$1 / 50$

Models for Context-Free Languages

Context-Free Grammar (CFG)

Gist: A grammar is based on a finite set of grammatical rules, by which it generates strings of its language.
Illustration: Start nonterminal S
Grammar G :
Nonterminals: A, B, \underline{S}
Terminals:

$$
a, b, c, d
$$

Rules:

$$
\begin{array}{|l|}
\hline S \rightarrow A B, \\
A \rightarrow a A b, \\
A \rightarrow a b, \\
B \rightarrow b B a, \\
B \rightarrow b a
\end{array}
$$

Context-Free Grammar (CFG)

Gist: A grammar is based on a finite set of grammatical rules, by which it generates strings of its language.

Context-Free Grammar (CFG)

Gist: A grammar is based on a finite set of grammatical rules, by which it generates strings of its language.

Context-Free Grammar (CFG)

Gist: A grammar is based on a finite set of grammatical rules, by which it generates strings of its language.

Context-Free Grammar (CFG)

Gist: A grammar is based on a finite set of grammatical rules, by which it generates strings of its language.

Context-Free Grammar: Definition

Definition: A context-free grammar (CFG) is a quadruple $G=(N, T, P, S)$, where

- N is an alphabet of nonterminals
- T is an alphabet of terminals, $N \cap T=\varnothing$
- P is a finite set of rules of the form $A \rightarrow x$, where $A \in N, x \in(N \cup T)^{*}$
- $S \in N$ is the start nonterminal

Mathematical Note on Rules:

- Strictly mathematically, P is a relation from N to $(N \cup T)^{*}$
- Instead of $(A, x) \in P$, we write $A \rightarrow x \in P$
- $A \rightarrow x$ means that A can be replaced with x
- $A \rightarrow \varepsilon$ is called ε-rule

4/50

Convention

- A, \ldots, F, S : nonterminals
- S
: the start nonterminal
- a, \ldots, d : terminals
- U, \ldots, Z
- u, \ldots, z
π
: members of $(N \cup T)$
: members of $(N \cup T)^{*}$
: sequence of productions
A subset of rules of the form:

$$
A \rightarrow x_{1}, A \rightarrow x_{2}, \ldots, A \rightarrow x_{n}
$$

can be simply written as:

$$
A \rightarrow x_{1}\left|x_{2}\right| \ldots \mid x_{n}
$$

Derivation Step

Gist: A change of a string by a rule.

Definition: Let $G=(N, T, P, S)$ be a CFG. Let $\boldsymbol{u}, \boldsymbol{v} \in(N \cup T)^{*}$ and $=\boldsymbol{A} \rightarrow \boldsymbol{x} \in P$. Then, $\boldsymbol{u} A \boldsymbol{v}$ directly derives $\boldsymbol{u x v}$ according to in G, written as $\boldsymbol{u} A \boldsymbol{v} \Rightarrow \boldsymbol{u} x \boldsymbol{v}$ [] or, simply, $\boldsymbol{u} A \boldsymbol{v} \Rightarrow \boldsymbol{u x v}$.

Note: If $\boldsymbol{u} A \boldsymbol{v} \Rightarrow \boldsymbol{u} \boldsymbol{x v}$ in G, we also say that G makes a derivation step from $\boldsymbol{u} A \boldsymbol{v}$ to $\boldsymbol{u} x \boldsymbol{v}$.

Derivation Step

Gist: A change of a string by a rule.

Definition: Let $G=(N, T, P, S)$ be a CFG. Let $\boldsymbol{u}, \boldsymbol{v} \in(N \cup T)^{*}$ and $=\boldsymbol{A} \rightarrow \boldsymbol{x} \in P$. Then, $\boldsymbol{u} A \boldsymbol{v}$ directly derives uxv according to in G, written as $\boldsymbol{u} A \boldsymbol{v} \Rightarrow \boldsymbol{u} x \boldsymbol{v}$ [] or, simply, $\boldsymbol{u} A \boldsymbol{v} \Rightarrow \boldsymbol{u} x \boldsymbol{v}$.

Note: If $\boldsymbol{u} A \boldsymbol{v} \Rightarrow \boldsymbol{u} \boldsymbol{x v}$ in G, we also say that G makes a derivation step from $\boldsymbol{u} A \boldsymbol{v}$ to $\boldsymbol{u} x \boldsymbol{v}$.

Rule: $A \rightarrow x$

Sequence of Derivation Steps $1 / 2$

Gist: Several consecutive derivation steps.

Definition: Let $u \in(N \cup T)^{*}$. G makes a zero-step derivation from u to u; in symbols,

$$
u \Rightarrow^{0} u[\varepsilon] \text { or, simply, } u \Rightarrow^{0} u
$$

Definition: Let $u_{0}, \ldots, u_{n} \in(N \cup T)^{*}, n \geq 1$, and $u_{i-1} \Rightarrow u_{i}\left[p_{i}\right], p_{i} \in P$, for all $i=1, \ldots, n$; that is

$$
u_{0} \Rightarrow u_{1}\left[p_{1}\right] \Rightarrow u_{2}\left[p_{2}\right] \ldots \Rightarrow u_{n}\left[p_{n}\right]
$$

Then, G makes n derivation steps from u_{0} to u_{n},

$$
u_{0} \Rightarrow^{n} u_{n}\left[p_{1} \ldots p_{n}\right] \text { or, simply, } u_{0} \Rightarrow^{n} u_{n}
$$

Sequence of Derivation Steps $2 / 2$

If $u_{0} \Rightarrow^{n} u_{n}[\pi]$ for some $n \geq 1$, then u_{0} properly derives u_{n} in G, written as $u_{0} \Rightarrow^{+} u_{n}[\pi]$.

If $u_{0} \Rightarrow^{n} u_{n}[\pi]$ for some $n \geq 0$, then u_{0} derives u_{n} in G, written as $u_{0} \Rightarrow^{*} u_{n}[\pi]$.

Example: Consider
$a A b \quad \Rightarrow a a B b b \quad[1: A \rightarrow a B b]$, and $a a B b b \Rightarrow a a c b b \quad[2: B \rightarrow c]$.
Then, $\quad \boldsymbol{a} A b \Rightarrow^{2} \boldsymbol{a} \boldsymbol{a} \boldsymbol{c} \boldsymbol{b} \boldsymbol{b}[12]$,

$$
\begin{aligned}
& a A b \Rightarrow^{+} \text {aacbb [12], } \\
& a A b \Rightarrow^{*} \text { aacbb }\left[\begin{array}{ll}
1 & 2
\end{array}\right]
\end{aligned}
$$

Generated Language

Gist: G generates a terminal string w by a sequence of derivation steps from S to w
Definition: Let $G=(N, T, P, S)$ be a CFG. The language generated by $G, L(G)$, is defined as

$$
L(G)=\left\{w: w \in T^{*}, S \Rightarrow^{*} w\right\}
$$

Illustration:

$G=(N, T, P, S)$, let $w=a_{1} a_{2} \ldots a_{n} ; a_{i} \in T$ for $i=1 . . n$

Generated Language

Gist: G generates a terminal string w by a sequence of derivation steps from S to w
Definition: Let $G=(N, T, P, S)$ be a CFG. The language generated by $G, L(G)$, is defined as

$$
L(G)=\left\{w: w \in T^{*}, S \Rightarrow^{*} w\right\}
$$

Illustration:
$G=(N, T, P, S)$, let $w=a_{1} a_{2} \ldots a_{n} ; a_{i} \in T$ for $i=1 . . n$
if $S \Rightarrow \ldots \Rightarrow \ldots \Rightarrow \underbrace{a_{1} a_{2} \ldots a_{n}}_{w}$ then $w \in L(G)$;
otherwise, $w \notin L(G)$

Context-Free Language (CFL)

Gist: A language generated by a CFG.
Definition: Let L be a language. L is a contextfree language (CFL) if there exists a context-free grammar that generates L.
Example:
$G=(N, T, P, S)$, where $N=\{S\}, T=\{a, b\}$,
$P=\{1: S \rightarrow a S b, 2: S \rightarrow \varepsilon\}$

Context-Free Language (CFL)

Gist: A language generated by a CFG.
Definition: Let L be a language. L is a contextfree language (CFL) if there exists a context-free grammar that generates L.
Example:
$G=(N, T, P, S)$, where $N=\{S\}, T=\{a, b\}$,
$P=\{1: S \rightarrow a S b, 2: S \rightarrow \varepsilon\}$
$S \Rightarrow \varepsilon[2] \longrightarrow \boldsymbol{L}(\boldsymbol{G})$

Context-Free Language (CFL)

Gist: A language generated by a CFG.
Definition: Let L be a language. L is a contextfree language (CFL) if there exists a context-free grammar that generates L.
Example:
$G=(N, T, P, S)$, where $N=\{S\}, T=\{a, b\}$,
$P=\{1: S \rightarrow a S b, 2: S \rightarrow \varepsilon\}$
$S \Rightarrow \varepsilon \xrightarrow[{[2}]]{\longrightarrow} L(\boldsymbol{G})$
$S \Rightarrow a S b[1] \Rightarrow a b \quad$ [2]

Context-Free Language (CFL)

Gist: A language generated by a CFG.
Definition: Let L be a language. L is a contextfree language (CFL) if there exists a context-free grammar that generates L.
Example:
$G=(N, T, P, S)$, where $N=\{S\}, T=\{a, b\}$,
$P=\{1: S \rightarrow a S b, 2: S \rightarrow \varepsilon\}$
$\underset{S}{S \Rightarrow a S b[1]} \Rightarrow a \xrightarrow[a b r]{[2]} L(G)$
$S \Rightarrow a S b[1] \Rightarrow a a S b b[1] \Rightarrow a a b b[2]$

Context-Free Language (CFL)

Gist: A language generated by a CFG.
Definition: Let L be a language. L is a contextfree language (CFL) if there exists a context-free grammar that generates L.
Example:
$G=(N, T, P, S)$, where $N=\{S\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$,
$P=\{1: S \rightarrow a S b, 2: S \rightarrow \varepsilon\}$
$\underset{S}{S \Rightarrow a S b[1] \Rightarrow a b \quad[2]} L(G)=\left\{a^{n} b^{n}: n \geq 0\right\}$
$S \Rightarrow a S b[1] \Rightarrow a a S b b[1] \Rightarrow a a b b[2]$

Context-Free Language (CFL)

Gist: A language generated by a CFG.
Definition: Let L be a language. L is a contextfree language (CFL) if there exists a context-free grammar that generates L.
Example:
$G=(N, T, P, S)$, where $N=\{S\}, T=\{\boldsymbol{a}, \boldsymbol{b}\}$,
$P=\{1: S \rightarrow a S b, 2: S \rightarrow \varepsilon\}$
$\underset{S \rightarrow a S b[1] \Rightarrow a b \quad[2]}{S \rightarrow} L(G)=\left\{a^{n} b^{n}: n \geq 0\right\}$
$S \Rightarrow a S b[1] \Rightarrow a a S b b[1] \Rightarrow a a b b[2]$
$L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is a CFL.

Rule Tree

- Rule tree graphically represents a rule

$$
\text { 1) } A \rightarrow \varepsilon: \begin{array}{|cc}
A \\
\hline & \text { 2) } \left.A \rightarrow X_{1} X_{2} \ldots X_{n}: \begin{array}{c}
A \\
X_{1} X_{2} \ldots X_{n} \\
\hline
\end{array}\right] \\
\hline
\end{array}
$$

- Derivation tree corresponding to a derivation
$S \Rightarrow \ldots$
$\quad \vdots$
$\quad \Rightarrow U_{1} \boldsymbol{U}_{2} \ldots U_{m} A V_{1} V_{2} \ldots V_{n}$

Rule Tree

- Rule tree graphically represents a rule

- Derivation tree corresponding to a derivation
$S \Rightarrow \ldots$
$\quad \vdots$
$\Rightarrow U_{1} U_{2} \ldots U_{m} A V_{1} V_{2} \ldots V_{n}$

$\Rightarrow U_{1} U_{2} \ldots U_{m} x V_{1} V_{2} \ldots V_{n}$

Rule tree
corresponding
to $A \rightarrow x$

Derivation Tree: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: E \rightarrow E+T$,
2: $E \rightarrow T$,
3: $T \rightarrow T * F$,
$4: T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$
Derivation:
Derivation tree:

Derivation Tree: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{1: E \rightarrow E+T$,
2: $E \rightarrow T$,
3: $T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Derivation:

$\underline{E} \Rightarrow E+\underline{T}$

Derivation tree:

$+$

Derivation Tree: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: \boldsymbol{E} \rightarrow \boldsymbol{E}+\boldsymbol{T}$,
2: $E \rightarrow T$,
$3: T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow E+\underline{T} \\
& \Rightarrow E+\underline{T} * F
\end{aligned}
$$

Derivation tree:

Derivation Tree: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: \boldsymbol{E} \rightarrow \boldsymbol{E}+\boldsymbol{T}$,
2: $E \rightarrow T$,
3: $T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow E+\underline{T} \\
& \Rightarrow E+\underline{T}^{*} F \\
& \Rightarrow E+\underline{F}^{*} F
\end{aligned}
$$

Derivation tree:

Derivation Tree: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: \boldsymbol{E} \rightarrow \boldsymbol{E}+\boldsymbol{T}$,
2: $E \rightarrow T$,
3: $T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow E+\underline{T} \\
& \Rightarrow E+\underline{T} * F \\
& \Rightarrow E+\underline{F} * F \\
& \Rightarrow \underline{E}+\underline{i}^{*} * F
\end{aligned}
$$

Derivation tree:

Derivation Tree: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: \boldsymbol{E} \rightarrow \boldsymbol{E}+\boldsymbol{T}$,
2: $E \rightarrow T$,
$3: T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow E+\underline{T} \\
& \Rightarrow E+\underline{T} * F \\
& \Rightarrow E+\underline{F} * F \\
& \Rightarrow \underline{E}+i * T \\
& \Rightarrow T+i * \underline{T}+\quad \text { [2] }
\end{aligned}
$$

Derivation tree:

Derivation Tree: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: E \rightarrow E+T$,
2: $E \rightarrow T$,
3: $T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow E+\underline{T} \\
& \Rightarrow E+\underline{T}^{*} F \quad[1] \\
& \Rightarrow E+\underline{F}^{*} F \\
& \Rightarrow \underline{E}+i^{*} F \\
& \Rightarrow T+i^{*} \underline{F} \\
& \Rightarrow \underline{T}+i * i
\end{aligned}
$$

Derivation tree:

Derivation Tree: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{1: E \rightarrow E+T$,
2: $E \rightarrow T$,
3: $T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow E+\underline{T} \quad \text { [1] } \\
& \Rightarrow E+\underline{T}^{*} \boldsymbol{F} \text { [3] } \\
& \Rightarrow \boldsymbol{E}+\underline{\boldsymbol{F}}^{*} \boldsymbol{F} \text { [4] } \\
& \Rightarrow \underline{E}+i * \boldsymbol{F} \text { [6] } \\
& \Rightarrow T+i \text { * } \underline{F} \text { [2] } \\
& \Rightarrow \underline{T}+i \text { * } i \text { [6] } \\
& \Rightarrow \underline{\boldsymbol{F}}+\boldsymbol{i} \text { * } \boldsymbol{i} \text { [4] }
\end{aligned}
$$

Derivation tree:

Derivation Tree: Example

$G=(N, T, P, \boldsymbol{E})$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: E \rightarrow E+T$,
2: $E \rightarrow T$,
$3: T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow E+\underline{T} \\
& \Rightarrow E+\underline{T} * F \\
& \Rightarrow E+\underline{F} * F \\
& \Rightarrow \underline{E}+i * \text { [4] } \\
& \Rightarrow T+i * \underline{F} \\
& \Rightarrow \underline{T}+i * i \\
& \Rightarrow \underline{F}+i * i \\
& \Rightarrow i+i * i
\end{aligned}
$$

Derivation tree:

Leftmost Derivation

Gist: During a leftmost derivation step, the leftmost nonterminal is rewritten.
Definition: Let $G=(N, T, P, S)$ be a CFG, let $u \in T^{*}, \boldsymbol{v} \in(N \cup T)^{*}$. Let $\boldsymbol{p}=\boldsymbol{A} \rightarrow \boldsymbol{x} \in P$ be a rule. Then, $\boldsymbol{u} \boldsymbol{A} \boldsymbol{v}$ directly derives $\boldsymbol{u} \boldsymbol{x} \boldsymbol{v}$ in the leftmost way according to \boldsymbol{p} in G, written as

$$
u A v \Rightarrow{ }_{l m} u x v[p]
$$

Note: We define $\Rightarrow_{l m}{ }^{+}$and $\Rightarrow_{l m}{ }^{*}$ by analogy with \Rightarrow^{+} and $\Rightarrow{ }^{*}$, respectively.

Leftmost Derivation: Example

$$
\begin{aligned}
& G=(N, T, P, E) \text {, where } N=\{\boldsymbol{E}, \boldsymbol{F}, T\}, T=\{i,+, *,(,)\}, \\
& P=\left\{\begin{array}{cc}
1: \boldsymbol{E} \rightarrow \boldsymbol{E}+T, & 2: \boldsymbol{E} \rightarrow \boldsymbol{T}, \quad 3: T \rightarrow T^{*} F, \\
4: T \rightarrow \boldsymbol{F}, & 5: \boldsymbol{F} \rightarrow(\boldsymbol{E}), \quad 6: \boldsymbol{F} \rightarrow \boldsymbol{i}
\end{array}\right\} \\
& \hline \text { Leftmost derivation: }
\end{aligned} \text { Derivation tree: }, ~ l
$$

Leftmost Derivation: Example

$$
\begin{aligned}
& G=(N, T, P, \boldsymbol{E}) \text {, where } N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(,)\right\} \text {, } \\
& P=\{1: E \rightarrow E+T \text {, } \\
& \text { 2: } E \rightarrow T \text {, } \\
& \text { 3: } T \rightarrow T^{*} F \text {, } \\
& \text { 4: } T \rightarrow F, \quad \quad 5: F \rightarrow(E), \quad 6: F \rightarrow i
\end{aligned}
$$

Leftmost derivation:
$\underline{E} \Rightarrow_{l m} \underline{E}+T$
[1]

Derivation tree:

$+$

Leftmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: E \rightarrow E+T$,
2: $E \rightarrow T$,
$3: T \rightarrow T^{*} F$,
4: $\boldsymbol{T} \rightarrow \boldsymbol{F}$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Leftmost derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow \operatorname{lm} \underline{E}+T \\
& \Rightarrow_{l m} \underline{T}+T
\end{aligned}
$$

Derivation tree:

$+$

Leftmost Derivation: Example

$$
\begin{aligned}
& G=(N, T, P, \boldsymbol{E}) \text {, where } N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(,)\right\} \text {, } \\
& P=\{\mathbb{1}: \boldsymbol{E} \rightarrow \boldsymbol{E}+\boldsymbol{T} \text {, } \\
& \text { 2: } E \rightarrow T \text {, } \\
& \text { 3: } T \rightarrow T^{*} F, \\
& \text { 4: } T \rightarrow F, \quad \text { 5: } F \rightarrow(E), \quad 6: F \rightarrow i
\end{aligned}
$$

Leftmost derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow_{\operatorname{lm}} \underline{E}+T \\
& \Rightarrow_{\operatorname{lm}} \underline{T}+T \\
& \Rightarrow \ln \underline{\ln } \underline{F}+T
\end{aligned}
$$

Derivation tree:

Leftmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\left\{1: E \rightarrow E+T, \quad 2: E \rightarrow T, \quad 3: T \rightarrow T^{*} F\right.$,
4: $T \rightarrow F, \quad 5: F \rightarrow(E), \quad 6: F \rightarrow i$

Leftmost derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow_{l m} \underline{E}+T \\
& \Rightarrow_{l m} \underline{T}+T \\
& \Rightarrow_{l m} \underline{F}+T \\
& \left.\Rightarrow_{l m} i+\underline{T}\right]
\end{aligned}
$$

Derivation tree:

Leftmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\left\{1: E \rightarrow E+T, \quad 2: E \rightarrow T, \quad 3: T \rightarrow T^{*} F\right.$,
4: $T \rightarrow F, \quad 5: F \rightarrow(E), \quad 6: F \rightarrow i$

Leftmost derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow_{l m} \underline{E}+T \\
& \Rightarrow_{l m} \underline{T}+T \\
& \Rightarrow_{l m} \underline{F}+T \\
& \Rightarrow_{l m} i+\underline{T} \\
& \Rightarrow_{l m} i+\underline{T} * \\
& \text { l4] } \\
& \text { l6] }
\end{aligned}
$$

Derivation tree:

$13 / 50$

Leftmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\left\{1: E \rightarrow E+T, \quad 2: E \rightarrow T, \quad 3: T \rightarrow T^{*} F\right.$,
4: $T \rightarrow F, \quad$ 5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Leftmost derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow_{l m} \underline{E}+T \\
& \Rightarrow_{l m} \underline{T}+T \\
& \Rightarrow_{l m} \underline{F}+T \\
& \Rightarrow_{l m} i+\underline{T} \\
& \Rightarrow_{l m} i+\underline{T}^{*} F \text { [3] } \\
& \Rightarrow_{l m} i+\underline{F}^{*} F[4]
\end{aligned}
$$

Derivation tree:

$13 / 50$

Leftmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\left\{1: E \rightarrow E+T, \quad 2: E \rightarrow T, \quad 3: T \rightarrow T^{*} F\right.$, 4: $T \rightarrow F, \quad$ 5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Leftmost derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow_{l m} \underline{E}+T \\
& \Rightarrow{ }_{l m} \underline{T}+T \\
& \Rightarrow_{l m} \underline{F}+T \\
& \Rightarrow_{l m} i+\underline{T} \\
& \Rightarrow_{l m} i+\underline{T}^{*} F \text { [3] } \\
& \Rightarrow_{l m} i+\underline{F}^{*} \boldsymbol{F} \text { [4] } \\
& \Rightarrow_{l m} i+i * \underline{F}[6]
\end{aligned}
$$

Derivation tree:

$13 / 50$

Leftmost Derivation: Example

$G=(N, T, P, \boldsymbol{E})$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\left\{1: E \rightarrow E+T, \quad 2: E \rightarrow T, \quad 3: T \rightarrow T^{*} F\right.$, 4: $T \rightarrow F, \quad$ 5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Leftmost derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow_{l m} \underline{E}+T \\
& \Rightarrow_{l m} \underline{T}+T \\
& \Rightarrow_{l m} \underline{F}+T \\
& \Rightarrow_{l m} i+\underline{T} \\
& \Rightarrow_{l m} i+\underline{T}^{*} F \text { [3] } \\
& \Rightarrow_{l m} i+\underline{F}^{*} F[4] \\
& \Rightarrow_{l m} i+i * \underline{F}[6] \\
& \Rightarrow_{l m} i+i * i[6]
\end{aligned}
$$

Rightmost Derivation

Gist: During a rightmost derivation step, the rightmost nonterminal is rewritten.
Definition: Let $G=(N, T, P, S)$ be a CFG, let $\boldsymbol{u} \in(N \cup T)^{*}, \boldsymbol{v} \in T^{*}$. Let $\boldsymbol{p}=\boldsymbol{A} \rightarrow \boldsymbol{x} \in P$ be a rule. Then, $\boldsymbol{u} \boldsymbol{A} \boldsymbol{v}$ directly derives $\boldsymbol{u x v}$ in the rightmost way according to \boldsymbol{p} in G, written as $\boldsymbol{u} \boldsymbol{A v} \Rightarrow_{r m} \boldsymbol{u x v}[p]$
Note: We define $\Rightarrow_{r m}{ }^{+}$and $\Rightarrow_{r m}{ }^{*}$ by analogy with \Rightarrow^{+} and $\Rightarrow{ }^{*}$, respectively.

Rightmost Derivation: Example

$$
\left.\begin{array}{c}
G=(N, T, P, E), \text { where } N=\{E, F, T\}, T=\left\{i,+,^{*},(,)\right\}, \\
P=\{1: E \rightarrow E+T, \\
4: T \rightarrow F, \quad 2: E, \quad 3: T \rightarrow T^{*} F \\
4: F \rightarrow(E), \quad 6: F \rightarrow i
\end{array}\right\}
$$

Rightmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: \boldsymbol{E} \rightarrow \boldsymbol{E}+\boldsymbol{T}$,
2: $E \rightarrow T$,
3: $T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Rightmost derivation:
$\underline{E} \Rightarrow_{r m} E+\underline{T}$

Derivation tree:

$+$

Rightmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{1: E \rightarrow E+T$,
2: $E \rightarrow T$,
$3: T \rightarrow T^{*} F$,
4: $T \rightarrow F$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Rightmost derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow_{r m} E+\underline{T} \\
& \Rightarrow{ }_{r m} E+T *[1] \\
& \hline
\end{aligned}
$$

Derivation tree:

Rightmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{1: E \rightarrow E+T$,
2: $E \rightarrow T$,
$3: T \rightarrow T^{*} F$,
4: $\boldsymbol{T} \rightarrow \boldsymbol{F}$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Rightmost derivation:

$$
\begin{aligned}
\underline{E} & \Rightarrow \Rightarrow_{r m} E+\underline{T} \\
& \Rightarrow{ }_{r m} E+T * \\
& \Rightarrow{ }_{r m} E+\underline{T}^{*} \underline{i}
\end{aligned}
$$

Derivation tree:

Rightmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{1: E \rightarrow E+T$,
2: $E \rightarrow T$,
$3: T \rightarrow T^{*} F$,
4: $\boldsymbol{T} \rightarrow \boldsymbol{F}$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Rightmost derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow{ }_{r m} E+\underline{T} \\
& \Rightarrow r_{r m} E+T * \\
& \Rightarrow{ }_{r m} E+\underline{T} \underline{T}^{*} i \\
& \Rightarrow{ }_{r m} E+\underline{F}^{*} i \\
& \text { [6] } \\
&
\end{aligned}
$$

Derivation tree:

Rightmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{1: E \rightarrow E+T$,
2: $E \rightarrow T$,
$3: T \rightarrow T^{*} F$,
4: $\boldsymbol{T} \rightarrow \boldsymbol{F}$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Rightmost derivation:

$$
\left.\begin{array}{rlr}
\underline{E} & \Rightarrow_{r m} E+\underline{T} & {[1]} \\
& \Rightarrow r_{r m} E+T * T & {[3]} \\
& \Rightarrow r_{r m} E+\underline{T}^{*} i & {[6]} \\
& \Rightarrow r_{r m} E+\underline{F}^{*} & i
\end{array}\right][4]
$$

Derivation tree:

Rightmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\{\mathbb{1}: E \rightarrow E+T$,
2: $E \rightarrow T$,
$3: T \rightarrow T^{*} F$,
4: $\boldsymbol{T} \rightarrow \boldsymbol{F}$,
5: $F \rightarrow(E), \quad 6: F \rightarrow i$

Rightmost derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow_{r m} E+\underline{T} \\
& \text { [1] } \\
& \Rightarrow r_{r m} E+T^{*} \underline{F} \text { [3] } \\
& \Rightarrow_{r m} E+\underline{T}^{*} i \text { [6] } \\
& \Rightarrow_{r m} E+\underline{\boldsymbol{F}}^{*} i \text { [4] } \\
& \Rightarrow_{r m} \underline{E}+i * i[6] \\
& \Rightarrow_{r m} \underline{T}+i * i[2]
\end{aligned}
$$

Derivation tree:

Rightmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\left\{1: E \rightarrow E+T, \quad 2: E \rightarrow T, \quad 3: T \rightarrow T^{*} F\right.$,
4: $T \rightarrow F, \quad \quad 5: F \rightarrow(E), \quad 6: F \rightarrow i$

Rightmost derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow_{r m} E+\underline{T} \\
& \Rightarrow{ }_{r m} E+T^{*} \underline{F} \text { [3] } \\
& \Rightarrow_{r m} E+\underline{T}^{*} i \text { [6] } \\
& \Rightarrow_{r m} E+\underline{F}^{*} i \text { [4] } \\
& \Rightarrow_{r m} \underline{E}+i * i[6] \\
& \Rightarrow_{r m} \underline{T}+i * i[2] \\
& \Rightarrow_{r m} \underline{F}+i * i[4]
\end{aligned}
$$

Derivation tree:

Rightmost Derivation: Example

$G=(N, T, P, E)$, where $N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\left\{i,+,{ }^{*},(),\right\}$,
$P=\left\{1: E \rightarrow E+T, \quad 2: E \rightarrow T, \quad 3: T \rightarrow T^{*} F\right.$,
4: $T \rightarrow F, \quad \quad 5: F \rightarrow(E), \quad 6: F \rightarrow i$

Rightmost derivation:

$$
\begin{aligned}
& \underline{E} \Rightarrow_{r m} E+\underline{T} \quad \text { [1] } \\
& \Rightarrow{ }_{r m} E+T^{*} \underline{F} \text { [3] } \\
& \Rightarrow_{r m} E+\underline{T}^{*} i \text { [6] } \\
& \Rightarrow_{r m} E+\underline{F}^{*} i \text { [4] } \\
& \Rightarrow_{r m} \underline{E}+i * i[6] \\
& \Rightarrow_{r m} \underline{T}+i * i[2] \\
& \Rightarrow_{r m} \underline{\boldsymbol{F}}+i \text { * } i \text { [4] } \\
& \Rightarrow_{r m} i+i * i[6]
\end{aligned}
$$

16/50

Derivations: Summary

- Let $A \rightarrow x \in P$ be a rule.

1) Derivation:

Let $\boldsymbol{u}, \boldsymbol{v} \in(N \cup T)^{*} \quad: \boldsymbol{u} A \boldsymbol{v} \Rightarrow \boldsymbol{u} x \boldsymbol{v}$
Note: Any nonterminal is rewritten
2) Leftmost derivation:

Let $\boldsymbol{u} \in T^{*}, \boldsymbol{v} \in(N \cup T)^{*} \quad: \boldsymbol{u} A \boldsymbol{v} \Rightarrow_{\mathbf{l m}} \boldsymbol{u x v}$
Note: Leftmost nonterminal is rewritten
3) Rightmost derivation:

Let $\boldsymbol{u} \in(N \cup T)^{*}, \boldsymbol{v} \in T^{*} \quad: \boldsymbol{u} A \boldsymbol{v} \Rightarrow_{\mathrm{rm}} \boldsymbol{u} x \boldsymbol{v}$
Note: Rightmost nonterminal is rewritten

Reduction of the Number of Derivations

Gist: Without any loss of generality, we can consider only leftmost or rightmost derivations.
Theorem: Let $G=(N, T, P, S)$ be a CFG. The next three languages coincide
(1) $\left\{w: w \in T^{*}, S \Rightarrow_{l_{m}}{ }^{*} w\right\}$
(2) $\left\{w: w \in T^{*}, S \Rightarrow{ }_{r m}{ }^{*} w\right\}$
(3) $\left\{w: w \in T^{*}, S \Rightarrow^{*} w\right\}=L(G)$

Introduction to Ambiguity

$$
\begin{aligned}
& G_{\text {expr } 1}=(N, T, P, E), \text { where } \\
& N=\{\boldsymbol{E}, \boldsymbol{F}, \boldsymbol{T}\}, T=\{i,+, *,(,)\}, \\
& P=\{\quad 1: E \rightarrow \boldsymbol{E}+T, \quad 2: E \rightarrow T, \\
& 3: T \rightarrow T^{*} F, \quad 4: T \rightarrow \boldsymbol{F}, \\
& 5: F \rightarrow(\boldsymbol{E}), \quad 6: F \rightarrow i
\end{aligned}
$$

Theory: : \times Practice: (:)

$G_{\text {exp } 2}=(N, T, P, E)$, where
$N=\{E\}, T=\left\{i,+{ }^{*},(),\right\}$,
$P=\left\{1: E \rightarrow E+E, 2: E \rightarrow E^{*} E\right.$, 3: $E \rightarrow(E), \quad 4: E \rightarrow i \quad\}$

Theory: (3) \times Practice: (:)

Improper during compilation

Grammatical Ambiguity

Definition: Let $G=(N, T, P, S)$ be a CFG.

 If there exists $x \in L(G)$ with more than one derivation tree, then G is ambiguous; otherwise, G is unambiguous.Definition: A CFL, L, is inherently ambiguous if L is generated by no unambiguous grammar.

Example:

- $G_{\text {expr } 1}$ is unambiguous, because for every $x \in L\left(G_{\text {expr1 }}\right)$ there exists only one derivation tree
- $G_{\text {expr } 2}$ is ambiguous, because for $i+i * i \in L\left(G_{\text {expr } 2}\right)$ there exist two derivation trees
- $L_{\text {expr }}=L\left(G_{\text {expr } 1}\right)=L\left(G_{\text {expr } 2}\right)$ is not inherently ambiguous because $G_{\text {expr } 1}$ is unambiguous

Pushdown Automata (PDA)

Gist: An FA extended by a pushdown store.

21/50

Pushdown Automata: Definition

Definition: A pushdown automaton (PDA) is a 7-tuple $M=(Q, \Sigma, \Gamma, R, s, S, F)$, where

- Q is a finite set of states
- Σ is an input alphabet
- Γ is a pushdown alphabet
- R is a finite set of rules of the form: $A p a \rightarrow w q$ where $A \in \Gamma, p, q \in Q, a \in \Sigma \cup\{\varepsilon\}, w \in \Gamma^{*}$
- $s \in Q$ is the start state
- $S \in \Gamma$ is the start pushdown symbol
- $F \subseteq Q$ is a set of final states

Notes on PDA Rules

Mathematical note on rules:

- Strictly mathematically, R is a finite relation from $\Gamma \times Q \times(\Sigma \cup\{\varepsilon\})$ to $\Gamma^{*} \times Q$
- Instead of $(A p a, w q) \in R$, however, we write $A p a \rightarrow w q \in R$

Notes on PDA Rules

Mathematical note on rules:

- Strictly mathematically, R is a finite relation from $\Gamma \times Q \times(\Sigma \cup\{\varepsilon\})$ to $\Gamma^{*} \times Q$
- Instead of $(A p a, w q) \in R$, however, we write $A p a \rightarrow w q \in R$
- Interpretation of $A p a \rightarrow w q$: if the current state is p, current input symbol is a, and the topmost symbol on the pushdown is A, then M can read a, replace A with w and change state p to q.
- Note: if $a=\varepsilon$, no symbol is read

Graphical Representation

(a) represents $q \in Q$
$\rightarrow s$ represents the initial state $s \in Q$
represents a final state $f \in F$
(p) $\xrightarrow{A / w, a}$ denotes $A p a \rightarrow w q \in R$

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$
where:

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\} ;$

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, S\} ;$

$24 / 50$

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow S a p$,

$24 / 50$

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow$ Sap, apa \rightarrow aap,

$24 / 50$

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow$ Sap,
apa \rightarrow aap,
$a p b \rightarrow q$,

$24 / 50$

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow S a p$,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,

$24 / 50$

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\} ;$
- $R=\{S s a \rightarrow S a p$,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$

$24 / 50$

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$
where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\} ;$
- $R=\{S s a \rightarrow S a p$,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$

$24 / 50$

Graphical Representation: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$
where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\} ;$
- $R=\{S s a \rightarrow S a p$,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$
- $F=\{f\}$

PDA Configuration

Gist: Instantaneous description of PDA

Definition: Let $M=(Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA. A configuration of M is a string $\chi \in \Gamma^{*} Q \Sigma^{*}$

Finite State Control

Read-write head

Input tape:
${ }^{1}$ Read head

a_{1}	a_{2}	\ldots	a_{i}	\ldots	a_{n}

PDA Configuration

Gist: Instantaneous description of PDA

Definition: Let $M=(Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA. A configuration of M is a string $\chi \in \Gamma^{*} Q \Sigma^{*}$

Finite State Control

Read-write head

Move

Gist: A computational step made by a PDA

Definition: Let x Apay and $x w q y$ be two configurations of a PDA, M, where $x, w \in \Gamma^{*}, A \in \Gamma, p, q \in Q, a \in \Sigma \cup\{\varepsilon\}$, and $\boldsymbol{y} \in \Sigma^{*}$. Let $=A p a \rightarrow w q \in R$ be a rule. Then, M makes a move from $\boldsymbol{x A p a y}$ to $\boldsymbol{x} w q \boldsymbol{y}$ according to , written as $\boldsymbol{x A p a y} \mid-\boldsymbol{x} w q \boldsymbol{y}$ [] or, simply, xApay |-xwqy.
Note: if $a=\varepsilon$, no input symbol is read Configuration:

Move

Gist: A computational step made by a PDA

Definition: Let x Apay and $x w q y$ be two configurations of a PDA, M, where $x, w \in \Gamma^{*}, A \in \Gamma, p, q \in Q, a \in \Sigma \cup\{\varepsilon\}$, and $\boldsymbol{y} \in \Sigma^{*}$. Let $=A p a \rightarrow w q \in R$ be a rule. Then, M makes a move from $\boldsymbol{x A p a y}$ to $\boldsymbol{x} w q \boldsymbol{y}$ according to , written as $\boldsymbol{x A p a y} \mid-\boldsymbol{x} w q \boldsymbol{y}$ [] or, simply, xApay |-xwqy.

Note: if $a=\varepsilon$, no input symbol is read Configuration: | ,$~ x+$ | A | | |
| :---: | :---: | :---: | :---: |
| | a | 1 | y_{1} |

Rule: $A p a \rightarrow w q$

Move

Gist: A computational step made by a PDA

Definition: Let x Apay and $x w q y$ be two configurations of a PDA, M, where $\boldsymbol{x}, w \in \Gamma^{*}, A \in \Gamma, p, q \in Q, a \in \Sigma \cup\{\varepsilon\}$, and $\boldsymbol{y} \in \Sigma^{*}$. Let $=A p a \rightarrow w q \in R$ be a rule. Then, M makes a move from $\boldsymbol{x A p a y}$ to $\boldsymbol{x} w q \boldsymbol{y}$ according to , written as $\boldsymbol{x A p a y} \mid-\boldsymbol{x w q y}$ [] or, simply, x Apay |- $\boldsymbol{x w q y}$.
Note: if $a=\varepsilon$, no input symbol is read Configuration:
Rule: $A p a \rightarrow w q$
New configuration:

$27 / 50$

Sequence of Moves $1 / 2$

Gist: Several consecutive computational steps

Definition: Let χ be a configuration. M makes zero moves from χ to χ; in symbols,

$$
\chi\left|\left.\right|^{0} \chi[\varepsilon] \text { or, simply, } \chi\right|^{0} \chi
$$

Definition: Let $\chi_{0}, \chi_{1}, \ldots, \chi_{\mathrm{n}}$ be a sequence of configurations, $n \geq 1$, and $\chi_{i-1} \mid-\chi_{i}\left[r_{i}\right], r_{i} \in R$, for all $i=1, \ldots, n$; that is,

$$
\chi_{0}\left|-\chi_{1}\left[r_{1}\right]\right|-\chi_{2}\left[r_{2}\right] \ldots \mid-\chi_{n}\left[r_{n}\right]
$$

Then M makes n moves from χ_{0} to χ_{n},

$$
\chi_{0} \mid-^{n} \chi_{n}\left[r_{1} \ldots r_{n}\right] \text { or, simply, } \chi_{0} \mid-^{n} \chi_{n}
$$

Sequence of Moves $2 / 2$

If $\chi_{0} 1^{n} \chi_{n}[\rho]$ for some $n \geq 1$, then

$$
\chi_{0} 1^{-+} \chi_{n}[\rho] \text { or, simply, } \chi_{0} 1^{-} \chi_{n}
$$

If $\left.\chi_{0}\right|^{n} \chi_{n}[\rho]$ for some $n \geq 0$, then $\chi_{0} \vdash^{*} \chi_{n}[\rho]$ or, simply, $\chi_{0} \vdash^{*} \chi_{n}$

Example: Consider
AApabc $\mid-A B q b c$ [$1: A p a \rightarrow B q]$, and
ABqbe $\mid-\mathrm{ABCrc}[\mathbf{2 : ~ B q b} \rightarrow \mathrm{BCr}]$.
Then, \quad aApabc $\left.\right|^{-2}$ ABCrc [12],
AApabc $\mid-^{+}$ABCrc [12],
AApabc $\mid-{ }^{-*}$ ABCrc [12]

Accepted Language: Three Types

Definition: Let $M=(Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA.

1) The language that M accepts by final state, denoted by $\boldsymbol{L}(\boldsymbol{M})_{f}$, is defined as
$L(M)_{f}=\left\{w: w \in \Sigma^{*}, S s w-^{*} z f, z \in \Gamma^{*}, f \in F\right\}$
2) The language that M accepts by empty pushdown, denoted by $\boldsymbol{L}(\boldsymbol{M})_{\varepsilon}$, is defined as $L(M)_{\varepsilon}=\left\{w: w \in \Sigma^{*},\left.S s w\right|^{*} z f, z=\varepsilon, f \in Q\right\}$
3) The language that M accepts by final state and empty pushdown, denoted by $\boldsymbol{L}(\boldsymbol{M})_{f \varepsilon}$, is defined as $L(M)_{f \varepsilon}=\left\{w: w \in \Sigma^{*},\left.S s w\right|^{*} z f, z=\varepsilon, f \in F\right\}$

PDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ Question: $a \mathbf{a b b} \in L\left(M_{f \varepsilon}\right.$? where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, S\} ;$
- $R=\{S s a \rightarrow$ Sap, apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$
- $F=\{f\}$

Ssaabb

$30 / 50$

PDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ Question: aabb $\in L\left(M_{f \varepsilon}\right.$? where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow S a p$,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$
- $F=\{f\}$

Ssaabb |- Sapabb

$30 / 50$

PDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F) \quad$ Question: $a a b b \in L(M)_{f \varepsilon}$? where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow S a p$,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$
- $F=\{f\}$

Ssaabb|-Sapabb |-Saapbb

$30 / 50$

PDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F) \quad$ Question: $a a b b \in L(M)_{f \varepsilon}$? where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\} ;$
- $R=\{S s a \rightarrow S a p$,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$
- $F=\{f\}$
$S s a a b b|-S a p a b b|-S a a p b b \mid-S a q b$

$30 / 50$

PDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow S a p$,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$

Question: $a a b b \in L(M)_{f \varepsilon}$? | S | a | a | b | b |
| :--- | :--- | :--- | :--- | :--- |

Rule: Ssa \rightarrow Sap

| $S\|a\|$ | a | b | b |
| :--- | :--- | :--- | :--- | :--- |

Rule: apa \rightarrow aap

Rule: $a p b \rightarrow q$

Rule: $a q b \rightarrow q$ S(T)

- $F=\{f\}$
$S s a a b b|-S a p a b b|-S a a p b b|-S a q b|-S q$

$30 / 50$

PDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow S a p$,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$
- $F=\{f\}$
$\underline{S s a a b b|-S a p a b b|-S a a p b b|-S a q b|-S q \mid-f}$

$30 / 50$

PDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F) \quad$ Question: $a a b b \in L(M)_{f \varepsilon}$? where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow$ Sap,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$
- $F=\{f\}$

Empty
$\xrightarrow[S s a a b b|-S a p a b b|-S a a p b b|-S a q b|-S q \mid-f]{ }$

$30 / 50$

PDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F) \quad$ Question: $a \boldsymbol{a} b b \in L(M)_{f \varepsilon}$? where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow$ Sap,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$
- $F=\{f\}$

Empty
S Saabb |-Sapabb|-Saapbb|-Saqb |-Sq|-f

$30 / 50$

PDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F) \quad$ Question: $a \mathfrak{a b b} \in L(M)_{f \varepsilon}$? where:

- $Q=\{s, p, q, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, S\}$;
- $R=\{S s a \rightarrow$ Sap,
apa \rightarrow aap,
$a p b \rightarrow q$,
$a q b \rightarrow q$,
$S q \rightarrow f\}$
- $F=\{f\}$

Empty

Ssaabb |-Sapabb |-Saapbb |-Saqb |-Sq|-f
Note: $L(M)_{f}=L(M)_{\varepsilon}=L(M)_{f \varepsilon}=\left\{a^{n} b^{n}: n \geq 1\right\}$

$31 / 50$

Three Types of Acceptance: Equivalence

Theorem:

- $L=L\left(M_{f}\right)_{f}$ for a PDA $M_{f} \Leftrightarrow L=L\left(M_{f \varepsilon}\right)_{f_{\varepsilon}}$ for a PDA $M_{f \varepsilon}$
- $L=L\left(M_{\varepsilon}\right)_{\varepsilon}$ for a PDA $M_{\varepsilon} \Leftrightarrow L=L\left(M_{f \varepsilon}\right)_{\varepsilon \varepsilon}$ for a PDA $M_{f \varepsilon}$
- $L=L\left(M_{f}\right)_{f}$ for a PDA $M_{f} \Leftrightarrow L=L\left(M_{\varepsilon}\right)_{\varepsilon}$ for a PDA M_{ε}

Note: There exist these conversions:

Deterministic PDA (DPDA)

Gist: Deterministic PDA makes no more than one move from any configuration.
Definition: Let $M=(Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA. M is a deterministic PDA if for each rule $A p a \rightarrow w q \in R$, it holds that $R-\{A p a \rightarrow w q\}$ contains no rule with the left-hand side equal to Apa or Ap.
Illustration:
Configuration:

Deterministic PDA (DPDA)

Gist: Deterministic PDA makes no more than one move from any configuration.
Definition: Let $M=(Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA. M is a deterministic PDA if for each rule Apa $\rightarrow w q \in R$, it holds that $R-\{A p a \rightarrow w q\}$ contains no rule with the left-hand side equal to Apa or Ap.
Illustration:
Configuration:

Deterministic PDA (DPDA)

Gist: Deterministic PDA makes no more than one move from any configuration.
Definition: Let $M=(Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA. M is a deterministic PDA if for each rule $A p a \rightarrow w q \in R$, it holds that $R-\{A p a \rightarrow w q\}$ contains no rule with the left-hand side equal to Apa or Ap.

Illustration:

Configuration:

No more that one rule of the forms $\{$

$33 / 50$

PDAs are Stronger than DPDAs

Theorem: There exists no DPDA $M_{f \varepsilon}$ that accepts

$$
L=\left\{x y: x, y \in \Sigma^{*}, y=\operatorname{reversal}(x)\right\}
$$

Proof: See page 431 in [Meduna: Automata and Languages] Illustration:

$33 / 50$

PDAs are Stronger than DPDAs

Theorem: There exists no DPDA $M_{f \varepsilon}$ that accepts

$$
L=\left\{x y: x, y \in \Sigma^{*}, y=\operatorname{reversal}(x)\right\}
$$

Proof: See page 431 in [Meduna: Automata and Languages] Illustration:

The family of deterministic
CFLS-the languages accepted by DPDAs

$33 / 50$

PDAs are Stronger than DPDAs

Theorem: There exists no DPDA $M_{f \varepsilon}$ that accepts

$$
L=\left\{x y: x, y \in \Sigma^{*}, y=\operatorname{reversal}(x)\right\}
$$

Proof: See page 431 in [Meduna: Automata and Languages] Illustration:

The family of deterministic CFLs-the languages accepted by DPDAs

The family of languages accepted by PDAs

$33 / 50$

PDAs are Stronger than DPDAs

Theorem: There exists no DPDA $M_{f \varepsilon}$ that accepts

$$
L=\left\{x y: x, y \in \Sigma^{*}, y=\operatorname{reversal}(x)\right\}
$$

Proof: See page 431 in [Meduna: Automata and Languages] Illustration:

$$
L=\left\{x y: x, y \in \Sigma^{*}, y=\operatorname{reversal}(x)\right\}
$$

The family of deterministic CFLs-the languages accepted by DPDAs

The family of
languages accepted by PDAs

Extended PDA (EPDA)

Gist: The pushdown top of an EPDA represents a string rather than a single symbol.
Definition: An Extended Pushdown automaton (EPDA) is a 7-tuple $M=(Q, \Sigma, \Gamma, R, s, S, F)$, where $Q, \Sigma, \Gamma, s, S, F$ are defined as in an PDA and R is a finite set of rules of the form: $v p a \rightarrow w q$, where $v, w \in \Gamma^{*}, p, q \in Q, a \in \Sigma \cup\{\varepsilon\}$

Illustration:

Pushdown of PDA:

PDA has a single symbols as the pushdown top

Pushdown of EPDA:

EPDA has a string as the pushdown top

35/50

Move in EPDA

Definition: Let $x v p a y$ and $x w q y$ be two configurations of an EPDA, M, where $\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{w} \in \Gamma^{*}, \boldsymbol{p}, \boldsymbol{q} \in Q, \boldsymbol{a} \in \Sigma$ $\cup\{\varepsilon\}$, and $\boldsymbol{y} \in \Sigma^{*}$. Let $\boldsymbol{r}=v \boldsymbol{p} \boldsymbol{a} \rightarrow \boldsymbol{w} \boldsymbol{q} \in R$ be a rule. Then, M makes a move from $\boldsymbol{x} v p a y$ to $\boldsymbol{x w q y}$ according to \boldsymbol{r}, written as $\boldsymbol{x} v \boldsymbol{p a y} \mid-\boldsymbol{x w q y}[\boldsymbol{r}]$ or $\boldsymbol{x v p a y} \mid-\boldsymbol{x w q y}$.

Configuration:

35/50

Move in EPDA

Definition: Let $\boldsymbol{x} v p a y$ and $\boldsymbol{x} w \boldsymbol{q} \boldsymbol{y}$ be two configurations of an EPDA, M, where $\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{w} \in \Gamma^{*}, \boldsymbol{p}, \boldsymbol{q} \in Q, \boldsymbol{a} \in \Sigma$ $\cup\{\varepsilon\}$, and $\boldsymbol{y} \in \Sigma^{*}$. Let $\boldsymbol{r}=v \boldsymbol{p} \boldsymbol{a} \rightarrow \boldsymbol{w} \boldsymbol{q} \in R$ be a rule. Then, M makes a move from $\boldsymbol{x} v p a y$ to $\boldsymbol{x w q y}$ according to r, written as $\boldsymbol{x} v \boldsymbol{p a y} \mid-\boldsymbol{x w q y}[r]$ or $\boldsymbol{x} v p a y \mid-\boldsymbol{x w q y}$.

Rule: $v p a \rightarrow w q$

Move in EPDA

Definition: Let $\boldsymbol{x} v p a y$ and $\boldsymbol{x} w \boldsymbol{q} \boldsymbol{y}$ be two configurations of an EPDA, M, where $\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{w} \in \Gamma^{*}, \boldsymbol{p}, \boldsymbol{q} \in Q, \boldsymbol{a} \in \Sigma$ $\cup\{\varepsilon\}$, and $\boldsymbol{y} \in \Sigma^{*}$. Let $\boldsymbol{r}=v \boldsymbol{p} \boldsymbol{a} \rightarrow \boldsymbol{w} \boldsymbol{q} \in R$ be a rule. Then, M makes a move from $\boldsymbol{x} v p a y$ to $\boldsymbol{x w q y}$ according to \boldsymbol{r}, written as $\boldsymbol{x} v p a y \mid-\boldsymbol{x w q y}[\boldsymbol{r}]$ or $\boldsymbol{x v p a y} \mid-\boldsymbol{x w q y}$.

Configuration:
Rule: $v p a \rightarrow w q$
New configuration:

Move in EPDA

Definition: Let $\boldsymbol{x} v p a y$ and $\boldsymbol{x} w \boldsymbol{q} y$ be two configurations of an EPDA, M, where $\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{w} \in \Gamma^{*}, \boldsymbol{p}, \boldsymbol{q} \in Q, \boldsymbol{a} \in \Sigma$ $\cup\{\varepsilon\}$, and $\boldsymbol{y} \in \Sigma^{*}$. Let $\boldsymbol{r}=v \boldsymbol{p} \boldsymbol{a} \rightarrow \boldsymbol{w} \boldsymbol{q} \in R$ be a rule. Then, M makes a move from $\boldsymbol{x} v p a y$ to $\boldsymbol{x w q y}$ according to \boldsymbol{r}, written as $\boldsymbol{x} v \boldsymbol{p a y} \mid-\boldsymbol{x w q y}[\boldsymbol{r}]$ or $\boldsymbol{x} v p a y \mid-\boldsymbol{x w q y}$.

Configuration:
Rule: $v p a \rightarrow w q$
New configuration:

Note: $\left|-^{n},\left|\left.\right|^{+},\right|-*, L(M)_{f}, L(M)_{\varepsilon}\right.$, and $L(M)_{f \varepsilon}$ are defined analogically to the corresponding definitions for PDA.

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, f\}$;

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$,

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$,

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$,

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$,

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$,

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$
where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\}$;
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$,
$a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, \underbrace{2} S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$
- $F=\{f\}$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s \underbrace{2}, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$,

Question: $a b b a \in L_{f \varepsilon}(M)$?

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s \underbrace{S, F})$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$
- $F=\{f\}$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s \underbrace{s, F})$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$
- $F=\{f\}$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, \underbrace{2} S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$
- $F=\{f\}$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, \underbrace{2} S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$
- $F=\{f\}$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, \underbrace{2} S, F)$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$
- $F=\{f\}$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s \underbrace{S, F})$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$
- $F=\{f\}$

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, s \underbrace{s, F})$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, SOs $\rightarrow f\}$
- $F=\{f\}$

Question: $a b b a \in L_{f \varepsilon}(M)$?
S $\underline{s} a b b a|-S a s b b a|-S a b \underline{s} b a$ $1-S a \bar{b} C s b a \mid-S a \overline{C s} a$ $1-$ SCI $1-f$
Answer: YES

EPDA: Example

$M=(Q, \Sigma, \Gamma, R, \underbrace{s, S, F})$ where:

- $Q=\{s, f\}$;
- $\Sigma=\{a, b\} ;$
- $\Gamma=\{a, b, S, C\} ;$
- $R=\{\quad s a \rightarrow a s$, $s b \rightarrow b s$, $s \rightarrow C s$, $a C s a \rightarrow C s$, $b C s b \rightarrow C s$, $S C s \rightarrow f\}$
- $F=\{f\}$
c/a,a,

Question: $a b b a \in L_{f \varepsilon}(M)$? Ssabba |-Sasbba|-Sabsba $1-$ Sab̄Csba|-SaCsa $1-$ SCs $1-f$

Answer: YES

Note: $L(M)_{f}=L(M)_{\varepsilon}=L(M)_{f \varepsilon}=\left\{x y: x, y \in \Sigma^{*}, y=\operatorname{reversal}(x)\right\}$

$37 / 50$

Three Types of Acceptance: Equivalence

Theorem:

- $L=L\left(M_{f}\right)_{f}$ for an EPDA $M_{f} \Leftrightarrow L=L\left(M_{f \varepsilon}\right)_{f \varepsilon}$ for an EPDA $M_{f \varepsilon}$
- $L=L\left(M_{\varepsilon}\right)_{\varepsilon}$ for an EPDA $M_{\varepsilon} \Leftrightarrow L=L\left(M_{\left.f_{\varepsilon}\right)_{f \varepsilon}}\right.$ for an EPDA $M_{f_{\varepsilon}}$
- $L=L\left(M_{f}\right)_{f}$ for an EPDA $M_{f} \Leftrightarrow L=L\left(M_{\varepsilon}\right)_{\varepsilon}$ for an EPDA M_{ε}

Note: There exist these conversion:
EPDA $M_{f \varepsilon}$ that accept L
by final state and
empty pushdown

EPDA M_{f} that accept L by final state

EPDA M_{ε} that accept L by empty pushdown

EPDAs and PDAs are Equivalent

Theorem: For every EPDA M, there is a PDA M^{\prime}, and $L(M)_{f}=L\left(M^{\prime}\right)_{f}$.

Proof: See page 419 in [Meduna: Automata and Languages] Illustration:

EPDAs and PDAs are Equivalent

Theorem: For every EPDA M, there is a PDA M^{\prime}, and $L(M)_{f}=L\left(M^{\prime}\right)_{f}$.

Proof: See page 419 in [Meduna: Automata and Languages] Illustration:

The family of
languages accepted by EPDAs

EPDAs and PDAs are Equivalent

Theorem: For every EPDA M, there is a PDA M^{\prime}, and $L(M)_{f}=L\left(M^{\prime}\right)_{f}$.

Proof: See page 419 in [Meduna: Automata and Languages] Illustration:

39/50

EPDAs and PDAs as Parsing Models for CFGs
Gist: An EPDA or a PDA can simulate the construction of a derivation tree for a CFG

- Two basic approaches:

1) Top-Down Parsing 12) Bottom-Up Parsing

From S towards the input string

From the input string towards S

EPDAs as Models of Bottom-Up Parsers $1 / 2$ Gist: An EPDA M underlies a bottom-up parser

1) M contains shift rules that copy the input symbols onto the pushdown:

EPDAs as Models of Bottom-Up Parsers 1/2

Gist: An EPDA M underlies a bottom-up parser

1) M contains shift rules that copy the input symbols onto the pushdown:

for every $a \in \Sigma$: add $s a \rightarrow$ as to R;

EPDAs as Models of Bottom-Up Parsers 1/2

Gist: An EPDA M underlies a bottom-up parser

1) M contains shift rules that copy the input symbols onto the pushdown:

$$
\begin{aligned}
& \text { for every } a \in \Sigma \text { : } \\
& \text { add } s a \rightarrow \text { as to } R \text {; }
\end{aligned}
$$

2) M contains reduction rules that simulate the application of a grammatical rule in reverse:

EPDAs as Models of Bottom-Up Parsers 1/2

 Gist: An EPDA M underlies a bottom-up parser 1) M contains shift rules that copy the input symbols onto the pushdown:

$$
\begin{aligned}
& \text { for every } a \in \Sigma \text { : } \\
& \text { add } s a \rightarrow \text { as to } R \text {; }
\end{aligned}
$$

2) M contains reduction rules that simulate the application of a grammatical rule in reverse:

for every $A \rightarrow x \in P$ in G : add $x s \rightarrow A s$ to R;

EPDAs as Models of Bottom-Up Parsers 1/2

Gist: An EPDA M underlies a bottom-up parser

1) M contains shift rules that copy the input symbols onto the pushdown:

$$
\begin{aligned}
& \text { for every } a \in \Sigma \text { : } \\
& \text { add } s a \rightarrow \text { as to } R \text {; }
\end{aligned}
$$

2) M contains reduction rules that simulate the application of a grammatical rule in reverse:

for every $A \rightarrow x \in P$ in G : add $x s \rightarrow A s$ to R;
3) M also contains the rule $\# S s \rightarrow f$ that takes M to a final state

EPDAs as Models of Bottom-Up Parsers $2 / 2$ Bottom-up construction of a derivation tree:

Derivation tree:

start pushdown symbol

EPDAs as Models of Bottom-Up Parsers $2 / 2$ Bottom-up construction of a derivation tree:

Derivation tree:

start pushdown symbol

EPDAs as Models of Bottom-Up Parsers $2 / 2$ Bottom-up construction of a derivation tree:

Derivation tree:

start pushdown symbol

EPDAs as Models of Bottom-Up Parsers $2 / 2$ Bottom-up construction of a derivation tree:

Derivation tree:

start pushdown symbol

EPDAs as Models of Bottom-Up Parsers $2 / 2$

Bottom-up construction of a derivation tree:

EPDAs as Models of Bottom-Up Parsers $2 / 2$

Bottom-up construction of a derivation tree:

Derivation tree:

start pushdown symbol

EPDAs as Models of Bottom-Up Parsers $2 / 2$

Bottom-up construction of a derivation tree:

Derivation tree:

start pushdown symbol

EPDAs as Models of Bottom-Up Parsers $2 / 2$

Bottom-up construction of a derivation tree:

EPDAs as Models of Bottom-Up Parsers $2 / 2$

Bottom-up construction of a derivation tree:

Derivation tree:

start pushdown symbol

EPDAs as Models of Bottom-Up Parsers $2 / 2$

Bottom-up construction of a derivation tree:

EPDAs as Models of Bottom-Up Parsers $2 / 2$

Bottom-up construction of a derivation tree:

42/50

Algorithm: From CFG to EPDA

- Input: CFG $G=(N, T, P, S)$
- Output: EPDA $M=(Q, \Sigma, \Gamma, R, s, \#, F) ; L(G)=L(M)_{f}$
- Method:
- $Q:=\{s, f\}$;
- $\Sigma:=T$;
- $\Gamma:=N \cup T \cup\{\#\}$;
- Construction of R :
- for every $a \in \Sigma$, add $s a \rightarrow$ as to R;
- for every $A \rightarrow x \in P$, add $x s \rightarrow A s$ to R;
- add \#Ss $\rightarrow f$ to R;
- $F:=\{f\}$;

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:
$Q=\{s, f\} ;$

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:
$Q=\{s, f\} ; \Sigma=T=\{()$,

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(\boldsymbol{S}), S \rightarrow()\}
$$

Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:
$Q=\{s, f\} ; \Sigma=T=\{(),\} ; \Gamma=N \cup T \cup\{\#\}=\{S,(),, \#\}$

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(\boldsymbol{S}), S \rightarrow()\}
$$

Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:
$Q=\{s, f\} ; \Sigma=T=\{(),\} ; \Gamma=N \cup T \cup\{\#\}=\{S,(),, \#\}$
" " $\quad \in \boldsymbol{T}$
$\xrightarrow{\stackrel{\square}{\rightarrow}}$

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(\boldsymbol{S}), S \rightarrow()\}
$$

Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:
$Q=\{s, f\} ; \Sigma=T=\{(),\} ; \Gamma=N \cup T \cup\{\#\}=\{S,(),, \#\}$
$"(" \in \boldsymbol{T} \quad ") " \in \boldsymbol{T}$
$\xrightarrow{\stackrel{\square}{\rightarrow}} \stackrel{\square}{\square}$,

43/50

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:
$Q=\{s, f\} ; \Sigma=T=\{(),\} ; \Gamma=N \cup T \cup\{\#\}=\{S,(),, \#\}$

43/50

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:
$Q=\{s, f\} ; \Sigma=T=\{(),\} ; \Gamma=N \cup T \cup\{\#\}=\{S,(),, \#\}$

43/50

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:
$Q=\{s, f\} ; \Sigma=T=\{(),\} ; \Gamma=N \cup T \cup\{\#\}=\{S,(),, \#\}$

43/50

From CFG to EPDA: Example 1/2

- $G=(N, T, P, S)$, where:
$N=\{S\}, T=\{()\},, P=\{S \rightarrow(S), S \rightarrow()\}$
Objective: An EPDA M such that $L(G)=L(M)_{f}$
$M=(Q, \Sigma, \Gamma, R, s, \#, F)$ where:
$Q=\{s, f\} ; \Sigma=T=\{(),\} ; \Gamma=N \cup T \cup\{\#\}=\{S,(),, \#\}$

$$
F=\{f\}
$$

From CFG to EPDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, \#, F)$, where:
$Q=\{s, f\}, \Sigma=T=\{()\},, \Gamma=\{(), S,, \#\}, F=\{f\}$
$\underline{R=\{s(\rightarrow(s, s) \rightarrow) s,(S) s \rightarrow S s,() s \rightarrow S s, \# S s \rightarrow f\}}$
Question: $(()) \in L(M)_{f}$?

From CFG to EPDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, \#, F)$, where:
$Q=\{s, f\}, \Sigma=T=\{()\},, \Gamma=\{(), S,, \#\}, F=\{f\}$
$\underline{R=\{s(\rightarrow(s, s) \rightarrow) s,(S) s \rightarrow S s,() s \rightarrow S s, \# S s \rightarrow f\}}$
Question: $(()) \in L(M)_{f}$?

Rule: $s(\rightarrow$ (s

From CFG to EPDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, \#, F)$, where:
$Q=\{s, f\}, \Sigma=T=\{()\},, \Gamma=\{(), S,, \#\}, F=\{f\}$
$\underline{R=\{s(\rightarrow(s, s) \rightarrow) s,(S) s \rightarrow S s,() s \rightarrow S s, \# S s \rightarrow f\}}$
Question: $(()) \in L(M)_{f}$?

Rule: $s(\rightarrow$ (s

Rule: $s(\rightarrow$ (s
Fidocm

From CFG to EPDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, \#, F)$, where:
$Q=\{s, f\}, \Sigma=T=\{()\},, \Gamma=\{(), S,, \#\}, F=\{f\}$
$\underline{R=\{s(\rightarrow(s, s) \rightarrow) s,(S) s \rightarrow S s,() s \rightarrow S s, \# S s \rightarrow f\}}$
Question: $(()) \in L(M)_{f}$?

Rule: $s(\rightarrow$ (s

Rule: $s(\rightarrow$ (s

Rule: $s) \rightarrow$) s

From CFG to EPDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, \#, F)$, where:
$Q=\{s, f\}, \Sigma=T=\{()\},, \Gamma=\{(), S,, \#\}, F=\{f\}$
$\underline{R=\{s(\rightarrow(s, s) \rightarrow) s,(S) s \rightarrow S s,() s \rightarrow S s, \# S s \rightarrow f\}}$
Question: $(()) \in L(M)_{f}$?

\#(5) (1)

Rule: ()s \rightarrow S
\# $\(1) \bigcirc \square$
($\stackrel{S}{\hat{N}}$

Rule: $s(\rightarrow$ (s

Rule: $s(\rightarrow$ (s

Rule: $s) \rightarrow$)s

From CFG to EPDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, \#, F)$, where:
$Q=\{s, f\}, \Sigma=T=\{()\},, \Gamma=\{(), S,, \#\}, F=\{f\}$
$\underline{R=\{s(\rightarrow(s, s) \rightarrow) s,(S) s \rightarrow S s,() s \rightarrow S s, \# S s \rightarrow f\}}$
Question: $(()) \in L(M)_{f}$?

\#Oロ(1)

Rule: $s(\rightarrow$ (s

Rule: () $s \rightarrow S$

Rule: $s) \rightarrow$) s
\#

Rule: $s(\rightarrow$ (s

Rule: $s) \rightarrow$) s

From CFG to EPDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, \#, F)$, where:
$Q=\{s, f\}, \Sigma=T=\{()\},, \Gamma=\{(), S,, \#\}, F=\{f\}$
$R=\{s(\rightarrow(s, s) \rightarrow) s,(S) s \rightarrow S s,() s \rightarrow S s, \# S s \rightarrow f\}$
Question: $(()) \in L(M)_{f}$?

\#Oロ(1)

Rule: $s(\rightarrow$ (s

Rule: $s(\rightarrow$ (s

Rule: $s) \rightarrow$) s
\# (1) 1

Rule: ()s \rightarrow S
\#

Rule: $s) \rightarrow$)s

Rule: $(S) \rightarrow S$

From CFG to EPDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, \#, F)$, where:
$Q=\{s, f\}, \Sigma=T=\{()\},, \Gamma=\{(), S,, \#\}, F=\{f\}$
$\underline{R=\{s(\rightarrow(s, s) \rightarrow) s,(S) s \rightarrow S s,() s \rightarrow S s, \# S s \rightarrow f\}}$
Question: $(()) \in L(M)_{f}$?

\#Oロ(1)

Rule: $s(\rightarrow$ (s

Rule: $s(\rightarrow$ (s

Rule: $s) \rightarrow$) s

Rule: ()s $\rightarrow S$
\#

Rule: $s) \rightarrow$) s

Rule: $(S) \rightarrow S$

Rule: \#Ss $\rightarrow f$

From CFG to EPDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, \#, F)$, where:
$Q=\{s, f\}, \Sigma=T=\{()\},, \Gamma=\{(), S,, \#\}, F=\{f\}$
$\underline{R=\{s(\rightarrow(s, s) \rightarrow) s,(S) s \rightarrow S s,() s \rightarrow S s, \# S s \rightarrow f\}}$
Question: $(()) \in L(M)_{f}$?

\#Oロ(1)

Rule: $s(\rightarrow$ (s

Rule: $s(\rightarrow$ (s

Rule: $s) \rightarrow$) s

Rule: ()s $\rightarrow S$
\# (DS 0 D

Rule: $s) \rightarrow$) s

Rule: $(S) \rightarrow S$

Rule: \#Ss $\rightarrow f$

PDAs as Models of Top-Down Parsers 1/2

Gist: An PDA M underlies a top-down parser

1) M contains popping rules that pops the top symbol from the pushdown and reads the input symbol if both coincide:

PDAs as Models of Top-Down Parsers 1/2

Gist: An PDA M underlies a top-down parser

1) M contains popping rules that pops the top symbol from the pushdown and reads the input symbol if both coincide:

for every $a \in \Sigma$: add $a s a \rightarrow s$ to R;

PDAs as Models of Top-Down Parsers 1/2

Gist: An PDA M underlies a top-down parser

1) M contains popping rules that pops the top symbol from the pushdown and reads the input symbol if both coincide:

$$
\begin{aligned}
& \text { for every } a \in \Sigma: \\
& \text { add } \text { asa } \rightarrow s \text { to } R \text {; }
\end{aligned}
$$

2) M contains expansion rules that simulate the application of a grammatical rule:

PDAs as Models of Top-Down Parsers 1/2

Gist: An PDA M underlies a top-down parser

1) M contains popping rules that pops the top symbol from the pushdown and reads the input symbol if both coincide:

for every $a \in \Sigma$: add $a s a \rightarrow s$ to R;
2) M contains expansion rules that simulate the application of a grammatical rule:

PDAs as Models of Top-Down Parsers 1/2

Gist: An PDA M underlies a top-down parser

1) M contains popping rules that pops the top symbol from the pushdown and reads the input symbol if both coincide:

for every $a \in \Sigma$: add $a s a \rightarrow s$ to R;
2) M contains expansion rules that simulate the application of a grammatical rule:

PDAs as Models of Top-Down Parsers 2/2 Top-down construction of a derivation tree: start pushdown symbol

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2 Top-down construction of a derivation tree: start pushdown symbol

PDAs as Models of Top-Down Parsers 2/2

 Top-down construction of a derivation tree:
start pushdown symbol

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

 Top-down construction of a derivation tree:
start pushdown symbol

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

 Top-down construction of a derivation tree:start pushdown symbol

PDAs as Models of Top-Down Parsers 2/2

 Top-down construction of a derivation tree:
start pushdown symbol

PDAs as Models of Top-Down Parsers 2/2

 Top-down construction of a derivation tree:
start pushdown symbol

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:
start pushdown symbol

Derivation tree:

Algorithm: From CFG to PDA

- Input: CFG $G=(N, T, P, S)$
- Output: PDA $M=(Q, \Sigma, \Gamma, R, s, S, F) ; L(G)=L(M)_{\varepsilon}$
- Method:
- $Q:=\{s\}$;
- $\Sigma:=T$;
- $\Gamma:=N \cup T$;
- Construction of R :
- for every $a \in \Sigma$, add asa $\rightarrow s$ to R;
- for every $A \rightarrow x \in P$, add $A s \rightarrow y s$ to R, where $y=\operatorname{reversal}(x)$;
- $F:=\varnothing$;

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:
$Q=\{s\} ;$

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:
$Q=\{s\} ; \quad \Sigma=T=\{()$,

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:
$Q=\{s\} ; \quad \Sigma=T=\{(),\} ; \quad \Gamma=N \cup T=\{S,()$,

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:
$Q=\{s\} ; \quad \Sigma=T=\{(),\} ; \quad \Gamma=N \cup T=\{S,()$,
"(" $\in \boldsymbol{T}$

$R=\{(s(\rightarrow s$,

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:
$Q=\{s\} ; \quad \Sigma=T=\{(),\} ; \quad \Gamma=N \cup T=\{S,()$, $"(" \in \boldsymbol{T} \quad ") " \in \boldsymbol{T}$

$R=\{(s(\rightarrow s) s,) \rightarrow s$,

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:
$Q=\{s\} ; \quad \Sigma=T=\{(),\} ; \quad \Gamma=N \cup T=\{S,()$, "(" $\in T \quad$ ")" $\in T, \prod_{\square}^{S \rightarrow(S) \in P} \underset{\downarrow}{\text { rev }}$
$R=\{(s(\rightarrow s) s,) \rightarrow s, S s \rightarrow) S(s$,

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:
$Q=\{s\} ; \quad \Sigma=T=\{(),\} ; \quad \Gamma=N \cup T=\{S,()$,

$R=\{(s(\rightarrow s) s,) \rightarrow s, S s \rightarrow) S(s, S s \rightarrow)(s\}$

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:
$Q=\{s\} ; \quad \Sigma=T=\{(),\} ; \quad \Gamma=N \cup T=\{S,()$,

$R=\{\underbrace{(s(\rightarrow s,) s) \rightarrow s}$,
popping rules

From CFG to PDA: Example 1/2

- $G=(N, T, P, S)$, where:

$$
N=\{S\}, T=\{(,)\}, P=\{S \rightarrow(S), S \rightarrow()\}
$$

Objective: An PDA M such that $L(G)=L(M)_{\varepsilon}$
$M=(Q, \Sigma, \Gamma, R, s, S, F)$ where:
$Q=\{s\} ; \quad \Sigma=T=\{(),\} ; \quad \Gamma=N \cup T=\{S,()$,

$R=\{\underbrace{(s(\rightarrow s,) s) \rightarrow s}, \underbrace{S s \rightarrow) S(s, S s \rightarrow)(s}\}$
popping rules
expansion rules
$F=\varnothing$

From CFG to PDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, S, F)$, where:
$Q=\{s\}, \Sigma=T=\{()\},, \Gamma=\{(), S\},, F=\varnothing$
$P=\{(s(\rightarrow s, \quad) s) \rightarrow s, \quad S s \rightarrow) S(s, \quad S s \rightarrow)(s\}$
Question: $(()) \in L(M)_{\varepsilon}$?

From CFG to PDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, S, F)$, where:
$Q=\{s\}, \Sigma=T=\{()\},, \Gamma=\{(), S\},, F=\varnothing$
$P=\{(s(\rightarrow s, \quad) s) \rightarrow s, \quad S s \rightarrow) S(s, \quad S s \rightarrow)(s\}$
Question: $(()) \in L(M)_{\varepsilon}$?

S(S)(D)D) \underline{s}

Rule: $S s \rightarrow) S(s$
的回 (1)

From CFG to PDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, S, F)$, where:
$Q=\{s\}, \Sigma=T=\{()\},, \Gamma=\{(), S\},, F=\varnothing$
$P=\{(s(\rightarrow s, \quad) s) \rightarrow s, \quad S s \rightarrow) S(s, \quad S s \rightarrow)(s\}$
Question: $(()) \in L(M)_{\varepsilon}$?

SSO(D)D) \underline{s}

Rule: $S s \rightarrow) S(s$

Rule: $(s(\rightarrow s$
पsO[mb

From CFG to PDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, S, F)$, where:
$Q=\{s\}, \Sigma=T=\{()\},, \Gamma=\{(), S\},, F=\varnothing$
$P=\{(s(\rightarrow s, \quad) s) \rightarrow s, \quad S s \rightarrow) S(s, \quad S s \rightarrow)(s\}$
Question: $(()) \in L(M)_{\varepsilon}$?

S(S)(1)D) \underline{s}

Rule: $S s \rightarrow) S(s$

Rule: $(s) \rightarrow s$
Ls

Rule: $S s \rightarrow)(s$

49/50

From CFG to PDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, S, F)$, where:
$Q=\{s\}, \Sigma=T=\{()\},, \Gamma=\{(), S\},, F=\varnothing$
$P=\{(s(\rightarrow s, \quad) s) \rightarrow s, \quad S s \rightarrow) S(s, \quad S s \rightarrow)(s\}$
Question: $(()) \in L(M)_{\varepsilon}$?

${ }_{S}$!

Rule: $(s(\rightarrow s$四O四 | $\substack { S \\ \begin{subarray}{c}{S \\ (N) \\ (2){ S \\ \begin{subarray} { c } { S \\ (N) \\ (2) } } \\ {\hline}$ |
| :--- | Rule: $S s \rightarrow) S(s$ Dsu® (1) $\xrightarrow[S]{S}:$ Rule: $(s) \rightarrow s$

$\square S$

Rule: $S s \rightarrow$)(s

49/50

From CFG to PDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, S, F)$, where:
$Q=\{s\}, \Sigma=T=\{()\},, \Gamma=\{(), S\},, F=\varnothing$
$P=\{(s(\rightarrow s, \quad) s) \rightarrow s, \quad S s \rightarrow) S(s, \quad S s \rightarrow)(s\}$
Question: $(()) \in L(M)_{\varepsilon}$?

Rule: $S s \rightarrow) S(s$

Rule: $s(\rightarrow s$
$\square \square$

Rule: $\left.S_{s} \rightarrow\right)(s$

Rule: $(s) \rightarrow s$

Rule:) s) $\rightarrow s$

49/50

From CFG to PDA: Example $2 / 2$

$M=(Q, \Sigma, \Gamma, R, s, S, F)$, where:
$Q=\{s\}, \Sigma=T=\{()\},, \Gamma=\{(), S\},, F=\varnothing$
$P=\{(s(\rightarrow s, \quad) s) \rightarrow s, \quad S s \rightarrow) S(s, \quad S s \rightarrow)(s\}$
Question: $(()) \in L(M)_{\varepsilon}$?

Rule: $S s \rightarrow) S(s$

Rule: $(s) \rightarrow s$
$\square S(\square)$
Rule: $S s \rightarrow$)(s

49/50

From CFG to PDA: Example 2/2

$M=(Q, \Sigma, \Gamma, R, s, S, F)$, where:
$Q=\{s\}, \Sigma=T=\{()\},, \Gamma=\{(), S\},, F=\varnothing$
$P=\{(s(\rightarrow s, \quad) s) \rightarrow s, \quad S s \rightarrow) S(s, \quad S s \rightarrow)(s\}$
Question: $(()) \in L(M)_{\varepsilon}$?

Rule: $S s \rightarrow) S(s$

Rule: $(s) \rightarrow s$
$\square S$

Rule: $S s \rightarrow$)(s

Rule: $(s(\rightarrow s$

Rule:) s) $\rightarrow s$

Rule:) s) $\rightarrow s$

Empty
pushdown Answer: YES

Models for Context-free Languages

Theorem: For every CFG G, there is an PDA M such that $L(G)=L(M)_{\varepsilon}$.
Proof: See the previous algorithm.
Theorem: For every PDA M, there is a CFG
G such that $L(M)_{\varepsilon}=L(G)$.
Proof: See page 486 in [Meduna: Automata and Languages]
Conclusion: The fundamental models for context-free languages are

1) Context-free grammars 2) Pushdown automata
