in \Sigma^{*}: 2 \leq|z|<4: a a, b b, a b \in \boldsymbol{L}(\boldsymbol{M}), \ldots$
Answer: NO because there exist $z \in L(M), k \leq|z|<2 k$

Algorithm: Equivalence Problem

- Input: Two minimum state FA, M_{1} and M_{2}
- Output: YES if $L\left(M_{1}\right)=L\left(M_{2}\right)$

NO if $L\left(M_{1}\right) \neq L\left(M_{2}\right)$

- Method:

- if M_{1} coincides with M_{2} except for the name of states then write ('YES') else write ('NO')

Summary:

The equivalence problem for FA is decidable

Equivalence Problem: Example

Question: $L\left(M_{1}\right)=L\left(M_{2}\right)$?

Equivalence Problem: Example

Question: $L\left(M_{1}\right)=L\left(M_{2}\right)$?

26/26

Equivalence Problem: Example

Question: $L\left(M_{1}\right)=L\left(M_{2}\right)$?

Equivalence Problem: Example

Question: $L\left(M_{1}\right)=L\left(M_{2}\right)$?

Answer: YES because $\boldsymbol{M}_{\boldsymbol{m i n} \mathbf{1}}$ coincides with $\boldsymbol{M}_{\boldsymbol{m} \boldsymbol{m} \mathbf{2}}$

