

Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

• Let *L* be a RL. Then, there is $k \ge 1$ such that

if $z \in L$ and $|z| \ge k$, then there exist u, v, w: z = uvw,

1) $v \neq \varepsilon$ **2**) $|uv| \leq k$ **3**) for each $m \geq 0$, $uv^m w \in L$

Example: for RE $r = ab^*c$, L(r) is *regular*. There is k = 3 such that 1), 2) and 3) holds.

Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

• Let *L* be a RL. Then, there is $k \ge 1$ such that

if $z \in L$ and $|z| \ge k$, then there exist u, v, w: z = uvw,

1) $v \neq \varepsilon$ **2**) $|uv| \leq k$ **3**) for each $m \geq 0$, $uv^m w \in L$

Example: for RE $r = ab^*c$, L(r) is *regular*. There is k = 3 such that 1), 2) and 3) holds.

• for
$$z = abc$$
: $z \in L(r) \& |z| \ge 3: uv^0 w = ab^0 c = ac \in L(r)$
 $uv^1 w = ab^1 c = abc \in L(r)$
 $uv^2 w = ab^2 c = abbc \in L(r)$
 $v \ne \varepsilon, |uv| = 2 \le 3$

Pumping Lemma for RLs

Gist: Pumping lemma demonstrates an infinite iteration of some substring in RLs.

• Let *L* be a RL. Then, there is $k \ge 1$ such that if $z \in L$ and $|z| \ge k$, then there exist u,v,w: z = uvw,

1) $v \neq \varepsilon$ **2**) $|uv| \leq k$ **3**) for each $m \geq 0$, $uv^m w \in L$

Example: for RE $r = ab^*c$, L(r) is *regular*. There is k = 3 such that 1), 2) and 3) holds.

- for z = abc: $z \in L(r) \& |z| \ge 3: uv^0 w = ab^0 c = ac \in L(r)$ $uv^1 w = ab^1 c = abc \in L(r)$ $uv^2 w = ab^2 c = abbc \in L(r)$ $uv^2 w = ab^2 c = abbc \in L(r)$
- for z = abbc: $z \in L(r) \& |z| \ge 3: uv^0 w = ab^0bc = abc \in L(r)$ • $uv^1 w = ab^1bc = abbc \in L(r)$ • $uv^2 w = ab^2bc = abbbc \in L(r)$ • $v \ne \varepsilon, |uv| = 2 \le 3$

Pumping Lemma: Illustration

• *L* = any regular language:

Proof of Pumping Lemma 1/3

- Let *L* be a regular language. Then, there exists **DFA** $M = (Q, \Sigma, R, s, F)$, and L = L(M).
- For $z \in L(M)$, *M* makes |z| moves and *M* visits |z| + 1 states:

5/26

Proof of Pumping Lemma 2/3

Let k = card(Q) (the number of states).
For each z ∈ L and |z| ≥ k, M visits k + 1 or more states. As k + 1 > card(Q), there exists a state q that M visits at least twice.
For z exist u, v, w such that z = uvw:

5/26

• Let $k = \operatorname{card}(Q)$ (the number of states).

For each $z \in L$ and $|z| \ge k$, *M* visits k + 1 or

more states. As k + 1 > card(Q), there exists a

state *q* that *M* visits at least twice.

• For z exist u, v, w such that z = uvw:

5/26

Proof of Pumping Lemma 2/3 • Let $\mathbf{k} = \operatorname{card}(Q)$ (the number of states). For each $z \in L$ and $|z| \ge k$, M visits k + 1 or more states. As $k + 1 > \operatorname{card}(Q)$, there exists a state q that M visits at least twice. • For z exist u, v, w such that z = uvw: $-^{j} \boldsymbol{q}; j \geq 1,$ $i+j \leq k$ reads SU =

reads U

5/26

Proof of Pumping Lemma 2/3 • Let $\mathbf{k} = \operatorname{card}(Q)$ (the number of states). For each $z \in L$ and $|z| \ge k$, M visits k + 1 or more states. As $k + 1 > \operatorname{card}(Q)$, there exists a state q that M visits at least twice. • For z exist u, v, w such that z = uvw: $q; j \ge 1,$ reads <u><u>S</u>*U* –</u> reads U reads W

5/26

Proof of Pumping Lemma 2/3 • Let $\mathbf{k} = \operatorname{card}(Q)$ (the number of states). For each $z \in L$ and $|z| \ge k$, M visits k + 1 or more states. As $k + 1 > \operatorname{card}(Q)$, there exists a state q that M visits at least twice. • For z exist u, v, w such that z = uvw: $q; j \geq 1,$ reads

Proof of Pumping Lemma 3/3

- There exist moves:
 - **(1)** $Su \mid -iq$; **(2)** $qv \mid -jq$; **(3)** $qw \mid -*f, f \in F$, so

Proof of Pumping Lemma 3/3

- There exist moves:
 - **(1)** $Su \mid -iq$; **(2)** $qv \mid -jq$; **(3)** $qw \mid -*f, f \in F$, so
- for m = 0, $uv^m w = uv^0 w = uw$,

SUW

Proof of Pumping Lemma 3/3

- There exist moves:
 - (1) $Su \mid -iq$; (2) $qv \mid -jq$; (3) $qw \mid -*f, f \in F$, so
- for m = 0, $uv^m w = uv^0 w = uw$, $suw = uv^0 w = uw$,

Proof of Pumping Lemma 3/3

- There exist moves:
 - **(1)** $Su \mid -iq$; **(2)** $qv \mid -jq$; **(3)** $qw \mid -*f, f \in F$, so
- for m = 0, $uv^m w = uv^0 w = uw$, (1), (3), $suw = uw^0 w = uw$, $f, f \in F$

Proof of Pumping Lemma 3/3

- There exist moves:
 - **(1.** $Su \mid -iq$; **(2.** $qv \mid -jq$; **(3.** $qw \mid -*f, f \in F$, so
- for m = 0, $uv^m w = uv^0 w = uw$, 1. 3. $suw \mid -i qw \mid -*f, f \in F$
- for each *m* > 0,

SUV^mW

Proof of Pumping Lemma 3/3

- There exist moves:
 - **(1.** $Su \mid -iq$; **(2.** $qv \mid -jq$; **(3.** $qw \mid -*f, f \in F$, so
- for m = 0, $uv^m w = uv^0 w = uw$, (1) (3) $suw \mid -i qw \mid -* f, f \in F$
- for each m > 0, **1 SUV**^mw -i $av^m w$

Proof of Pumping Lemma 3/3

There exist moves:
(1) su |-ⁱq; (2)qv |-^jq; (3)qw |-^{*}f, f ∈ F, so
for m = 0, uv^mw = uv⁰w = uw,
(1) (3) suw |-ⁱqw |-^{*}f, f ∈ F
for each m > 0,
(1) (2) (2) (2) (2) suv^mw |-ⁱqv^mw |-^jqv^{m-1}w |-^j... |-^jqw

Proof of Pumping Lemma 3/3

• There exist moves: (1) $su \mid -{}^{i}q$; (2) $qv \mid -{}^{j}q$; (3) $qw \mid -{}^{*}f, f \in F$, so • for m = 0, $uv^{m}w = uv^{0}w = uw$, (1) (3) $uv^{m}w = uv^{0}w = uw$, (1) $uv^{m}w = uv^{0}w = uw$, (1) $uv^{m}w = uv^{0}w = uw$, (1) $uv^{m}w = uv^{0}w = uw$, (2) $uv^{m}w = uv^{0}w = uw$, (3) $uv^{m}w = uv^{0}w = uw$, (4) $uv^{0}w = uv^{0}w = uw$, (5) $uv^{m}w = uv^{0}w = uw$, (6) $uv^{m}w = uv^{0}w = uw$, (7) $uv^{0}w = uv^{0}w = uw$, (8) $uv^{0}w = uv^{0}w = uw$, (9) $uv^{0}w = uv^{0}w = uw$, (9) $uv^{0}w = uv^{0}w = uw$, (1) $uv^{0}w = uv^{0}w = uw$, (2) $uv^{0}w = uv^{0}w = uw$, (3) $uv^{0}w = uv^{0}w = uw$, (4) $uv^{0}w = uv^{0}w = uw$, (5) $uv^{0}w = uv^{0}w = uw$, (6) $uv^{0}w = uv^{0}w = uw$, (7) $uv^{0}w = uv^{0}w = uw$, (8) $uv^{0}w = uv^{0}w = uw$, (9) $uv^{0}w = uv^{0}w = uv^{0}w$, (9) $uv^{0}w = u$

Proof of Pumping Lemma 3/3

- There exist moves:
 - **(1)** $Su \mid -iq$; **(2)** $qv \mid -jq$; **(3)** $qw \mid -*f, f \in F$, so
- for m = 0, $uv^m w = uv^0 w = uw$, (1), (3), $suw \mid -i qw \mid -* f, f \in F$
- for each m > 0, (1) (2) (2) (2) (3) $suv^{m}w[-^{i}qv^{m}w]-^{j}qv^{m-1}w[-^{j}...]-^{j}qw[-^{*}f, f \in F$

Summary:

1) $qv \mid -j q, j \ge 1$; therefore, $\mid v \mid \ge 1$, so $v \ne \varepsilon$ 2) $suv \mid -j q, i + j \le k$; therefore, $\mid uv \mid \le k$

- **3**) For each $m \ge 0$: $suv^m w \models f, f \in F$, therefore $uv^m w \in L$
 - QED

Pumping Lemma: Application I

Pumping Lemma: Application I

• Based on the pumping lemma, we often make a proof by contradiction to demonstrate that a language is <u>not</u> regular

Assume that *L* is regular

Pumping Lemma: Application I

8/26

Prove that $L = \{a^n b^n : n \ge 0\}$ is not regular:

1) Assume that *L* is regular. Let $k \ge 1$ be the

pumping lemma constant for *L*. 2) Let $z = a^k b^k : a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$

3) All decompositions of *z* into *uvw*, $v \neq \varepsilon$, $|uv| \leq k$:

8/26

Prove that $L = \{ a^n b^n : n \ge 0 \}$ is not regular:

- 1) Assume that *L* is regular. Let $k \ge 1$ be the pumping lemma constant for *L*. 2) Let $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) All decompositions of *z* into uvw, $v \neq \varepsilon$, $|uv| \leq k$:

• pumping lemma: $uv^0w \in L$

8/26

Prove that $L = \{a^n b^n : n \ge 0\}$ is not regular:

1) Assume that *L* is regular. Let $k \ge 1$ be the pumping lemma constant for *L*.

2) Let $z = a^k b^k$: $a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$

3) All decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$:

8/26

Prove that $L = \{a^n b^n : n \ge 0\}$ is not regular:

- 1) Assume that *L* is regular. Let $k \ge 1$ be the pumping lemma constant for *L*. 2) Let $z = a^k b^k : a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$
- 3) All decompositions of *z* into uvw, $v \neq \varepsilon$, $|uv| \leq k$:

8/26

Pumping Lemma: Example

Prove that $L = \{a^n b^n : n \ge 0\}$ is not regular:

1) Assume that *L* is regular. Let $k \ge 1$ be the pumping lemma constant for *L*.

2) Let $z = a^k b^k : a^k b^k \in L$, $|z| = |a^k b^k| = 2k \ge k$

3) All decompositions of z into uvw, $v \neq \varepsilon$, $|uv| \leq k$:

4) Therefore, L is not regular

Note on Use of Pumping Lemma

• Pumping lemma:

Main application of the pumping lemma:

• proof by contradiction that *L* is **not** regular.

Note on Use of Pumping Lemma

• Pumping lemma:

if

- Main application of the pumping lemma:
- proof by contradiction that *L* is **not** regular.
- However, the next implication is **incorrect**:

• We cannot use the pumping lemma to prove that *L* is regular.

Pumping Lemma: Application II. 1/3

• We can use the pumping lemma to prove some other theorems.

Illustration:

• Let *M* be a DFA and *k* be the pumping lemma constant (*k* is the number of states in *M*). Then, L(M) is infinite \Leftrightarrow there exists $z \in L(M), k \leq |z| < 2k$

Proof:

1) there exists $z \in L(M)$, $k \leq |z| < 2k \Rightarrow L(M)$ is infinite:

Pumping Lemma: Application II. 1/3

• We can use the pumping lemma to prove some other theorems.

Illustration:

• Let *M* be a DFA and *k* be the pumping lemma constant (*k* is the number of states in *M*). Then, L(M) is infinite \Leftrightarrow there exists $z \in L(M), k \le |z| < 2k$

Proof:

1) there exists $z \in L(M)$, $k \leq |z| < 2k \Rightarrow L(M)$ is infinite:

if $z \in L(M)$, $k \leq |z|$, then by PL:

 $z = uvw, v \neq \varepsilon$, and for each $m \ge 0$: $uv^m w \in L(M)$

Pumping Lemma: Application II. 1/3

• We can use the pumping lemma to prove some other theorems.

Illustration:

• Let *M* be a DFA and *k* be the pumping lemma constant (*k* is the number of states in *M*). Then, L(M) is infinite \Leftrightarrow there exists $z \in L(M), k \le |z| < 2k$

Proof:

1) there exists $z \in L(M)$, $k \leq |z| < 2k \Rightarrow L(M)$ is infinite:

if $z \in L(M)$, $k \leq |z|$, then by PL:

 $z = uvw, v \neq \varepsilon$, and for each $m \ge 0$: $uv^m w \in L(M)$

L(M) is infinite

Pumping Lemma: Application II. 2/3

2) L(M) is infinite \Rightarrow there exists $z \in L(M)$, $k \le |z| < 2k$:

• We prove by contradiction, that

a) Prove by contradiction that

• L(M) is infinite \Rightarrow there exists $z \in L(M), |z| \ge k$

Pumping Lemma: Application II. 2/3

2) L(M) is infinite \Rightarrow there exists $z \in L(M), k \le |z| < 2k$:

• We prove by contradiction, that

a) Prove by contradiction that

• L(M) is infinite \Rightarrow there exists $z \in L(M), |z| \ge k$

Assume that L(M) is infinite and there exists no $z \in L(M)$, $|z| \ge k$

Pumping Lemma: Application II. 2/3

2) L(M) is infinite \Rightarrow there exists $z \in L(M), k \le |z| < 2k$:

• We prove by contradiction, that

a) Prove by contradiction that

• L(M) is infinite \Rightarrow there exists $z \in L(M)$, $|z| \ge k$ Assume that L(M) is infinite and there exists no $z \in L(M)$, $|z| \ge k$

for all $z \in L(M)$ holds |z| < k

Pumping Lemma: Application II. 2/3

2) L(M) is infinite \Rightarrow there exists $z \in L(M)$, $k \le |z| < 2k$:

• We prove by contradiction, that

a) Prove by contradiction that

• L(M) is infinite \Rightarrow there exists $z \in L(M)$, $|z| \ge k$ Assume that L(M) is infinite and there exists no $z \in L(M)$, $|z| \ge k$

for all
$$z \in L(M)$$
 holds $|z| < k$
 $L(M)$ is finite

Pumping Lemma: Application II. 2/3

2) L(M) is infinite \Rightarrow there exists $z \in L(M)$, $k \le |z| < 2k$:

• We prove by contradiction, that

a) Prove by contradiction that

• L(M) is infinite \Rightarrow there exists $z \in L(M)$, $|z| \ge k$ Assume that L(M) is infinite and there exists no $z \in L(M)$, $|z| \ge k$

for all $z \in L(M)$ holds |z| < k**Contradiction !**

Pumping Lemma: Application II. 3/3

- **b**) Prove by contradiction
- there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

• there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

• there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Pumping Lemma: Application II. 3/3

b) Prove by contradiction

• there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be **the shortest string** satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$

12/26

b) Prove by contradiction

• there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

12/26

b) Prove by contradiction

• there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

 $|uw| = \frac{\geq 2k}{|z_0|} - \frac{\leq k}{|v|} \geq k$

12/26

b) Prove by contradiction

• there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

 $|uw| = |z_0| - |v| \ge k$ for m = 0: $uv^m w = uw \in L(M)$

12/26

b) Prove by contradiction

• there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

 $|uw| = |z_0| - |v| \ge k \quad \text{for } m = 0: uv^m w = uw \in L(M)$ Summary: $uw \in L(M), |uw| \ge k \text{ and } |uw| < |z_0|!$

12/26

b) Prove by contradiction

• there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$,

 $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

 $|uw| = |z_0| - |v| \ge k \quad \text{for } m = 0: uv^m w = uw \in L(M)$ Summary: $uw \in L(M), |uw| \ge k \text{ and } |uw| < |z_0|!$ z_0 is not the shortest string satisfying $z_0 \in L(M), |z_0| \ge k$

12/26

b) Prove by contradiction

• there exists $z \in L(M)$, $|z| \ge k \Rightarrow$ there exists $z \in L(M)$, $k \le |z| < 2k$

Assume that there is $z \in L(M)$, $|z| \ge k$ and there is no $z \in L(M)$, $k \le |z| < 2k$

Let z_0 be the shortest string satisfying $z_0 \in L(M)$, $|z_0| \ge k$ Because there exists no $z \in L(M)$, $k \le |z| < 2k$, so $|z_0| \ge 2k$ If $z_0 \in L(M)$ and $|z_0| \ge k$, the PL implies: $z_0 = uvw$, $|uv| \le k$, and for each $m \ge 0$, $uv^m w \in L(M)$

 $|uw| = |z_0| - |v| \ge k \quad \text{for } m = 0: uv^m w = uw \in L(M)$ Summary: $uw \in L(M), |uw| \ge k \text{ and } |uw| < |z_0|!$ z_0 is not the shortest string satisfying $z_0 \in L(M), |z_0| \ge k$ Contradiction !

13/26

Definition: The family of regular languages is closed under an operation *o* if the language resulting from the application of *o* to any regular languages is also regular.

13/26

Definition: The family of regular languages is closed under an operation *o* if the language resulting from the application of *o* to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

The family of regular languages

13/26

Definition: The family of regular languages is closed under an operation *o* if the language resulting from the application of *o* to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

The family of regular languages

13/26

Definition: The family of regular languages is closed under an operation *o* if the language resulting from the application of *o* to any regular languages is also regular.

Illustration:

• The family of regular languages is closed under *union*. It means:

Closure properties 2/2

Theorem: The family of regular languages is closed under **union**, **concatenation**, **iteration**.

Proof:

- Let L_1 , L_2 be two regular languages
- Then, there exist two REs r_1 , r_2 : $L(r_1) = L_1$, $L(r_2) = L_2$;
- By the definition of regular expressions:
 - $r_1 r_2$ is a RE denoting $L_1 L_2$
 - $r_1 + r_2$ is a RE denoting $L_1 \cup L_2$
 - r_1^* is a RE denoting L_1^*
- Every RE denotes regular language, so L_1L_2 , $L_1 \cup L_2$, L_1^* are a regular languages

15/26

Algorithm: FA for Complement

- Input: Complete FA: $M = (Q, \Sigma, R, s, F)$
- Output: Complete FA: $M' = (Q, \Sigma, R, s, F')$,

$$L(M') = \overline{L(M)}$$

• Method:

•
$$F' := Q - F$$

Example:

15/26

Algorithm: FA for Complement

- Input: Complete FA: $M = (Q, \Sigma, R, s, F)$
- Output: Complete FA: $M' = (Q, \Sigma, R, s, F')$,

$$L(M') = \overline{L(M)}$$

• Method:

•
$$F' := Q - F$$

Example:

15/26

Algorithm: FA for Complement

- Input: Complete FA: $M = (Q, \Sigma, R, s, F)$
- Output: Complete FA: $M' = (Q, \Sigma, R, s, F')$,

$$L(M') = \overline{L(M)}$$

• Method:

•
$$F' := Q - F$$

Example:

 $L(M) = \{x: ab \text{ is a substring of } x\}; L(M') = \{x: ab \text{ is no substring of } x\}$

FA for Complement: Problem

- Previous algorithm requires a **complete** FA
- If *M* is incomplete FA, then *M* must be converted to a complete FA before we use the previous algorithm **Example:**

Incomplete DFA:

FA for Complement: Problem

- Previous algorithm requires a **complete** FA
- If *M* is incomplete FA, then *M* must be converted to a complete FA before we use the previous algorithm

16/26

FA for Complement: Problem

- Previous algorithm requires a **complete** FA
- If *M* is incomplete FA, then *M* must be converted to a complete FA before we use the previous algorithm

16/26

FA for Complement: Problem

- Previous algorithm requires a **complete** FA
- If *M* is incomplete FA, then *M* must be converted to a complete FA before we use the previous algorithm

Closure properties: Complement

Theorem: The family of regular languages is closed under **complement**.

Proof:

- Let *L* be a regular language
- Then, there exists a complete DFA M: L(M) = L
- We can construct a complete DFA $M': L(M') = \overline{L}$ by using the previous algorithm
- Every FA defines a regular language, so
 L is a regular language

18/26

Closure properties: Intersection

Theorem: The family of regular languages is closed under **intersection**.

Proof:

- Let L_1 , L_2 be two regular languages
- $\overline{L_1}$, $\overline{L_2}$ are regular languages

(the family of regular languages is closed under complement)

- L₁ ∪ L₂ is a regular language
 (the family of regular languages is closed under union)
 L₁ ∪ L₂ is a regular language
 (the family of regular languages is closed under complement)
- $L_1 \cap L_2 = \overline{L_1 \cup L_2}$ is a regular language (DeMorgan's law)

19/26

Boolean Algebra of Languages

Definition: Let a family of languages be closed under union, intersection, and complement. Then, this family represents a *Boolean algebra of languages*.

Theorem: The family of regular languages is a Boolean algebra of languages.

Proof:

• The family of regular languages is closed under union, intersection, and complement.
20/26

Main Decidable Problems

1. Membership problem:

• Instance: FA $M, w \in \Sigma^*$; Question: $w \in L(M)$?

2. Emptiness problem:

• **Instance:** FA M; **Question:** $L(M) = \emptyset$?

3. Finiteness problem:

• **Instance:** FA M; **Question:** Is L(M) finite?

4. Equivalence problem:

• Instance: FA M_1, M_2 ; Question: $L(M_1) = L(M_2)$?

21/26

Algorithm: Membership Problem

- Input: DFA $M = (Q, \Sigma, R, s, F); w \in \Sigma^*$
- **Output: YES** if $w \in L(M)$ **NO** if $w \notin L(M)$
- Method:
- if $sw \models^* f$, $f \in F$ then write ('YES') else write ('NO')

Summary:

The membership problem for FAs is decidable

22/26

Algorithm: Emptiness Problem

- **Input:** FA $M = (Q, \Sigma, R, s, F);$
- **Output: YES** if $L(M) = \emptyset$ **NO** if $L(M) \neq \emptyset$
- Method:
- if *s* is nonterminating then write ('YES') else write ('NO')

Summary:

The emptiness problem for FAs is decidable

23/26

Algorithm: Finiteness Problem

- **Input:** DFA $M = (Q, \Sigma, R, s, F);$
- Output: YES if *L*(*M*) is finite NO if *L*(*M*) is infinite
- Method:
- Let $k = \operatorname{card}(Q)$
- if there exist $z \in L(M)$, $k \le |z| < 2k$ then write ('NO')

else write ('YES')

Note: This algorithm is based on L(M) is infinite \Leftrightarrow there exists $z: z \in L(M), k \le |z| < 2k$

Summary:

The finiteness problem for FAs is decidable

24/26

Question: $ab \in L(M)$?

24/26

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$

24/26

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$ Answer: YES because $sab \mid -^*f, f \in F$

24/26

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$ Answer: YES because $sab \mid -^*f, f \in F$ Question: $L(M) = \emptyset$?

24/26

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$ Answer: YES because $sab \mid -^*f, f \in F$ Question: $L(M) = \emptyset$?

 $\widetilde{Q}_0 = \{\mathbf{f}\}$

24/26

Question: $ab \in L(M)$? $sab \models sb \models f, f \in F$ Answer: YES because $sab \models^* f, f \in F$ Question: $L(M) = \emptyset$? $Q_0 = \{f\}$ 1. $qa' \rightarrow f; q \in Q; a' \in \Sigma: sb \rightarrow f, fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s \text{ is terminating}$

24/26

Question: $ab \in L(M)$? $sab \models sb \models f, f \in F$ Answer: YES because $sab \models^* f, f \in F$ Question: $L(M) = \emptyset$? $Q_0 = \{f\}$ 1. $qa' \rightarrow f; q \in Q; a' \in \Sigma: sb \rightarrow f, fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s \text{ is terminating}$

Answer: NO because *s* is terminating

24/26

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$ Answer: YES because $sab \mid -^*f, f \in F$

Question: $L(M) = \emptyset$? $Q_0 = \{f\}$ 1 ag' > f: a \in Q: g' \in \Sigma: gh

1. $qa' \rightarrow f; q \in Q; a' \in \Sigma: sb \rightarrow f, fa \rightarrow f$ $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s \text{ is terminating}$

Answer: NO because *s* is terminating

Question: Is *L*(*M*) finite?

24/26

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$ Answer: YES because $sab \mid -^*f, f \in F$

Question:
$$L(M) = \emptyset$$
?
 $Q_0 = \{f\}$

1.
$$qa' \rightarrow f; q \in Q; a' \in \Sigma: sb \rightarrow f, fa \rightarrow f$$

 $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s \text{ is terminating}$

Answer: NO because *s* is terminating

Question: Is L(M) finite? $k = \operatorname{card}(Q) = 2$ All strings $z \in \Sigma^*$: $2 \le |z| < 4$: *aa*, *bb*, *ab*, ...

24/26

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$ Answer: YES because $sab \mid -^*f, f \in F$

Question:
$$L(M) = \emptyset$$
?
 $Q_0 = \{f\}$

1.
$$qa' \rightarrow f; q \in Q; a' \in \Sigma: sb \rightarrow f, fa \rightarrow f$$

 $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s$ is terminating

Answer: NO because s is terminating

Question: Is L(M) finite? $k = \operatorname{card}(Q) = 2$ All strings $z \in \Sigma^*$: $2 \le |z| < 4$: *aa*, *bb*, *ab* $\in L(M)$, ...

24/26

Question: $ab \in L(M)$? $sab \mid -sb \mid -f, f \in F$ Answer: YES because $sab \mid -^*f, f \in F$

Question:
$$L(M) = \emptyset$$
?
 $Q_0 = \{f\}$

1.
$$qa' \rightarrow f; q \in Q; a' \in \Sigma: sb \rightarrow f, fa \rightarrow f$$

 $Q_1 = \{f\} \cup \{s, f\} = \{f, s\} \dots s$ is terminating Answer: NO because s is terminating

Question: Is L(M) finite? $k = \operatorname{card}(Q) = 2$ All strings $z \in \Sigma^*$: $2 \le |z| < 4$: *aa*, *bb*, *ab* $\in L(M)$, ... **Answer:** NO because there exist $z \in L(M)$, $k \le |z| < 2k$

25/26

Algorithm: Equivalence Problem

- Input: Two minimum state FA, M_1 and M_2
- **Output: YES** if $L(M_1) = L(M_2)$ **NO** if $L(M_1) \neq L(M_2)$
- Method:
- if M₁ coincides with M₂ except for the name of states then write ('YES') else write ('NO')

Summary:

The equivalence problem for FA is decidable

26/26

26/26

26/26

A minimum state FA

26/26

Answer: YES because M_{min1} coincides with M_{min2}