
Turing Machines and

General Grammars

1/45

Alan Turing (1912 – 1954)

Turing Machines (TM)

ai an … a1 a2 …

Read-write head

Finite

State

Control

Tape:

 Gist: The most powerful computational model.

 moves

   …

Note:  = blank

2/45

Turing Machines: Definition
Definition: A Turing machine (TM) is a 6-tuple

M = (Q, , , R, s, F), where

• Q is a finite set of states

•  is an input alphabet

•  is a tape alphabet;   ;   

• R is a finite set of rules of the form: pa  qbt,

 where p, q  Q, a, b  , t  {S, R, L}

• s  Q is the start state

• F  Q is a set of final states

• Mathematically, R is a relation from Q   to Q   {S, R, L}

• Instead of (pa, qbt), we write pa  qbt

Mathematical note:

3/45

Interpretation of Rules

• pa  qbR: If the current state and tape symbol are p and a,
respectively, then replace a with b, shift the head a square Right,
and change p to q.

• pa  qbL: If the current state and tape symbol are p and a,
respectively, then replace a with b, shift the head a square Left,
and change p to q.

a x y
p

b x y
q

a x y
p

b x y
q

4/45

• pa  qbS: If the current state and tape symbol are p and a,
respectively, then replace a with b, change p to q, and keep the
head Stationary.

a x y
p

b x y
q

represents q  Q

represents the initial state s  Q

represents a final state f  F

denotes pa  qbS  R

q

s

f

p q a/b, S

Graphical Representation

denotes pa  qbR  R p q a/b, R

denotes pa  qbL  R p q a/b, L

5/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)
where:

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)
where:

s

p q

• Q = {s, p, q, f};
f

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

s

p q

• Q = {s, p, q, f};
f

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

• R = {s  fS,

/, S

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

 sa  paR,
a/a, R • R = {s  fS,

/, S

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

 sa  paR,
a/a, R

 sb  pbR,

b/b, R • R = {s  fS,

/, S

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

 sa  paR,
a/a, R

 sb  pbR,

b/b, R

 pa  paR, a/a, R

• R = {s  fS,

/, S

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

b/b, R
 pb  pbR,

 sa  paR,
a/a, R

 sb  pbR,

b/b, R

 pa  paR, a/a, R

• R = {s  fS,

/, S

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

b/b, R
 pb  pbR,

 sa  paR,
a/a, R

 sb  pbR,

b/b, R

 p  qL, /, L

 pa  paR, a/a, R

• R = {s  fS,

/, S

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

b/b, R
 pb  pbR,

 sa  paR,
a/a, R

 sb  pbR,

b/b, R

 qa  fS,

a/, S

 p  qL, /, L

 pa  paR, a/a, R

• R = {s  fS,

/, S

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

b/b, R
 pb  pbR,

 sa  paR,
a/a, R

 sb  pbR,

b/b, R

 qa  fS,

a/, S

 qb  fS}

b/, S

 p  qL, /, L

 pa  paR, a/a, R

• R = {s  fS,

/, S

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

b/b, R
 pb  pbR,

 sa  paR,
a/a, R

 sb  pbR,

b/b, R

 qa  fS,

a/, S

 qb  fS}

b/, S

 p  qL, /, L

 pa  paR, a/a, R

• R = {s  fS,

/, S

6/45

Turing Machine: Example 1/2
M = (Q, , , R, s, F)

•  = {a, b};

where:

•  = {a, b, };

s

p q

• Q = {s, p, q, f};
f

• F = {f}

b/b, R
 pb  pbR,

 sa  paR,
a/a, R

 sb  pbR,

b/b, R

 qa  fS,

a/, S

 qb  fS}

b/, S

 p  qL, /, L

 pa  paR, a/a, R

• R = {s  fS,

/, S

6/45

Turing Machine: Example 2/2

a
s

b  … 

Note: M deletes a symbol
before the first occurrence of :

b/b, R

p q

s f

a/, S

a/a, R

a/a, R b/b, R

b/, S

/, L

/, S Illustration:

TM M:

7/45

Turing Machine: Example 2/2

a
s

b  … 

Note: M deletes a symbol
before the first occurrence of :

b/b, R

p q

s f

a/, S

a/a, R

a/a, R b/b, R

b/, S

/, L

/, S Illustration:

TM M:

… a
p

b  

7/45

Turing Machine: Example 2/2

a
s

b  … 

Note: M deletes a symbol
before the first occurrence of :

b/b, R

p q

s f

a/, S

a/a, R

a/a, R b/b, R

b/, S

/, L

/, S Illustration:

TM M:

… a
p

b  

a
p

b  … 

7/45

Turing Machine: Example 2/2

a
s

b  … 

Note: M deletes a symbol
before the first occurrence of :

b/b, R

p q

s f

a/, S

a/a, R

a/a, R b/b, R

b/, S

/, L

/, S Illustration:

TM M:

… a
p

b  

a
p

b  … 

a
q

b  … 

7/45

Turing Machine: Example 2/2

a
s

b  … 

Note: M deletes a symbol
before the first occurrence of :

b/b, R

p q

s f

a/, S

a/a, R

a/a, R b/b, R

b/, S

/, L

/, S Illustration:

TM M:

… a
p

b  

a
p

b  … 

a
q

b  … 

a
f

  … 

7/45

TM Configuration
 Gist: Instantaneous description of TM

What does a configuration describes?
1) Current state 2) Tape Contents 3) Position of the head

…

Definition: Let M = (Q, , , R, s, F) be a TM.

A configuration of M is a string  = xpy, where

x  *, p  Q, y  *( – {})  {}.

a1

p

a2 ai an  … … … a1

p

a2 an  …    ai+1

x y x y

1. 2.

Configuration xpy



8/45

Stationary Move
Definition: Let , ’ be two configurations of M.

Then, M makes a stationary move from  to ’

according to r, written as  |–S ’ [r] or,

simply,  |–S ’ if

 = xpay, ’ = xqby and r: pa  qbS  R

a x y
p

Illustration:

a x y p

Configuration

9/45

Stationary Move
Definition: Let , ’ be two configurations of M.

Then, M makes a stationary move from  to ’

according to r, written as  |–S ’ [r] or,

simply,  |–S ’ if

 = xpay, ’ = xqby and r: pa  qbS  R

a x y
p

Illustration:

Rule: pa  qbS

a x y p

Configuration

9/45

Stationary Move
Definition: Let , ’ be two configurations of M.

Then, M makes a stationary move from  to ’

according to r, written as  |–S ’ [r] or,

simply,  |–S ’ if

 = xpay, ’ = xqby and r: pa  qbS  R

a x y
p

Illustration:

Rule: pa  qbS

a x y p

Configuration

b x y
q

b x y q

New Configuration

9/45

Right Move
Definition: Let , ’ be two configurations of M.
Then, M makes a right move from  to ’
according to r, written as  |–R ’ [r] or, simply, 
|–R ’ if  = xpay, r: pa  qbR  R and

a x y p

Configuration

 (1) ’ = xbqy, y   or
 (2) ’ = xbq, y = 

a x y
p

10/45

Right Move
Definition: Let , ’ be two configurations of M.
Then, M makes a right move from  to ’
according to r, written as  |–R ’ [r] or, simply, 
|–R ’ if  = xpay, r: pa  qbR  R and

Rule: pa  qbR

a x y p

Configuration

 (1) ’ = xbqy, y   or
 (2) ’ = xbq, y = 

a x y
p

10/45

Right Move
Definition: Let , ’ be two configurations of M.
Then, M makes a right move from  to ’
according to r, written as  |–R ’ [r] or, simply, 
|–R ’ if  = xpay, r: pa  qbR  R and

Rule: pa  qbR

a x y p

Configuration

 (1) ’ = xbqy, y   or
 (2) ’ = xbq, y = 

a x y
p

b x y q

New Configuration

b x y
q

10/45

Right Move
Definition: Let , ’ be two configurations of M.
Then, M makes a right move from  to ’
according to r, written as  |–R ’ [r] or, simply, 
|–R ’ if  = xpay, r: pa  qbR  R and

Rule: pa  qbR

a x y p

Configuration

 (1) ’ = xbqy, y   or
 (2) ’ = xbq, y = 

a x y
p

b x y q

New Configuration

b x y
q

a x p

Configuration

a x
p

or

 … 

10/45

Right Move
Definition: Let , ’ be two configurations of M.
Then, M makes a right move from  to ’
according to r, written as  |–R ’ [r] or, simply, 
|–R ’ if  = xpay, r: pa  qbR  R and

Rule: pa  qbR

a x y p

Configuration

 (1) ’ = xbqy, y   or
 (2) ’ = xbq, y = 

a x y
p

b x y q

New Configuration

b x y
q

Rule: pa  qbR

a x p

Configuration

a x
p

or

 … 

10/45

Right Move
Definition: Let , ’ be two configurations of M.
Then, M makes a right move from  to ’
according to r, written as  |–R ’ [r] or, simply, 
|–R ’ if  = xpay, r: pa  qbR  R and

Rule: pa  qbR

a x y p

Configuration

 (1) ’ = xbqy, y   or
 (2) ’ = xbq, y = 

a x y
p

b x y q

New Configuration

b x y
q

Rule: pa  qbR

a x p

Configuration

a x
p

or

 … 

b x q

New Configuration

b x
q

  …



10/45

Left Move
Definition: Let , ’ be two configurations of M.
Then, M makes a left move from  to ’according
to r, written as  |–L ’ [r] or, simply,  |–L ’ if

a x y p

Configuration

a x y
p

 (1)  = xcpay, ’= xqcby, y   or b  , r: pa  qbL  R or

 (2)  = xcpa, ’ = xqc, r: pa  qL  R

c

c

11/45

Left Move
Definition: Let , ’ be two configurations of M.
Then, M makes a left move from  to ’according
to r, written as  |–L ’ [r] or, simply,  |–L ’ if

Rule: pa  qbL

a x y p

Configuration

a x y
p

 (1)  = xcpay, ’= xqcby, y   or b  , r: pa  qbL  R or

 (2)  = xcpa, ’ = xqc, r: pa  qL  R

c

c

11/45

Left Move
Definition: Let , ’ be two configurations of M.
Then, M makes a left move from  to ’according
to r, written as  |–L ’ [r] or, simply,  |–L ’ if

Rule: pa  qbL

a x y p

Configuration

a x y
p

 (1)  = xcpay, ’= xqcby, y   or b  , r: pa  qbL  R or

 (2)  = xcpa, ’ = xqc, r: pa  qL  R

c

c

New Configuration

q

b x y q

b x y c

c

11/45

Left Move
Definition: Let , ’ be two configurations of M.
Then, M makes a left move from  to ’according
to r, written as  |–L ’ [r] or, simply,  |–L ’ if

Rule: pa  qbL

a x y p

Configuration

a x y
p

 (1)  = xcpay, ’= xqcby, y   or b  , r: pa  qbL  R or

 (2)  = xcpa, ’ = xqc, r: pa  qL  R

c

c

New Configuration

q

b x y q

b x y c

c

…
p

or

a x p

Configuration

a x c

c

 

11/45

Left Move
Definition: Let , ’ be two configurations of M.
Then, M makes a left move from  to ’according
to r, written as  |–L ’ [r] or, simply,  |–L ’ if

Rule: pa  qbL

a x y p

Configuration

a x y
p

Rule: pa  qL

 (1)  = xcpay, ’= xqcby, y   or b  , r: pa  qbL  R or

 (2)  = xcpa, ’ = xqc, r: pa  qL  R

c

c

New Configuration

q

b x y q

b x y c

c

…
p

or

a x p

Configuration

a x c

c

 

11/45

Left Move
Definition: Let , ’ be two configurations of M.
Then, M makes a left move from  to ’according
to r, written as  |–L ’ [r] or, simply,  |–L ’ if

Rule: pa  qbL

a x y p

Configuration

a x y
p

Rule: pa  qL

 (1)  = xcpay, ’= xqcby, y   or b  , r: pa  qbL  R or

 (2)  = xcpa, ’ = xqc, r: pa  qL  R

c

c

New Configuration

q

b x y q

b x y c

c

…
p

or

a x p

Configuration

a x c

c

 
q

New Configuration

x q

 x c

c

…  

11/45

Move
Definition: Let , ’ be two configurations of M.

Then, M makes a move from  to ’ according to

a rule r, written as  |– ’ [r] or, simply,  |– ’ if

 |–X ’ [r] for some X  {S, R, L}.

12/45

Definition: Let  be a configuration. M makes

zero moves from  to ; in symbols,

  |–0  [] or, simply,  |–0 

Definition: Let 0, 1, ..., n be a sequence of

configurations, n  1, and i-1 |– i [ri], ri  R,

for all i = 1, ..., n; that is,

0 |– 1 [r1] |– 2 [r2] … |– n [rn]

Then, M makes n moves from 0 to n,
0 |–

n n [r1... rn] or, simply, 0 |–
n n

Sequence of Moves 1/2
 Gist: Several consecutive computational steps

13/45

If 0 |–
n n [] for some n  1, then

 0 |–
+ n [] or, simply, 0 |–

+ n

If 0 |–
n n [] for some n  0, then

 0 |–
* n [] or, simply, 0 |–

* n

Example: Consider

 apbc |– aqac [1: pb  qaS], and

 aqac |– acrc [2: qa  rcR].

Then, apbc |–2 acrc [1 2],

 apbc |–+ acrc [1 2],

 apbc |–* acrc [1 2]

Sequence of Moves 2/2

14/45

TM as a Language Acceptor

Definition: Let M = (Q, , , R, s, F) be a TM.

The language accepted by M, L(M), is defined as:

 L(M) = {w: w  *, sw |–* xfy; x, y  *, f  F} 

 {: s |–* xfy; x, y  *, f  F}

M accepts w by a sequence of moves

from s to a final state.

 Gist:

Illustration:

w
s

x y
f

• For w  :

  …   …

s
x y

f

• For w = :

  …   …

15/45

TM as an Acceptor: Example

q1 s
a/, R

TM M: a/a, R

b/b, R

/, L
q2 f

b/, L
q3

/, R

a/a, L

b/b, L

sabba |– q1abb |– aq1bb |– abq1b |– abbq1 |– abq2b

 |– aq3b |– q3ab |– q3ab |– sab |– q1b |– q1b

 |– bq1 |– q2b |– q3 |– s |– f

abba  L(M) Summary:

Note: L(M) = {anbn: n  0}

/, S

16/45

TM as a Computational Model
Definition: Let M = (Q, , , R, s, F) be a TM;

n-place function  is computed by M provided that

sx1x2…xn |–
* fy with f  F if and only if

(x1, x2,…, xn) = y.

Illustration:

x1

s
 …  x2 xn  …   

y

f
  …  (x1, x2,…, xn) = y

17/45

TM as a Computational Model: Example

q1 s
/, R

TM M:

1/1, R

/1, R
q2 f

/, L
q3

1/, L
q4

1/1, L

/, S

s1111 |– q111 11 |–
 1q1111 |– 11q111 |– 111q211

 |– 1111q21 |– 11111q2 |– 1111q31 |– 111q41

 |– 11q411 |– 1q4111 |– q41111 |– q41111

 |– f1111

(11, 11) = 1111 Summary:

Note: (x1, x2) = x1 + x2, where

• x1 = 1a represents a natural number a

• x2 = 1b represents a natural number b

18/45

1/1, R

Deterministic Turing Machine (DTM)
 Gist: Deterministic TM makes no more than

one move from any configuration.

Definition: Let M = (Q, , , R, s, F) be a TM.

M is a deterministic TM if for each rule pa 

qbt  R it holds that R – {pa  qbt} contains

no rule with the left-hand side equal to pa.

19/45

Theorem: For every TM M, there is an equivalent

 DTM Md.

Proof: See page 634 in [Meduna: Automata and Languages]

k-Tape Turing Machine

20/45

 Gist: Turing machine with k tapes

Illustration:
a1 x1 y1

p a2 x2 y2

ak xk yk

…

Theorem: For every k-tape TM Mt, there is an

 equivalent TM M.

Proof: See page 662 in [Meduna: Automata and Languages]

Tape 1

Tape 2

Tape k

…

…

…

…

k-Head Turing Machine

21/45

 Gist: Turing machine with k heads

Theorem: For every k-head TM Mh, there is

 an equivalent TM M.

Proof: See page 667 in [Meduna: Automata and Languages]

Head 1 Head 2 Head k

Illustration:

a1 x0 x1

p

a2 x2 … xk … ak

…

…

TM with Two-way Infinite Tapes

22/45

 Gist: Turing machine with tape infinite both
to the right and to the left

Theorem: For every TM with two-way infinite

tapes Mb, there is an equivalent TM M.

Proof: See page 673 in [Meduna: Automata and Languages]

Illustration:

p

a1 x1 y1 … …

Description of a Turing Machine

23/45

 Gist: Turing machine representation using
 a string over {0, 1}

• Assume that TM M has the form M = (Q, , , R, q0, {q1}),

where Q = {q0, q1, … , qm},  = {a0, a1, … , an} so that a0= 

• Let  is the mapping from (Q    {S, L, R}) to {0, 1}*

 defined as:
(S) = 01, (L) = 001, (R) = 0001,

(qi) = 0i+11 for all i = 0 … m,

(ai) = 0i+11 for all i = 0 … n

• For every r: pa  qbt  R we define

(r) = (p)(a)(q)(b)(t)1

• Let R = {r0, r1, … , rk}. Then

(M) = 111(r0)(r1)…(rk)1 is the description of TM M

Description of TM: Example

24/45

M = (Q, , , R, q0, {q1}), where

Q = {q0, q1};  = {a1, a2};  = {, a1, a2};

R = {1: q0a1  q0a2R, 2: q0a2  q0a1R, 3: q0  q1S}

Task: Decription of M, (M).
(S) = 01, (L) = 001, (R) = 0001,
(q0) = 01, (q1) = 001,
() = 01, (a1) = 001, (a2) = 0001.

(M) = 111(1)(2)(3)1

 = 111(q0)(a1)(q0)(a2)(R)1

 (q0)(a2)(q0)(a1)(R)1

 (q0)()(q1)()(S)11

 = 1110100101000100011
 0100010100100011
 0101001010111

Universal Turing Machine

25/45

 Gist: Universal TM can simulate every DTM

Illustration:

Universal

TM U

Description of M, (M) Input string w … 

Note: Universal TM U reads the description of TM M,

and the input string w, and then simulates the moves

that M makes with w.

Unrestricted Grammar: Definition

Definition: An unrestricted grammar (URG) is a

quadruple G = (N, T, P, S), where

• N is an alphabet of nonterminals

• T is an alphabet of terminals, N  T = 

• P is a finite set of rules of the form x  y,

 where x  (N  T)* N(N  T)*, y  (N  T)*

• S  N is the start nonterminal

• Strictly mathematically, P is a finite relation from

(N  T)*N (N  T)* to (N  T)*

• Instead of (x, y)  P, we write x  y  P

Mathematical Note on Rules:

Generalization of CFG Gist:

26/45

Derivation Step

Definition: Let G = (N, T, P, S) be a URG. Let

u, v  (N  T)* and p: x  y  P. Then, uxv

directly derives uyv according to p in G, written

as uxv  uyv [p] or, simply, uxv  uyv.

 Gist: A change of a string by a rule.

x u v

27/45

Derivation Step

Definition: Let G = (N, T, P, S) be a URG. Let

u, v  (N  T)* and p: x  y  P. Then, uxv

directly derives uyv according to p in G, written

as uxv  uyv [p] or, simply, uxv  uyv.

 Gist: A change of a string by a rule.

Rule: x  y
x u v

27/45

Derivation Step

Definition: Let G = (N, T, P, S) be a URG. Let

u, v  (N  T)* and p: x  y  P. Then, uxv

directly derives uyv according to p in G, written

as uxv  uyv [p] or, simply, uxv  uyv.

 Gist: A change of a string by a rule.

Rule: x  y
x u v

… …

y u v

27/45

Derivation Step

Definition: Let G = (N, T, P, S) be a URG. Let

u, v  (N  T)* and p: x  y  P. Then, uxv

directly derives uyv according to p in G, written

as uxv  uyv [p] or, simply, uxv  uyv.

 Gist: A change of a string by a rule.

Rule: x  y
x u v

… …

y u v

Note: n, +, * and L(G) are defined by analogy with

the corresponding definitions in terms of CFGs.

27/45

Unrestricted Grammar: Example
G = (N, T, P, S), where N = {S, A, B}, T = {a}

P = { 1: S  ASB, 2: S  a,

 3: Aa  aaA, 4: AB   }

S  a [2]

S  ASB [1]  AaB [2]  aaAB [3]  aa [4]

…

S  ASB [1]  AASBB [1]  AAaBB [2] 

 AaaABB [3]  aaAaABB [3] 

 aaaaAABB [3]  aaaaAB [4]  aaaa [4]

Note: L(G) = {a2n
: n  0}

28/45

Recursively Enumerable Languages

Theorem: For every URG G, there is a TM M
 such that L(G) = L(M).

Proof: See page 714 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for recursively

 enumerable languages are

1) Unrestricted grammars 2) Turing Machines

Definition: Let L be a language. L is a
resurcively enumerable language if there
exists a Turing machine M that L = L(M).

Theorem: For every TM M, there is a URG G
 such that L(M) = L(G).

Proof: See page 715 in [Meduna: Automata and Languages]

29/45

Context-Sensitive Grammar

Definition: Let G = (N, T, P, S) be an

unrestricted grammar. G is a context-sensitive (or

length-increasing) grammar (CSG) if every rule

x  y  P satisfies |x|  |y|.

Restriction of URG Gist:

Note: , n, +, * and L(G) are defined by analogy

with the definitions of the corresponding notions on URGs.

30/45

Linear Bounded Automaton

ai an … a1 a2 …

Read-write head

Finite

State

Control

Tape:

 Gist: A Turing machine with a Tape Bounded

 by the Length of the Input String.

 moves



31/45

Linear Bounded Automaton: Definition

Definition: A linear bounded automaton (LBA)

is a TM that cannot extend its tape by any rule.

 Gist: With w on its tape, M’s tape is

restricted to |w| squares.

32/45

Accepted language: Illustration

w
s

x y
f  

The same length.

Context-sensitive Languages

Theorem: For every CSG G, there is an LBA M
 such that L(G) = L(M).

Proof: See page 732 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for
 context-sensitive languages are
1) Context-sensitive grammars
2) Linear bounded automata

Definition: Let L be a language. L is a
context-sensitive if there exists a
context-sensitive grammar G that L = L(G).

Theorem: For every LBA M, there is a CSG G
 such that L(M) = L(G).

Proof: See page 734 in [Meduna: Automata and Languages]

33/45

Right-Linear Grammar: Definition

Definition: Let G = (N, T, P, S) be a CFG. G is a

right-linear grammar (RLG) if every rule A  x

 P satisfies x  T*  T*N.

A CFG in which every rule has a string
of terminals followed by no more that
one nonterminal on the right-hand side.

 Gist:

34/45

Example:
G = (N, T, P, S), where N = {S, A}, T = {a, b}

P = {1: S  aS, 2: S  aA, 3: A  bA, 4: A  b }

• S  aA [2]  ab [4]

…

Note: L(G) = {ambn : m, n  1}

• S  aS [1]  aaA [2]  aab [4]
• S  aA [2]  abA [3]  abb [4]

Grammars for Regular Languages
Theorem: For every RLG G, there is an FA M
 such that L(G) = L(M).

Proof: See page 575 in [Meduna: Automata and Languages]

Conclusion: Grammars for regular languages are

Right-linear grammar

Theorem: For every FA M, there is an RLG G
 such that L(M) = L(G).

Proof: See page 583 in [Meduna: Automata and Languages]

35/45

Grammars: Summary

Grammar Form of rules x  y

Unrestricted
x  (N  T)*N(N  T)*

y  (N  T)*

Context-

sensitive

x  (N  T)*N(N  T)*

y  (N  T)*, |x|  |y|

Context-free
x  N

y  (N  T)*

Right-Linear
x  N

y  T*  T*N

Languages

Recursively

enumerable

Context-

sensitive

Context-free

Regular G
en

er
a
li

za
ti

o
n

 R
estrictio

n

36/45

Automata: Summary

Accepting Device

Turing

machine

Linear bounded

automaton

Pushdown

automaton

Finite

automaton

Languages

Recursively

enumerable

Context-

sensitive

Context-free

Regular G
en

er
a
li

za
ti

o
n

 R
estrictio

n

37/45

Chomsky Hierarchy

the family of regular
languages = Type 3

!

the family of context-
free languages =

Type 2

the family of context-
sensitive languages =

Type 1

the family of
recursive enumerable

languages = Type 0

Type 3  Type 2  Type 1  Type 0

38/45

Language LSelfAcceptance 1/2

39/45

Gist: LSelfAcceptance is the language over {0, 1}*, which

contain a string (M), if and only DTM M accepts (M).

Definition:
LSelfAcceptance = {(M): M is a DTM, (M)  L(M)}

Illustration: TM M

Language LSelfAcceptance 1/2

39/45

Gist: LSelfAcceptance is the language over {0, 1}*, which

contain a string (M), if and only DTM M accepts (M).

Definition:
LSelfAcceptance = {(M): M is a DTM, (M)  L(M)}

Illustration: TM M
Description of M:

(M) = 1110…1

Language LSelfAcceptance 1/2

39/45

Gist: LSelfAcceptance is the language over {0, 1}*, which

contain a string (M), if and only DTM M accepts (M).

Definition:
LSelfAcceptance = {(M): M is a DTM, (M)  L(M)}

Illustration: TM M
Description of M:

(M) = 1110…1

 1 …
TM M

1 1 0 … 1 …

(M)

Language LSelfAcceptance 1/2

39/45

Gist: LSelfAcceptance is the language over {0, 1}*, which

contain a string (M), if and only DTM M accepts (M).

Definition:
LSelfAcceptance = {(M): M is a DTM, (M)  L(M)}

Illustration: TM M
Description of M:

(M) = 1110…1

• Does TM M accept (M) = 1110…1 ?

 1 …
TM M

1 1 0 … 1 …

(M)

Language LSelfAcceptance 1/2

39/45

Gist: LSelfAcceptance is the language over {0, 1}*, which

contain a string (M), if and only DTM M accepts (M).

Definition:
LSelfAcceptance = {(M): M is a DTM, (M)  L(M)}

Illustration: TM M
Description of M:

(M) = 1110…1

• Does TM M accept (M) = 1110…1 ?

 1 …
TM M

1 1 0 … 1 …

(M)

(M)  LSelfAcceptance (M)  LSelfAcceptance

YES NO

Language LSelfAcceptance 2/2

40/45

Theorem: LSelfAcceptance is accept by some TM.

Proof (idea):
• We construct a DTM V, which:
1) Replace an input string w = (M) with (M)(M)
2) Simulate an activity of a universal TM U
• Then, L(V) = LSelfAcceptance, thus theorem holds.

Illustration:

 1 …
Mdouble 1 1 0 … 1 …

 1 … 1 1 0 … 1 … 1 … 1 1 0 … 1 U

(M) w = (M)

+ V

Language LNonSelfAcceptance 1/3

41/45

Gist: LNonSelfAcceptance = LSelfAcceptance

Definition:
LNonSelfAcceptance = {0, 1}* – LSelfAcceptance

TM M

Language LNonSelfAcceptance 1/3

41/45

Gist: LNonSelfAcceptance = LSelfAcceptance

Definition:
LNonSelfAcceptance = {0, 1}* – LSelfAcceptance

TM M Description of M:

(M) = 1110…1

Language LNonSelfAcceptance 1/3

41/45

Gist: LNonSelfAcceptance = LSelfAcceptance

Definition:
LNonSelfAcceptance = {0, 1}* – LSelfAcceptance

TM M

 1 …
TM M

1 1 0 … 1 …

(M)

Description of M:

(M) = 1110…1

Language LNonSelfAcceptance 1/3

41/45

Gist: LNonSelfAcceptance = LSelfAcceptance

Definition:
LNonSelfAcceptance = {0, 1}* – LSelfAcceptance

TM M

• Does TM M accept (M) = 1110…1 ?

 1 …
TM M

1 1 0 … 1 …

(M)

Description of M:

(M) = 1110…1

Language LNonSelfAcceptance 1/3

41/45

Gist: LNonSelfAcceptance = LSelfAcceptance

Definition:
LNonSelfAcceptance = {0, 1}* – LSelfAcceptance

TM M

• Does TM M accept (M) = 1110…1 ?

 1 …
TM M

1 1 0 … 1 …

(M)

(M)  LNonSelfAcceptance (M)  LNonSelfAcceptance

YES NO

Description of M:

(M) = 1110…1

Language LNonSelfAcceptance 2/3

42/45

Theorem: LNonSelfAcceptance is accept by no TM.

Proof (by contradiction):
• Assume that LNonSelfAcceptance is accepted by a TM.
 Consider this infinite table:

M1
M2
M3 …

 A
ll

 T
M

s

Mi mi = (Mi) SelfAcceptance(Mi)

111001001001101
11101010111100101
1110010001010001001001

Yes
No
Yes …

…

Note:

• SelfAcceptance(Mi) = Yes if mi  L(Mi)

 No if mi  L(Mi)

Language LNonSelfAcceptance 3/3

43/45

• Notice: LNonSelfAcceptance = {mi : mi  L(Mi), i = 1, …}

• Let L(Mk) = LNonSelfAcceptance

Language LNonSelfAcceptance 3/3

43/45

• Notice: LNonSelfAcceptance = {mi : mi  L(Mi), i = 1, …}

• Let L(Mk) = LNonSelfAcceptance

• SelfAcceptance(Mk) = No implies

 mk  L(Mk) implies

 mk  LNonSelfAcceptance implies

 mk  L(Mk)

Language LNonSelfAcceptance 3/3

43/45

• Notice: LNonSelfAcceptance = {mi : mi  L(Mi), i = 1, …}

• Let L(Mk) = LNonSelfAcceptance

• SelfAcceptance(Mk) = No implies

 mk  L(Mk) implies

 mk  LNonSelfAcceptance implies

 mk  L(Mk)

contradiction

Language LNonSelfAcceptance 3/3

43/45

• Notice: LNonSelfAcceptance = {mi : mi  L(Mi), i = 1, …}

• Let L(Mk) = LNonSelfAcceptance

• SelfAcceptance(Mk) = No implies

 mk  L(Mk) implies

 mk  LNonSelfAcceptance implies

 mk  L(Mk)

• SelfAcceptance(Mk) = Yes implies

 mk  L(Mk) implies

 mk  LNonSelfAcceptance implies

 mk  L(Mk)

contradiction

Language LNonSelfAcceptance 3/3

43/45

• Notice: LNonSelfAcceptance = {mi : mi  L(Mi), i = 1, …}

• Let L(Mk) = LNonSelfAcceptance

• SelfAcceptance(Mk) = No implies

 mk  L(Mk) implies

 mk  LNonSelfAcceptance implies

 mk  L(Mk)

• SelfAcceptance(Mk) = Yes implies

 mk  L(Mk) implies

 mk  LNonSelfAcceptance implies

 mk  L(Mk)

contradiction

contradiction

Language LNonSelfAcceptance 3/3

43/45

• Notice: LNonSelfAcceptance = {mi : mi  L(Mi), i = 1, …}

• Let L(Mk) = LNonSelfAcceptance

• SelfAcceptance(Mk) = No implies

 mk  L(Mk) implies

 mk  LNonSelfAcceptance implies

 mk  L(Mk)

• SelfAcceptance(Mk) = Yes implies

 mk  L(Mk) implies

 mk  LNonSelfAcceptance implies

 mk  L(Mk)

• LNonSelfAcceptance is accepted by no TM Mk

contradiction

contradiction

Recursive Language

44/45

 Gist: Recursive Language accepts TM that always halt

Illustration:

Definition: Let L be a language. If L = L(M),

where M is DTM that always halts, then L is

a recursive language.

Theorem: The family of recursive languages is

closed under complement.

Proof: See page 693 in [Meduna: Automata and Languages]

Theorem: The family of recursively enumerable

languages is not closed under complement.

Proof: See the LSelfAcceptance

Other Hierarchy of Languages

45/45

The family of
recursive languages
(accepted by TMs
that always halt)

The family of rec.
enumerable
languages

(accepted by TMs)

All

Lang.

LSelfAcceptance LNonSelfAcceptance

 

