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Turing Machines (TM) 
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 Gist: The most powerful computational model. 

       moves 
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Note:  = blank 
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Turing Machines: Definition 
Definition: A Turing machine (TM) is a 6-tuple 

M = (Q, , , R, s, F), where 

• Q is a finite set of states 

•  is an input alphabet 

•  is a tape alphabet;   ;    

• R is a finite set of rules of the form: pa  qbt, 

  where p, q  Q, a, b  , t  {S, R, L} 

• s  Q is the start state 

• F  Q is a set of final states 

• Mathematically, R is a relation from Q   to Q   {S, R, L} 

• Instead of (pa, qbt), we write pa  qbt 

Mathematical note: 
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Interpretation of Rules 

• pa  qbR: If the current state and tape symbol are p and a, 
respectively, then replace a with b, shift the head a square Right, 
and change p to q. 

• pa  qbL: If the current state and tape symbol are p and a, 
respectively, then replace a with b, shift the head a square Left, 
and change p to q. 

a x y 
p 

b x y 
q 

a x y 
p 

b x y 
q 
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• pa  qbS: If the current state and tape symbol are p and a, 
respectively, then replace a with b, change p to q, and keep the 
head Stationary. 

a x y 
p 

b x y 
q 



represents q  Q  

represents the initial state s  Q  

represents a final state f  F  

denotes pa  qbS  R  

q 

s 

f 

p q a/b, S 

Graphical Representation 

denotes pa  qbR  R  p q a/b, R 

denotes pa  qbL  R  p q a/b, L 
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Turing Machine: Example 1/2 
M = (Q, , , R, s, F) 
where: 
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Turing Machine: Example 2/2 

a 
s 

b  …  

Note: M deletes a symbol 
before the first occurrence of : 

b/b, R  

p q 

s f 

a/, S  

a/a, R  

a/a, R  b/b, R  

b/, S  

/, L  

/, S  Illustration: 

TM M: 
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TM Configuration 
 Gist: Instantaneous description of TM 

What does a configuration describes? 
1) Current state 2) Tape Contents 3) Position of the head 

… 

Definition: Let M = (Q, , , R, s, F) be a TM. 

A configuration of M is a string  = xpy, where 

x  *, p  Q, y  *( – {})  {}. 

a1 

p 

a2 ai an  … … … a1 

p 

a2 an  …    ai+1 

x y x y 

1. 2. 

Configuration xpy 

 
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Stationary Move 
Definition: Let , ’ be two configurations of M. 

Then,  M makes a stationary move from  to ’ 

according to r, written as  |–S ’ [r] or, 

simply,  |–S ’ if 

 = xpay,  ’ = xqby and r: pa  qbS  R 

a x y 
p 

Illustration: 

a x y p 

Configuration 
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b x y 
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Right Move 
Definition: Let , ’ be two configurations of M. 
Then, M makes a right move from  to ’ 
according to r, written as  |–R ’ [r] or, simply,  
|–R ’ if  = xpay, r: pa  qbR  R and  

a x y p 

Configuration 

     (1) ’ = xbqy,  y    or  
     (2) ’ = xbq, y =   

a x y 
p 
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Left Move 
Definition: Let , ’ be two configurations of M. 
Then,  M makes a left move from  to ’according 
to r, written as  |–L ’ [r] or, simply,  |–L ’ if 

a x y p 

Configuration 

a x y 
p 

    (1)  = xcpay, ’= xqcby, y   or b  , r: pa  qbL  R or 

    (2)  = xcpa, ’ = xqc, r: pa  qL  R 

c 

c 
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Move 
Definition: Let , ’ be two configurations of M. 

Then,  M makes a move from  to ’ according to 

a rule r, written as  |– ’ [r] or, simply,  |– ’ if  

 |–X ’ [r] for some X  {S, R, L}. 
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Definition: Let  be a configuration. M makes 

zero moves from  to ; in symbols, 

  |–0  [] or, simply,  |–0   

Definition: Let 0, 1, ..., n be a sequence of 

configurations, n  1, and i-1  |– i [ri], ri  R, 

for all i = 1, ..., n; that is, 

0  |– 1 [r1] |– 2 [r2] …  |– n [rn] 

Then, M makes n moves from 0 to n, 
0  |–

n n [r1... rn] or, simply, 0  |–
n n  

Sequence of Moves 1/2 
 Gist: Several consecutive computational steps 
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If 0  |–
n n [] for some n  1, then 

  0  |–
+ n [] or, simply,  0  |–

+ n  

If 0  |–
n n [] for some n  0, then 

  0  |–
* n [] or, simply, 0  |–

* n 

Example: Consider  

 apbc |– aqac [1: pb  qaS], and  

 aqac |– acrc  [2: qa  rcR]. 

Then,   apbc |–2 acrc [1 2],   

   apbc |–+ acrc [1 2],   

   apbc |–* acrc [1 2] 

Sequence of Moves 2/2 
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TM as a Language Acceptor 

Definition: Let M = (Q, , , R, s, F) be a TM. 

The language accepted by M, L(M), is defined as:    

 L(M) = {w: w  *, sw |–* xfy; x, y  *, f  F}  

              {: s |–* xfy; x, y  *, f  F} 

M accepts w by a sequence of moves 

from s to a final state. 

 Gist:  

Illustration: 

w 
s 

x y 
f 

• For w  : 

  …   … 

s 
x y 

f 

• For w = : 

  …   … 
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TM as an Acceptor: Example 

q1 s 
a/, R  

TM M: a/a, R  

b/b, R  

/, L  
q2 f 

b/, L  
q3 

/, R  

a/a, L  

b/b, L  

sabba |– q1abb |– aq1bb |– abq1b |– abbq1 |– abq2b 

          |– aq3b |– q3ab |– q3ab |– sab |– q1b |– q1b  

          |– bq1 |– q2b |– q3 |– s |– f  

abba  L(M) Summary: 

Note: L(M) = {anbn: n  0} 

/, S  

16/45 



TM as a Computational Model 
Definition: Let M = (Q, , , R, s, F) be a TM;  

n-place function  is computed by M provided that 

sx1x2…xn |–
* fy with f  F if and only if  

(x1, x2,…, xn) =  y. 

Illustration: 

x1 

s 
 …  x2 xn  …    

y 

f 
  …  (x1, x2,…, xn) = y 
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TM as a Computational Model: Example 

q1 s 
/, R  

TM M: 

1/1, R  

/1, R  
q2 f 

/, L  
q3 

1/, L  
q4 

1/1, L  

/, S  

s1111 |– q111 11 |–
 1q1111 |– 11q111 |– 111q211 

     |– 1111q21 |– 11111q2 |– 1111q31 |– 111q41 

     |– 11q411 |– 1q4111 |– q41111 |– q41111 

     |– f1111 

(11, 11) = 1111 Summary: 

Note: (x1, x2) = x1 + x2, where 

• x1 = 1a represents a natural number a 

• x2 = 1b represents a natural number b 

18/45 

1/1, R  



Deterministic Turing Machine (DTM) 
 Gist:  Deterministic TM makes no more than 

one move from any configuration. 

Definition: Let M = (Q, , , R, s, F) be a TM. 

M is a deterministic TM if for each rule pa  

qbt  R it holds that R – {pa  qbt} contains 

no rule with the left-hand side equal to pa. 

19/45 

Theorem: For every TM M, there is an equivalent 

         DTM Md. 

Proof: See page 634 in [Meduna: Automata and Languages] 



k-Tape Turing Machine 
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 Gist: Turing machine with k tapes 

Illustration: 
a1 x1 y1 

p a2 x2 y2 

ak xk yk 

… 

Theorem: For every k-tape TM Mt, there is an 

   equivalent TM M. 

Proof: See page 662 in [Meduna: Automata and Languages] 

Tape 1 

Tape 2 

Tape k 

… 

… 

… 

… 



k-Head Turing Machine 
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 Gist: Turing machine with k heads 

Theorem: For every k-head TM Mh, there is  

  an equivalent TM M. 

Proof: See page 667 in [Meduna: Automata and Languages] 

Head 1 Head 2 Head k 

Illustration: 

a1 x0 x1 

p 

a2 x2 … xk … ak 

…
 

… 



TM with Two-way Infinite Tapes 
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 Gist: Turing machine with tape infinite both 
to the right and to the left 

Theorem: For every TM with two-way infinite 

tapes Mb, there is an equivalent TM M. 

Proof: See page 673 in [Meduna: Automata and Languages] 

Illustration: 

p 

a1 x1 y1 … … 



Description of a Turing Machine 
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 Gist: Turing machine representation using 
   a string over {0, 1} 

• Assume that TM M has the form M = (Q, , , R, q0, {q1}), 

where Q = {q0, q1, … , qm},  = {a0, a1, … , an} so that a0=  

• Let  is the mapping from (Q    {S, L, R}) to {0, 1}* 

  defined as: 
(S) = 01, (L) = 001, (R) = 0001, 

(qi) = 0i+11 for all i = 0 … m, 

(ai) = 0i+11 for all i = 0 … n 

• For every r: pa  qbt  R we define 

(r) = (p)(a)(q)(b)(t)1 

• Let R = {r0, r1, … , rk}. Then  

(M) = 111(r0)(r1)…(rk)1 is the description of TM M 



Description of TM: Example 
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M = (Q, , , R, q0, {q1}), where 

Q = {q0, q1};  = {a1, a2};  = {, a1, a2}; 

R = {1: q0a1  q0a2R, 2: q0a2  q0a1R, 3: q0  q1S} 

Task: Decription of M, (M). 
(S) = 01, (L) = 001, (R) = 0001, 
(q0) = 01, (q1) = 001, 
() = 01, (a1) = 001, (a2) = 0001. 

(M) = 111(1)(2)(3)1 

 = 111(q0)(a1)(q0)(a2)(R)1 

          (q0)(a2)(q0)(a1)(R)1 

          (q0)()(q1)()(S)11 

 = 1110100101000100011 
      0100010100100011 
     0101001010111 



Universal Turing Machine 
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 Gist: Universal TM can simulate every DTM 

Illustration: 

Universal 

TM U 

Description of M, (M) Input string w …  

Note: Universal TM U reads the description of TM M, 

and the input string w, and then simulates the moves 

that M makes with w. 



Unrestricted Grammar: Definition 

Definition: An unrestricted grammar (URG) is a 

quadruple G = (N, T, P, S), where 

• N is an alphabet of nonterminals 

• T is an alphabet of terminals, N  T =  

• P is a finite set of rules of the form  x  y, 

   where x  (N  T)* N(N  T)*, y  (N  T)* 

• S  N is the start nonterminal 

• Strictly mathematically, P is a finite relation from             

(N  T)*N (N  T)* to (N  T)* 

• Instead of (x, y)  P, we write x  y  P 

Mathematical Note on Rules: 

Generalization of CFG  Gist:  
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Derivation Step 

Definition: Let G = (N, T, P, S) be a URG. Let  

u, v  (N  T)* and p: x  y  P. Then, uxv 

directly derives uyv according to p in G, written 

as uxv  uyv [p] or, simply, uxv  uyv. 

 Gist: A change of a string by a rule. 

x u v 
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Derivation Step 

Definition: Let G = (N, T, P, S) be a URG. Let  

u, v  (N  T)* and p: x  y  P. Then, uxv 

directly derives uyv according to p in G, written 

as uxv  uyv [p] or, simply, uxv  uyv. 

 Gist: A change of a string by a rule. 

Rule: x  y  
x u v 

… … 

y u v 

Note: n, +, * and L(G) are defined by analogy with 

the corresponding definitions in terms of CFGs. 
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Unrestricted Grammar: Example 
G = (N, T, P, S), where N = {S, A, B}, T = {a} 

P = { 1: S  ASB,   2: S  a,  

 3: Aa  aaA,  4: AB         } 

S  a       [2] 

S  ASB [1]  AaB [2]  aaAB [3]  aa [4] 

…
 

S  ASB [1]  AASBB [1]  AAaBB [2]   

        AaaABB [3]  aaAaABB [3]   

        aaaaAABB [3]  aaaaAB [4]  aaaa [4] 

Note: L(G) = {a2n
: n  0} 
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Recursively Enumerable Languages 

Theorem: For every URG G, there is a TM  M  
         such that L(G) = L(M).  

Proof: See page 714 in [Meduna: Automata and Languages] 

Conclusion: The fundamental models for recursively 

   enumerable languages are 

1) Unrestricted grammars 2) Turing Machines 

Definition: Let L be a language. L is a 
resurcively enumerable language if there 
exists a Turing machine M that L = L(M). 

Theorem: For every TM M, there is a URG G  
         such that L(M) = L(G).  

Proof: See page 715 in [Meduna: Automata and Languages] 
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Context-Sensitive Grammar 

Definition: Let G = (N, T, P, S) be an 

unrestricted grammar. G is a context-sensitive (or 

length-increasing) grammar (CSG) if every rule 

x  y  P satisfies |x|  |y|. 

Restriction of URG  Gist:  

Note: , n, +, * and L(G) are defined by analogy 

with the definitions of the corresponding notions on URGs. 
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Linear Bounded Automaton 

ai an … a1 a2 … 

Read-write head 

Finite 

State 

Control 

Tape: 

 Gist: A Turing machine with a Tape Bounded 

  by the Length of the Input String. 

       moves 

 
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Linear Bounded Automaton: Definition 

Definition: A linear bounded automaton (LBA) 

is a TM that cannot extend its tape by any rule. 

 Gist:  With w on its tape, M’s tape is 

restricted to |w| squares. 

32/45 

Accepted language: Illustration 

w 
s 

x y 
f   

The same length. 



Context-sensitive Languages 

Theorem: For every CSG G, there is an LBA M  
         such that L(G) = L(M).  

Proof: See page 732 in [Meduna: Automata and Languages] 

Conclusion: The fundamental models for  
   context-sensitive languages are 
1) Context-sensitive grammars 
2) Linear bounded automata 

Definition: Let L be a language. L is a 
context-sensitive if there exists a  
context-sensitive grammar G that L = L(G). 

Theorem: For every LBA M, there is a CSG G  
         such that L(M) = L(G).  

Proof: See page 734 in [Meduna: Automata and Languages] 
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Right-Linear Grammar: Definition 

Definition: Let G = (N, T, P, S) be a CFG. G is a 

right-linear grammar (RLG) if every rule A  x 

 P satisfies x  T*  T*N. 

A CFG in which every rule has a string 
of terminals followed by no more that 
one nonterminal on the right-hand side. 

 Gist:  

34/45 

Example: 
G = (N, T, P, S), where N = {S, A}, T = {a, b} 

P = {1: S  aS, 2: S  aA, 3: A  bA, 4: A  b } 

• S  aA [2]  ab [4] 

…
 

Note: L(G) = {ambn : m, n  1} 

• S  aS [1]  aaA [2]  aab [4] 
• S  aA [2]  abA [3]  abb [4] 



Grammars for Regular Languages 
Theorem: For every RLG G, there is an FA M  
         such that L(G) = L(M).  

Proof: See page 575 in [Meduna: Automata and Languages] 

Conclusion: Grammars for regular languages are 

Right-linear grammar 

Theorem: For every FA M, there is an RLG G  
         such that L(M) = L(G).  

Proof: See page 583 in [Meduna: Automata and Languages] 
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Grammars: Summary 

Grammar  Form of rules x  y   

Unrestricted 
x  (N  T)*N(N  T)* 

y  (N  T)* 

Context-

sensitive 

x  (N  T)*N(N  T)* 

y  (N  T)*, |x|  |y|  

Context-free 
x  N 

y  (N  T)* 

Right-Linear 
x  N 

y  T*  T*N 

Languages  

Recursively 

enumerable 

Context-

sensitive 

Context-free 

Regular G
en

er
a
li

za
ti

o
n

 R
estrictio

n
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Automata: Summary 

Accepting Device  

Turing 

machine 

Linear bounded 

automaton 

Pushdown 

automaton 

Finite 

automaton 

Languages  

Recursively 

enumerable 

Context-

sensitive 

Context-free 

Regular G
en

er
a
li

za
ti

o
n

 R
estrictio

n
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Chomsky Hierarchy 

the family of regular 
languages = Type 3   

! 

the family of context-
free languages  = 

Type 2   

the family of context-
sensitive languages = 

Type 1   

the family of 
recursive enumerable 

languages = Type 0   

Type 3   Type 2  Type 1  Type 0  
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Language LSelfAcceptance 1/2 

39/45 

Gist: LSelfAcceptance is the language over {0, 1}*, which 

contain a string (M), if and only DTM M accepts (M). 

Definition: 
LSelfAcceptance = {(M): M is a DTM, (M)  L(M)} 

Illustration: TM M 
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Gist: LSelfAcceptance is the language over {0, 1}*, which 

contain a string (M), if and only DTM M accepts (M). 

Definition: 
LSelfAcceptance = {(M): M is a DTM, (M)  L(M)} 

Illustration: TM M 
Description of M: 

(M) = 1110…1 

• Does TM M accept (M) = 1110…1 ?  

 1 … 
TM M 

1 1 0 … 1 … 

(M) 

(M)  LSelfAcceptance (M)  LSelfAcceptance 

YES NO 



Language LSelfAcceptance 2/2 
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Theorem: LSelfAcceptance is accept by some TM. 

Proof (idea):  
• We construct a DTM V, which: 
1) Replace an input string w = (M) with (M)(M) 
2) Simulate an activity of a universal TM U 
• Then, L(V) = LSelfAcceptance, thus theorem holds. 

Illustration: 

 1 … 
Mdouble 1 1 0 … 1 … 

 1 … 1 1 0 … 1 … 1 … 1 1 0 … 1 U 

(M) w = (M) 

+ V 



Language LNonSelfAcceptance 1/3 
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Gist:  LNonSelfAcceptance = LSelfAcceptance 

Definition: 
LNonSelfAcceptance = {0, 1}* – LSelfAcceptance 

TM M 
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Gist:  LNonSelfAcceptance = LSelfAcceptance 

Definition: 
LNonSelfAcceptance = {0, 1}* – LSelfAcceptance 

TM M 

• Does TM M accept (M) = 1110…1 ?  

 1 … 
TM M 

1 1 0 … 1 … 

(M) 

(M)  LNonSelfAcceptance (M)  LNonSelfAcceptance 

YES NO 

Description of M: 

(M) = 1110…1 



Language LNonSelfAcceptance 2/3 
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Theorem: LNonSelfAcceptance is accept by no TM. 

Proof (by contradiction): 
• Assume that LNonSelfAcceptance is accepted by a TM. 
   Consider this infinite table:   

M1 
M2 
M3 …

 A
ll

 T
M

s 

Mi mi = (Mi)    SelfAcceptance(Mi) 

111001001001101 
11101010111100101 
1110010001010001001001 

Yes 
No 
Yes …

 

…
 

Note:  

• SelfAcceptance(Mi ) = Yes  if mi  L(Mi) 

               No  if mi  L(Mi) 



Language LNonSelfAcceptance 3/3 
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• Notice: LNonSelfAcceptance = {mi : mi  L(Mi), i =  1, …} 

• Let L(Mk) = LNonSelfAcceptance 
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• Notice: LNonSelfAcceptance = {mi : mi  L(Mi), i =  1, …} 

• Let L(Mk) = LNonSelfAcceptance 

• SelfAcceptance(Mk) = No implies 

         mk  L(Mk) implies 

         mk  LNonSelfAcceptance implies 

         mk  L(Mk) 

• SelfAcceptance(Mk) = Yes implies 

         mk  L(Mk) implies 

         mk  LNonSelfAcceptance implies 

         mk  L(Mk) 

• LNonSelfAcceptance is accepted by no TM Mk 

contradiction 

contradiction 



Recursive Language 
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 Gist: Recursive Language accepts TM that always halt 

Illustration: 

Definition: Let L be a language. If L = L(M), 

where M is DTM that always halts, then L is 

a recursive language. 

Theorem: The family of recursive languages is 

closed under complement. 

Proof: See page 693 in [Meduna: Automata and Languages] 

Theorem: The family of recursively enumerable 

languages is not closed under complement. 

Proof: See the LSelfAcceptance 



Other Hierarchy of Languages 
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The family of 
recursive languages 
(accepted by TMs 
that always halt) 

The family of rec. 
enumerable 
languages  

(accepted by TMs) 

 
All 

Lang. 
 

LSelfAcceptance LNonSelfAcceptance 

  


