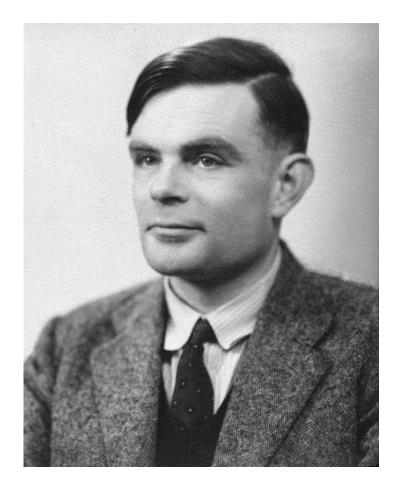
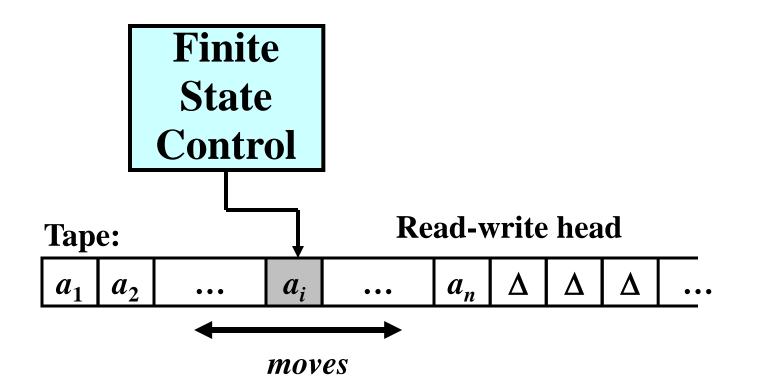
Turing Machines and General Grammars

Alan Turing (1912 – 1954)



Turing Machines (TM)

Gist: The most powerful computational model.



Note: $\Delta =$ blank

3/45

Turing Machines: Definition

Definition: *A Turing machine* (TM) is a 6-tuple $M = (Q, \Sigma, \Gamma, R, s, F)$, where

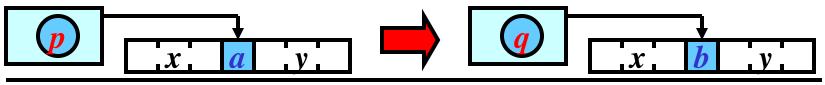
- Q is a finite set of states
- Σ is an *input alphabet*
- Γ is a *tape alphabet*; $\Delta \in \Gamma$; $\Sigma \subseteq \Gamma$
- *R* is a *finite set of rules* of the form: $pa \rightarrow qbt$, where $p, q \in Q, a, b \in \Gamma, t \in \{S, R, L\}$
- $s \in Q$ is the start state
- $F \subseteq Q$ is a set of *final states*

Mathematical note:

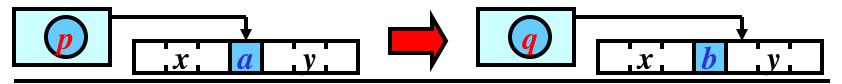
- Mathematically, *R* is a relation from $Q \times \Gamma$ to $Q \times \Gamma \times \{S, R, L\}$
- Instead of (pa, qbt), we write $pa \rightarrow qbt$

Interpretation of Rules

• $pa \rightarrow qbS$: If the current state and tape symbol are p and a, respectively, then replace a with b, change p to q, and keep the head Stationary.

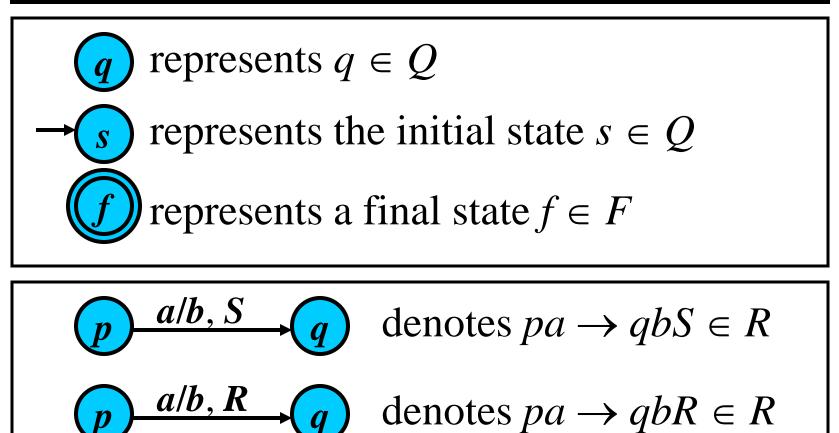


• $pa \rightarrow qbR$: If the current state and tape symbol are p and a, respectively, then replace a with b, shift the head a square R ight, and change p to q.



• $pa \rightarrow qbL$: If the current state and tape symbol are p and a, respectively, then replace a with b, shift the head a square Left, and change p to q.

Graphical Representation



denotes $pa \rightarrow qbL \in R$

a/b, L

Turing Machine: Example 1/2

 $M = (Q, \Sigma, \Gamma, R, s, F)$ where:

6/45

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

• $Q = \{s, p, q, f\};$

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

- $Q = \{s, p, q, f\};$ $\Sigma = \{a, b\};$

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

- $Q = \{s, p, q, f\};$
- $\Sigma = \{a, b\};$ • $\Gamma = \{a, b, \Delta\};$

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

- $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b\};$
- $\Delta = \{a, b\},$ • $\Gamma = \{a, b, \Delta\};$
- $R = \{ s \Delta \rightarrow f \Delta S, \}$

 $\Delta/\Delta, S$ S

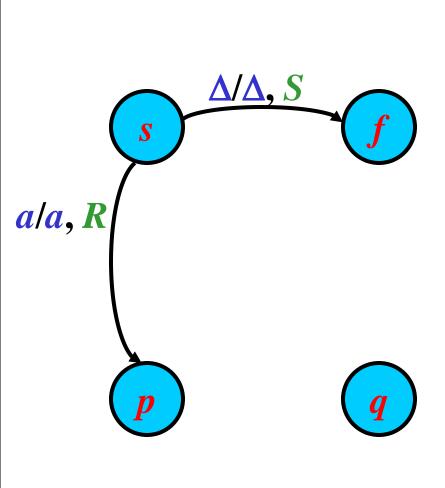
6/45

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

•
$$\Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\Delta}\};$$

•
$$R = \{ s \Delta \rightarrow f \Delta S, \\ s a \rightarrow p a R, \}$$



6/45

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

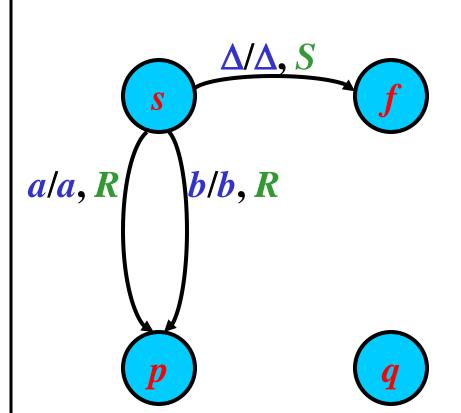
where:

•
$$\Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\Delta}\};$$

•
$$R = \{ s \Delta \rightarrow f \Delta S, \}$$

$$sa \rightarrow paR,$$

 $sb \rightarrow pbR,$



6/45

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

•
$$\Gamma = \{ \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\Delta} \};$$

•
$$R = \{ s \Delta \rightarrow f \Delta S, \}$$

$$sa \rightarrow paR,$$

 $sb \rightarrow pbR,$
 $pa \rightarrow paR,$

$$a/a, R$$

$$p$$

$$A/\Delta, S$$

$$f$$

$$f$$

$$f$$

6/45

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

•
$$\Gamma = \{ \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\Delta} \};$$

•
$$R = \{ s \Delta \rightarrow f \Delta S, \}$$

$$sa \rightarrow paR,$$

 $sb \rightarrow pbR,$
 $pa \rightarrow paR,$
 $pb \rightarrow pbR,$

$$a/a, R$$

$$b/b, R$$

$$a/a, R$$

$$b/b, R$$

$$q$$

6/45

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

- $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b\};$
- $\Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\Delta}\};$
- $R = \{ s \Delta \rightarrow f \Delta S, \}$

$$sa \rightarrow paR,$$

 $sb \rightarrow pbR,$
 $pa \rightarrow paR,$
 $pb \rightarrow pbR,$
 $p\Lambda \rightarrow a\Lambda L$

$$A/\Delta, S$$

$$f$$

$$a/a, R$$

$$b/b, R$$

$$a/a, R$$

$$b/b, R$$

$$A/\Delta, L$$

$$q$$

6/45

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

•
$$\Gamma = \{ \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\Delta} \};$$

•
$$R = \{ s \Delta \rightarrow f \Delta S, \}$$

$$sa
ightarrow pak,$$

 $sb
ightarrow pbR,$
 $pa
ightarrow paR,$
 $pb
ightarrow pbR,$
 $p\Delta
ightarrow q\Delta L,$
 $qa
ightarrow f\Delta S,$

ine: Example
$$1/2$$

 $a/\Delta, S$
 $a/\Delta, S$
 $a/\Delta, S$
 $a/\Delta, R$
 $b/b, R$
 $a/\Delta, S$
 $a/\Delta, S$
 $a/\Delta, S$

6/45

$$M = (Q, \Sigma, \Gamma, R, s, F)$$

where:

- $Q = \{s, p, q, f\};$ • $\Sigma = \{a, b\};$
- $\Gamma = \{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\Delta}\};$
- $R = \{ s \Delta \rightarrow f \Delta S, \}$

$$sa \rightarrow paR,$$

$$sb \rightarrow pbR,$$

$$pa \rightarrow paR,$$

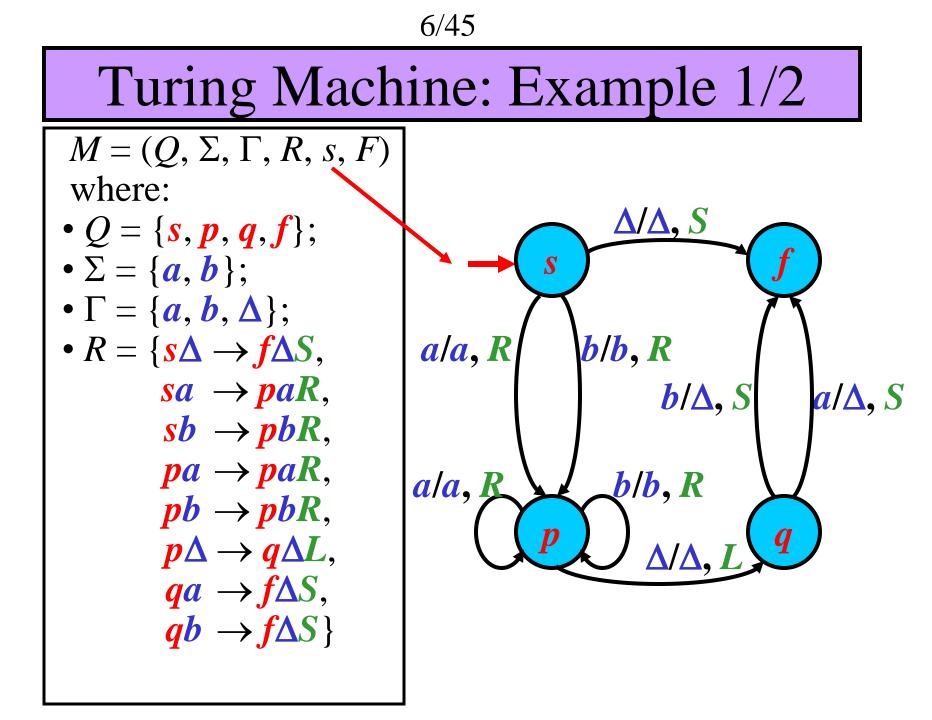
$$pb \rightarrow pbR,$$

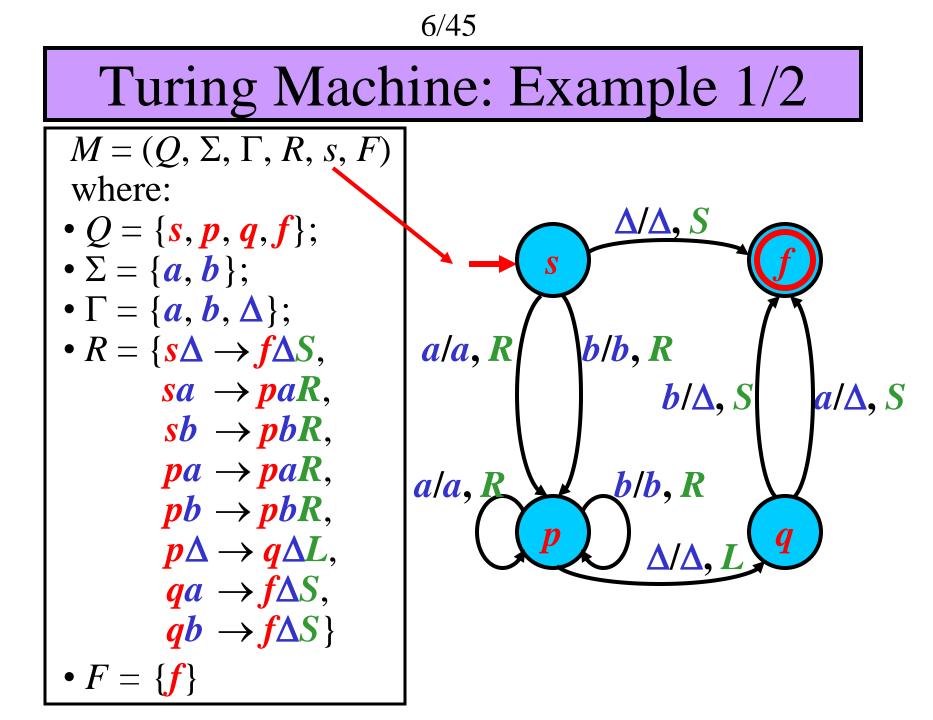
$$p\Delta \rightarrow q\Delta L,$$

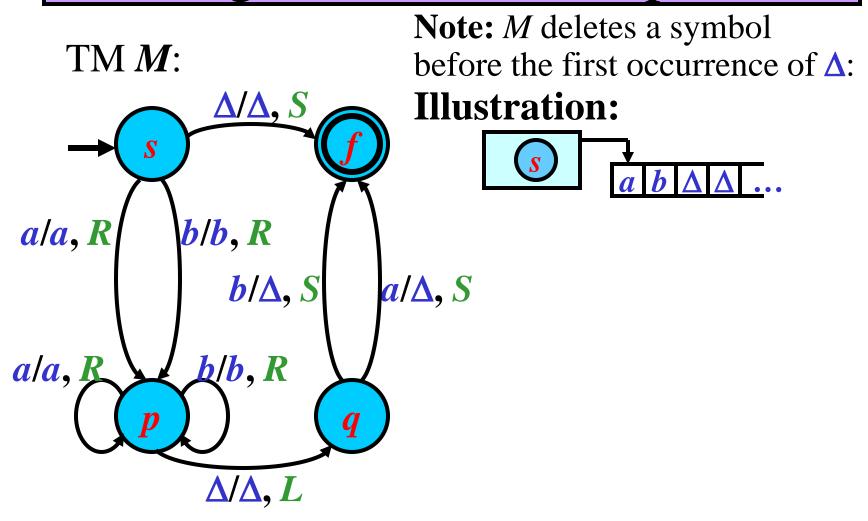
$$qa \rightarrow f\Delta S,$$

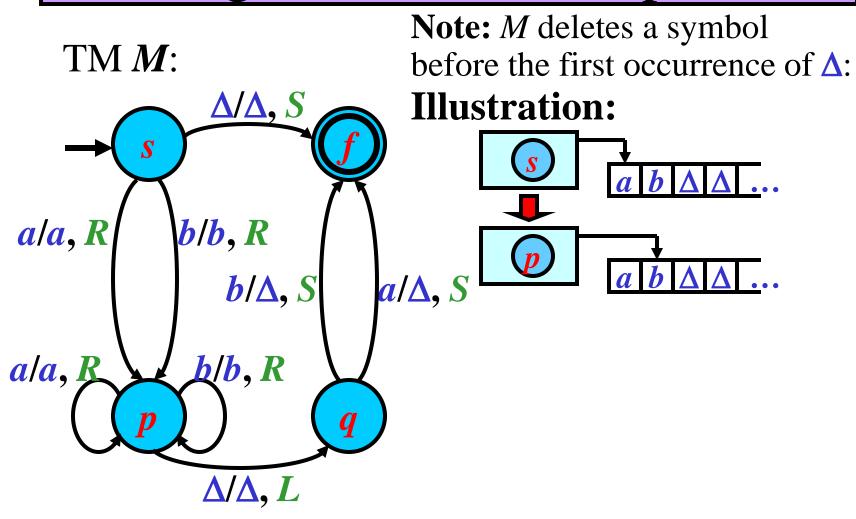
$$ab \rightarrow f\Delta S\}$$

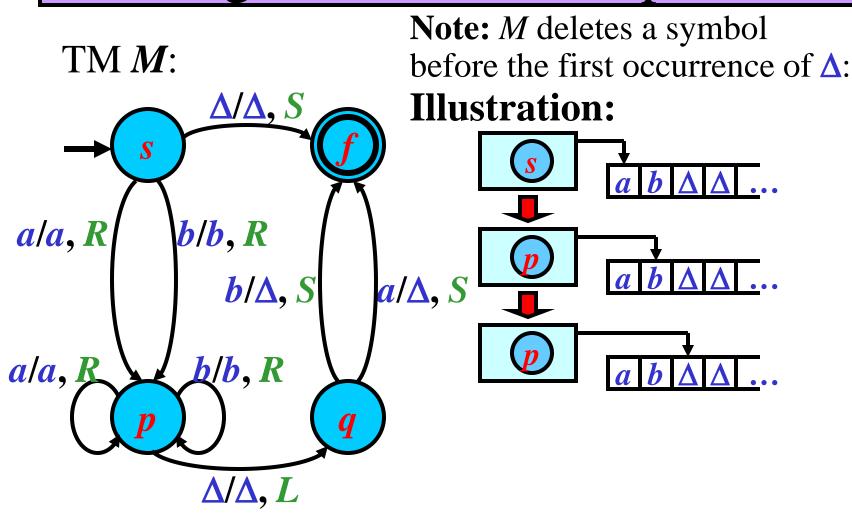
$$a | a, R \qquad b / b, R \qquad b / b, R \qquad b / b, S \qquad a | a, R \qquad b / b, R \qquad b / b, R \qquad b / b, R \qquad a | \Delta, S \qquad b / b, R \qquad f$$

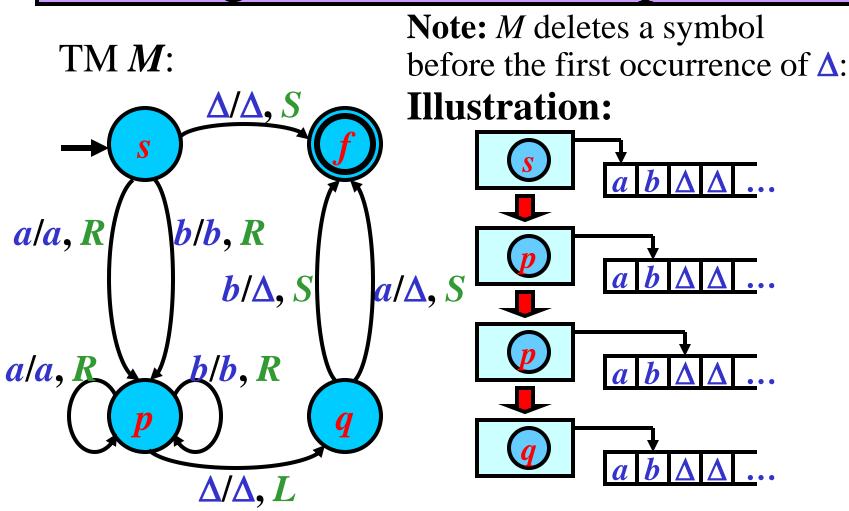


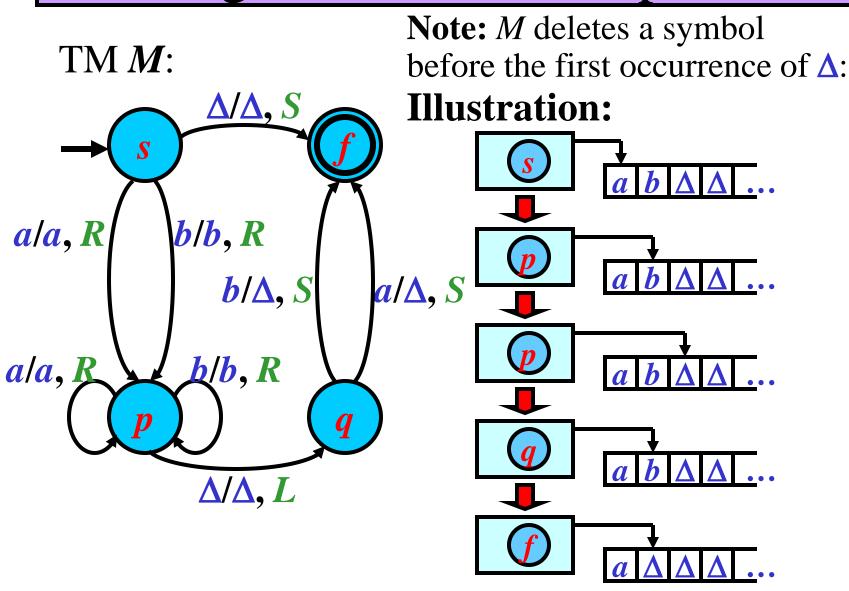








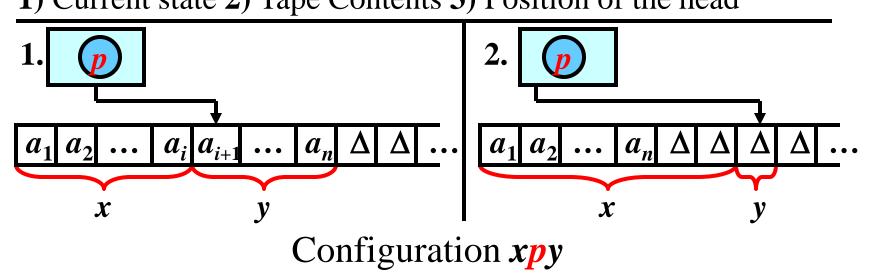




TM Configuration

Gist: Instantaneous description of TM

What does a configuration describes? 1) Current state 2) Tape Contents 3) Position of the head

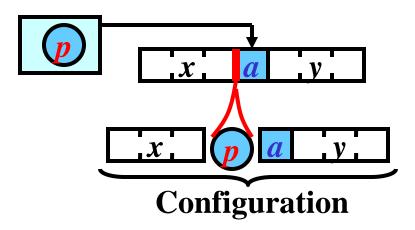


Definition: Let $M = (Q, \Sigma, \Gamma, R, s, F)$ be a TM. A configuration of M is a string $\chi = xpy$, where $x \in \Gamma^*, p \in Q, y \in \Gamma^*(\Gamma - \{\Delta\}) \cup \{\Delta\}.$

Stationary Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *stationary move* from χ to χ ' according to \mathbf{r} , written as $\chi / -_S \chi$ ' $[\mathbf{r}]$ or, simply, $\chi / -_S \chi$ ' if $\chi = \mathbf{xpay}, \ \chi' = \mathbf{xqby}$ and $\mathbf{r}: \mathbf{pa} \rightarrow \mathbf{qbS} \in R$

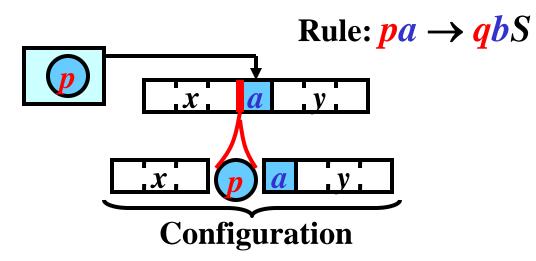
Illustration:



Stationary Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *stationary move* from χ to χ ' according to \mathbf{r} , written as $\chi / -_S \chi$ ' $[\mathbf{r}]$ or, simply, $\chi / -_S \chi$ ' if $\chi = \mathbf{xpay}, \ \chi' = \mathbf{xqby}$ and $\mathbf{r}: \mathbf{pa} \rightarrow \mathbf{qbS} \in R$

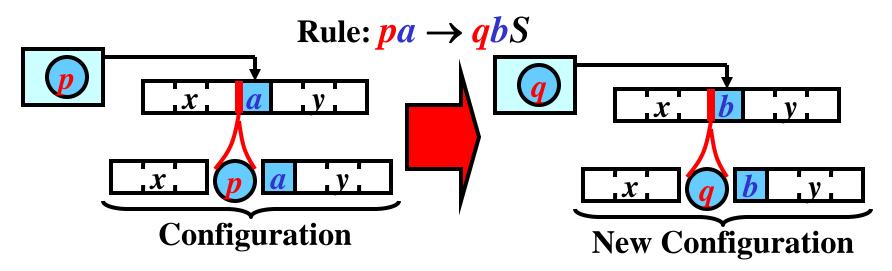
Illustration:



Stationary Move

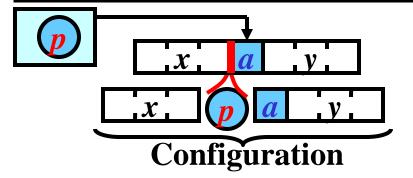
Definition: Let χ , χ ' be two configurations of M. Then, M makes a *stationary move* from χ to χ ' according to \mathbf{r} , written as $\chi / -_S \chi$ ' $[\mathbf{r}]$ or, simply, $\chi / -_S \chi$ ' if $\chi = \mathbf{xpay}, \ \chi' = \mathbf{xqby}$ and $\mathbf{r}: \mathbf{pa} \rightarrow \mathbf{qbS} \in R$

Illustration:



Right Move

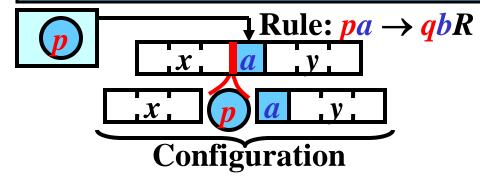
Definition: Let χ , χ' be two configurations of M. Then, M makes a *right move* from χ to χ' according to \mathbf{r} , written as $\chi / -_R \chi' [\mathbf{r}]$ or, simply, $\chi' / -_R \chi'$ if $\chi = \mathbf{xpay}, \mathbf{r} : \mathbf{pa} \rightarrow \mathbf{qbR} \in R$ and $(1) \chi' = \mathbf{xbqy}, y \neq \varepsilon$ or $(2) \chi' = \mathbf{xbq}\Delta, y = \varepsilon$



10/45

Right Move

Definition: Let χ , χ' be two configurations of M. Then, M makes a *right move* from χ to χ' according to \mathbf{r} , written as $\chi / -_R \chi'$ [\mathbf{r}] or, simply, $\chi' / -_R \chi'$ if $\chi = xpay$, $\mathbf{r}: pa \rightarrow qbR \in R$ and $(1) \chi' = xbqy$, $y \neq \varepsilon$ or $(2) \chi' = xbq\Delta$, $y = \varepsilon$

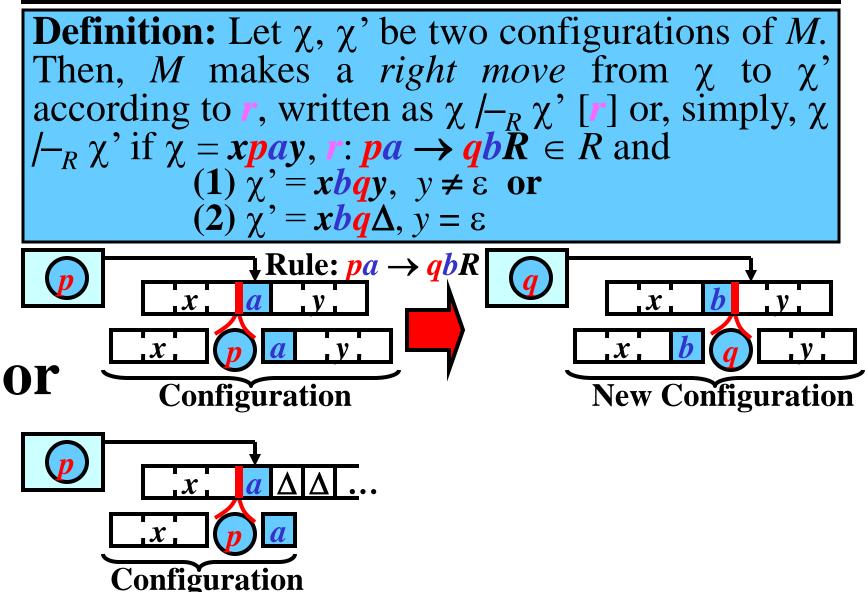


10/45

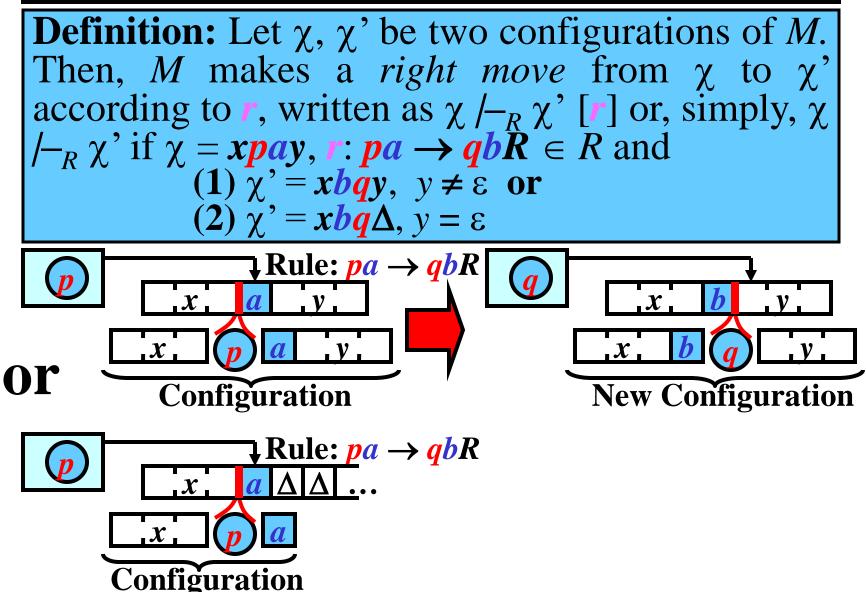
Right Move

Definition: Let χ , χ ' be two configurations of *M*. Then, M makes a right move from χ to χ' according to *r*, written as $\chi / -_R \chi'$ [*r*] or, simply, χ $/-_R \chi$ if $\chi = xpay$, $r: pa \rightarrow qbR \in R$ and (1) $\bar{\chi}' = x b \bar{q} y$, $y \neq \bar{\varepsilon}$ or (2) $\chi' = xbq\Delta$, $y = \varepsilon$ $\mathbf{Rule: } pa \to qbR$ v Configuration **New Configuration**

Right Move

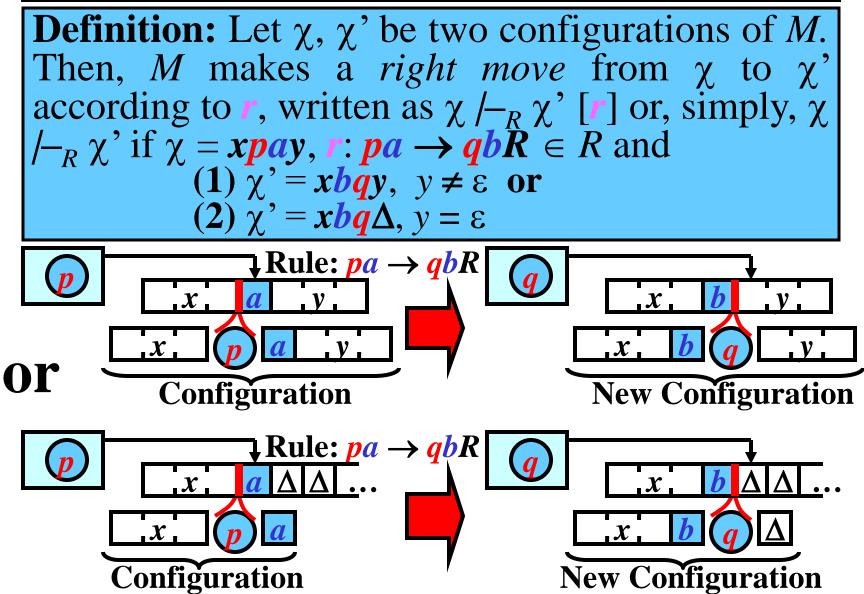


Right Move



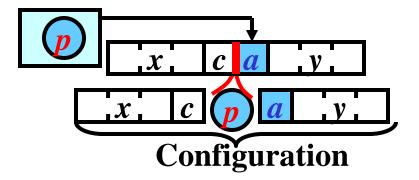
10/45

Right Move



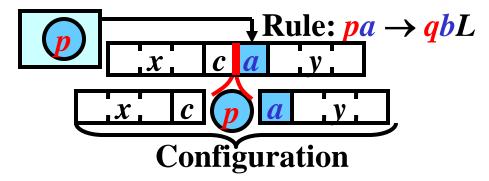
Left Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *left move* from χ to χ 'according to r, written as $\chi / -_L \chi$ ' [r] or, simply, $\chi / -_L \chi$ ' if (1) $\chi = xcpay$, $\chi' = xqcby$, $y \neq \varepsilon$ or $b \neq \Delta$, $r: pa \rightarrow qbL \in R$ or (2) $\chi = xcpa$, $\chi' = xqc$, $r: pa \rightarrow q\Delta L \in R$



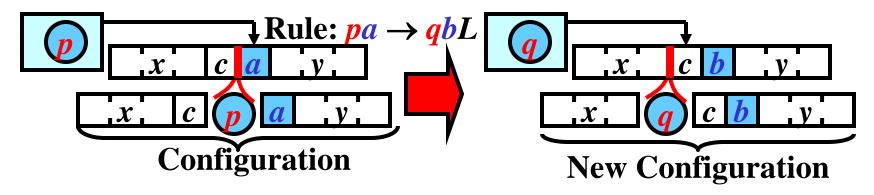
Left Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *left move* from χ to χ 'according to r, written as $\chi / -_L \chi$ ' [r] or, simply, $\chi / -_L \chi$ ' if (1) $\chi = xcpay$, $\chi' = xqcby$, $y \neq \varepsilon$ or $b \neq \Delta$, $r: pa \rightarrow qbL \in R$ or (2) $\chi = xcpa$, $\chi' = xqc$, $r: pa \rightarrow q\Delta L \in R$



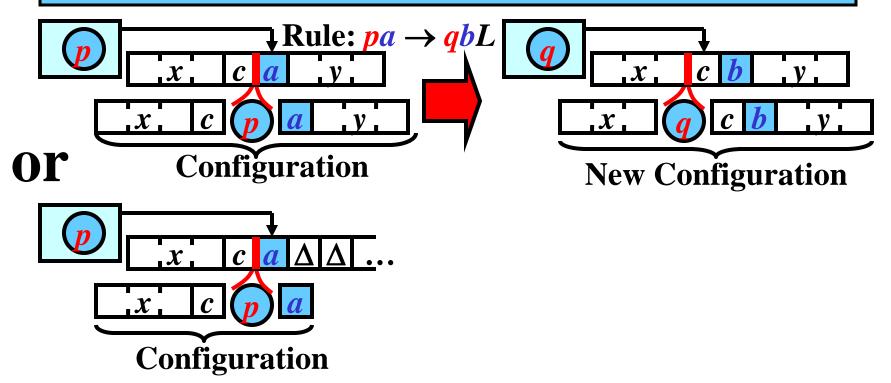
Left Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *left move* from χ to χ 'according to \mathbf{r} , written as $\chi / -_L \chi$ ' $[\mathbf{r}]$ or, simply, $\chi / -_L \chi$ ' if (1) $\chi = xcpay$, $\chi' = xqcby$, $y \neq \varepsilon$ or $b \neq \Delta$, $\mathbf{r}: pa \rightarrow qbL \in R$ or (2) $\chi = xcpa$, $\chi' = xqc$, $\mathbf{r}: pa \rightarrow q\Delta L \in R$



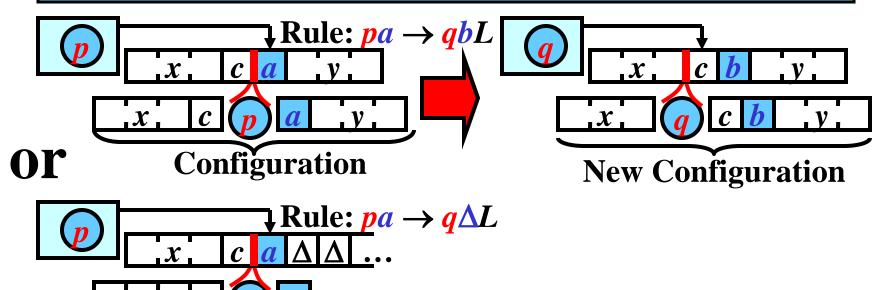
Left Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *left move* from χ to χ 'according to r, written as $\chi / -_L \chi$ ' [r] or, simply, $\chi / -_L \chi$ ' if (1) $\chi = xcpay$, $\chi' = xqcby$, $y \neq \varepsilon$ or $b \neq \Delta$, $r: pa \rightarrow qbL \in R$ or (2) $\chi = xcpa$, $\chi' = xqc$, $r: pa \rightarrow q\Delta L \in R$



Left Move

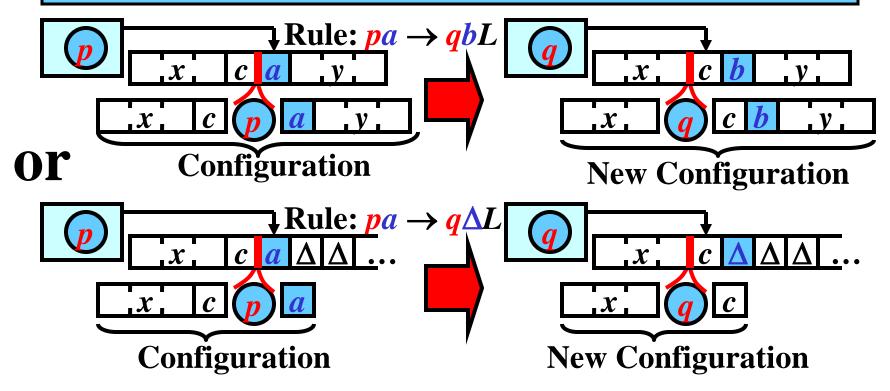
Definition: Let χ , χ ' be two configurations of M. Then, M makes a *left move* from χ to χ 'according to r, written as $\chi / -_L \chi$ ' [r] or, simply, $\chi / -_L \chi$ ' if (1) $\chi = xcpay$, $\chi' = xqcby$, $y \neq \varepsilon$ or $b \neq \Delta$, $r: pa \rightarrow qbL \in R$ or (2) $\chi = xcpa$, $\chi' = xqc$, $r: pa \rightarrow q\Delta L \in R$



Configuration

Left Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *left move* from χ to χ 'according to r, written as $\chi / -_L \chi$ ' [r] or, simply, $\chi / -_L \chi$ ' if (1) $\chi = xcpay$, $\chi' = xqcby$, $y \neq \varepsilon$ or $b \neq \Delta$, $r: pa \rightarrow qbL \in R$ or (2) $\chi = xcpa$, $\chi' = xqc$, $r: pa \rightarrow q\Delta L \in R$



12/45

Move

Definition: Let χ , χ ' be two configurations of M. Then, M makes a *move* from χ to χ ' according to a rule \mathbf{r} , written as $\chi /-\chi$ ' [\mathbf{r}] or, simply, $\chi /-\chi$ ' if $\chi /-_{\chi} \chi$ ' [\mathbf{r}] for some $X \in \{S, R, L\}$.

13/45

Sequence of Moves 1/2

Gist: Several consecutive computational steps

Definition: Let χ be a configuration. *M* makes *zero moves* from χ to χ ; in symbols, $\chi \mid -0 \chi$ [ε] or, simply, $\chi \mid -0 \chi$

Definition: Let $\chi_0, \chi_1, ..., \chi_n$ be a sequence of configurations, $n \ge 1$, and $\chi_{i-1} \models \chi_i [r_i], r_i \in R$, for all i = 1, ..., n; that is, $\chi_0 \models \chi_1 [r_1] \models \chi_2 [r_2] ... \models \chi_n [r_n]$ Then, *M* makes *n* moves from χ_0 to χ_n , $\chi_0 \models^n \chi_n [r_1...r_n]$ or, simply, $\chi_0 \models^n \chi_n$

Sequence of Moves 2/2

If
$$\chi_0 \models^n \chi_n [\rho]$$
 for some $n \ge 1$, then
 $\chi_0 \models^+ \chi_n [\rho]$ or, simply, $\chi_0 \models^+ \chi_n$
If $\chi_0 \models^n \chi_n [\rho]$ for some $n \ge 0$, then
 $\chi_0 \models^* \chi_n [\rho]$ or, simply, $\chi_0 \models^* \chi_n$

Example: Consider $apbc \models aqac \ [1: pb \rightarrow qaS], \text{ and}$ $aqac \models acrc \ [2: qa \rightarrow rcR].$ Then, $apbc \models^2 acrc \ [1 2],$ $apbc \models^+ acrc \ [1 2],$ $apbc \models^* acrc \ [1 2]$

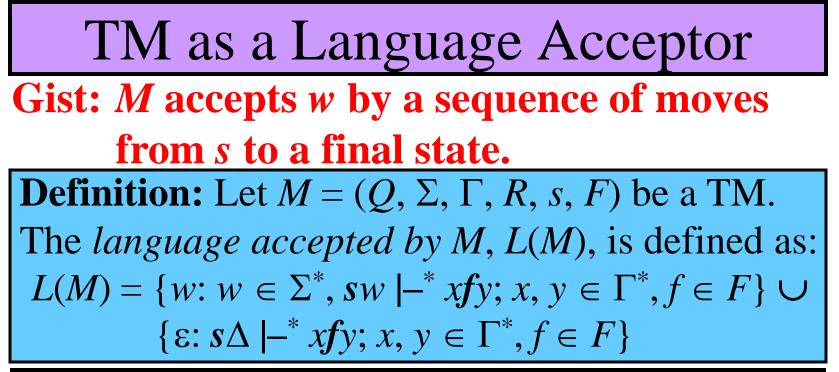
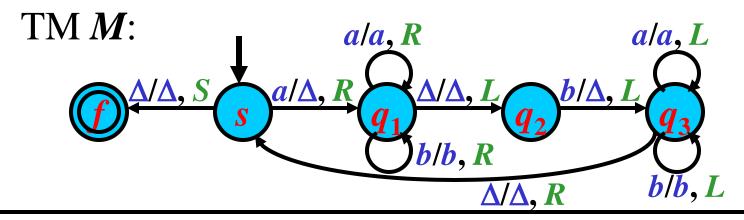


Illustration:

• For $w \neq \varepsilon$: $w \perp \Delta \Delta \perp \ldots$ • For $w = \varepsilon$: $\Delta \perp \Delta \perp \ldots$ $w \perp \Delta \perp \Delta \perp \ldots$ • For $w = \varepsilon$: $x \perp v \perp \Delta \perp \Delta \perp \ldots$

16/45

TM as an Acceptor: Example



 $\begin{aligned} sabba & |-\Delta q_1 abb | -\Delta aq_1 bb | -\Delta abq_1 b | -\Delta abbq_1 \Delta | -\Delta abq_2 b \\ & |-\Delta aq_3 b | -\Delta q_3 ab | -q_3 \Delta ab | -\Delta sab | -\Delta \Delta q_1 b | -\Delta \Delta q_1 b \\ & |-\Delta \Delta bq_1 \Delta | -\Delta \Delta q_2 b | -\Delta q_3 \Delta | -s\Delta | -f\Delta \end{aligned}$

Summary: $abba \in L(M)$

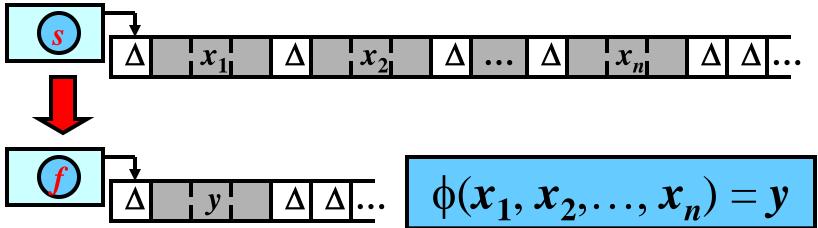
Note: $L(M) = \{ a^n b^n : n \ge 0 \}$

17/45

TM as a Computational Model

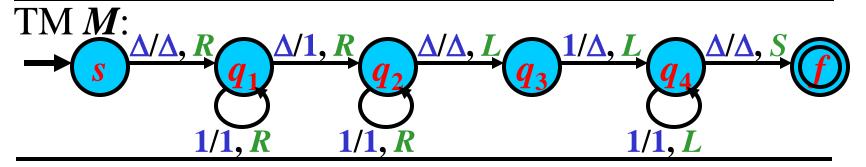
Definition: Let $M = (Q, \Sigma, \Gamma, R, s, F)$ be a TM; *n*-place function ϕ is computed by M provided that $s\Delta x_1\Delta x_2...\Delta x_n \mid -^* f\Delta y$ with $f \in F$ if and only if $\phi(x_1, x_2, ..., x_n) = y$.

Illustration:



18/45

TM as a Computational Model: Example



$$\begin{split} s \Delta 11 \Delta 11 & |-\Delta q_1 11 \Delta 11 | -\Delta 1q_1 1\Delta 11 | -\Delta 11q_1 \Delta 11 | -\Delta 111q_2 11 \\ & |-\Delta 1111q_2 1 | -\Delta 11111q_2 \Delta | -\Delta 1111q_3 1 | -\Delta 111q_4 1 \\ & |-\Delta 11q_4 11 | -\Delta 1q_4 111 | -\Delta q_4 1111 | -q_4 \Delta 1111 \\ & |-f \Delta 1111 1 \end{split}$$

Summary: $\phi(11, 11) = 1111$

Note: $\phi(x_1, x_2) = x_1 + x_2$, where

- $x_1 = 1^a$ represents a natural number a
- $x_2 = 1^{b}$ represents a natural number b

Deterministic Turing Machine (DTM) **Gist: Deterministic TM makes no more than** one move from any configuration. **Definition:** Let $M = (Q, \Sigma, \Gamma, R, s, F)$ be a TM. *M* is a *deterministic TM* if for each rule $pa \rightarrow da$ *qbt* $\in R$ it holds that $R - \{pa \rightarrow qbt\}$ contains no rule with the left-hand side equal to *pa*.

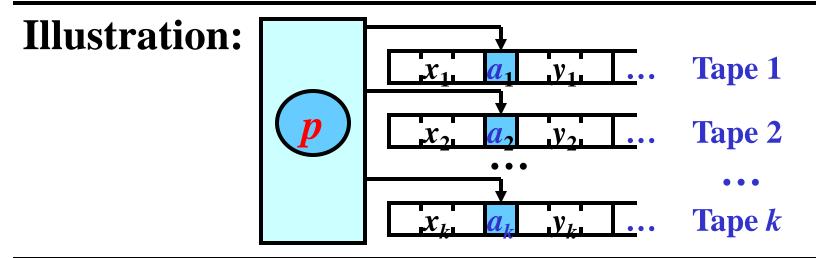
Theorem: For every TM M, there is an equivalent DTM M_d .

Proof: See page 634 in [Meduna: Automata and Languages]

20/45

k-Tape Turing Machine

Gist: Turing machine with *k* tapes



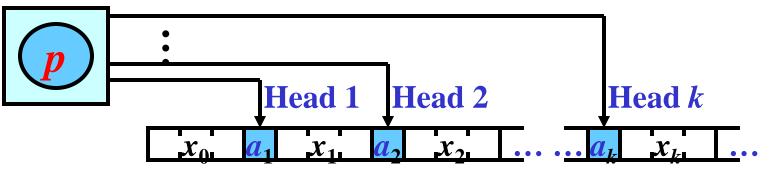
Theorem: For every k-tape TM M_t , there is an equivalent TM M.

Proof: See page 662 in [Meduna: Automata and Languages]

k-Head Turing Machine

Gist: Turing machine with *k* heads

Illustration:

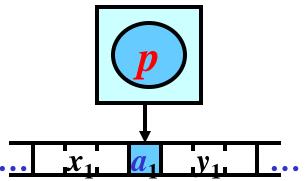


Theorem: For every *k*-head TM M_h , there is an equivalent TM M.

Proof: See page 667 in [Meduna: Automata and Languages]

TM with Two-way Infinite Tapes Gist: Turing machine with tape infinite both to the right and to the left

Illustration:



Theorem: For every TM with two-way infinite tapes M_b , there is an equivalent TM M.

Proof: See page 673 in [Meduna: Automata and Languages]

23/45

Description of a Turing Machine Gist: Turing machine representation using a string over {0, 1}

- Assume that TM *M* has the form $M = (Q, \Sigma, \Gamma, R, q_0, \{q_1\})$, where $Q = \{q_0, q_1, \dots, q_m\}, \Gamma = \{a_0, a_1, \dots, a_n\}$ so that $a_0 = \Delta$
- Let δ is the mapping from $(\mathcal{Q} \cup \Gamma \cup \{S, L, R\})$ to $\{0, 1\}^*$

defined as: $\delta(S) = 01, \, \delta(L) = 001, \, \delta(R) = 0001, \, \delta(q_i) = 0^{i+1}$ for all $i = 0 \dots m, \, \delta(a_i) = 0^{i+1}$ for all $i = 0 \dots n$

• For every $r: pa \rightarrow qbt \in R$ we define

 $\delta(\mathbf{r}) = \delta(\mathbf{p})\delta(\mathbf{a})\delta(\mathbf{q})\delta(\mathbf{b})\delta(\mathbf{t})\mathbf{1}$

• Let $R = \{r_0, r_1, \dots, r_k\}$. Then

 $\delta(M) = 111\delta(r_0)\delta(r_1)...\delta(r_k)1$ is the description of TM M

Description of TM: Example

 $M = (Q, \Sigma, \Gamma, R, q_0, \{q_1\})$, where

 $Q = \{ q_0, q_1 \}; \Sigma = \{ a_1, a_2 \}; \Gamma = \{ \Delta, a_1, a_2 \};$

 $\underline{R} = \{1: q_0 a_1 \rightarrow q_0 a_2 R, 2: q_0 a_2 \rightarrow q_0 a_1 R, 3: q_0 \Delta \rightarrow q_1 \Delta S\}$

Task: Decription of *M*, $\delta(M)$.

$$\begin{split} \delta(S) &= 01, \, \delta(L) = 001, \, \delta(R) = 0001, \\ \delta(q_0) &= 01, \, \delta(q_1) = 001, \\ \delta(\Delta) &= 01, \, \delta(a_1) = 001, \, \delta(a_2) = 0001. \end{split}$$

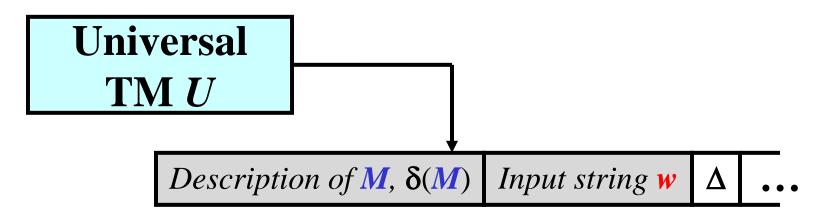
 $\delta(M) = 111\delta(1)\delta(2)\delta(3)1$

- $= 111\delta(\boldsymbol{q}_0)\delta(\boldsymbol{a}_1)\delta(\boldsymbol{q}_0)\delta(\boldsymbol{a}_2)\delta(\boldsymbol{R})1$ $\delta(\boldsymbol{q}_0)\delta(\boldsymbol{a}_2)\delta(\boldsymbol{q}_0)\delta(\boldsymbol{a}_1)\delta(\boldsymbol{R})1$ $\delta(\boldsymbol{q}_0)\delta(\Delta)\delta(\boldsymbol{q}_1)\delta(\Delta)\delta(\boldsymbol{S})11$
- $= 1110100101000100011 \\ 0100010100100011 \\ 01010010101111$

Universal Turing Machine

Gist: Universal TM can simulate every DTM

Illustration:



Note: Universal TM U reads the description of TM M, and the input string w, and then simulates the moves that M makes with w.

26/45

Unrestricted Grammar: Definition Gist: Generalization of CFG Definition: An unrestricted grammar (URG) is a quadruple G = (N, T, P, S), where

- *N* is an alphabet of *nonterminals*
- *T* is an alphabet of *terminals*, $N \cap T = \emptyset$
- *P* is a finite set of *rules* of the form $x \to y$, where $x \in (N \cup T)^* N(N \cup T)^*, y \in (N \cup T)^*$
- $S \in N$ is the start nonterminal

Mathematical Note on Rules:

- Strictly mathematically, *P* is a finite relation from $(N \cup T)^* N (N \cup T)^*$ to $(N \cup T)^*$
- Instead of $(x, y) \in P$, we write $x \rightarrow y \in P$

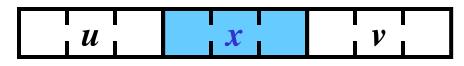
Derivation Step

Gist: A change of a string by a rule. Definition: Let G = (N, T, P, S) be a URG. Let $u, v \in (N \cup T)^*$ and $p: x \rightarrow y \in P$. Then, uxv *directly derives uyv according to p* in *G*, written as $uxv \Rightarrow uyv$ [p] or, simply, $uxv \Rightarrow uyv$.

<i>x</i>	I V I

Derivation Step

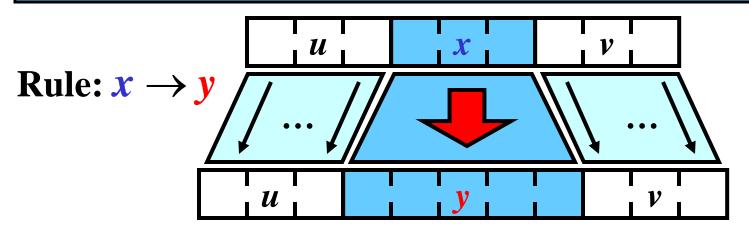
Gist: A change of a string by a rule. **Definition:** Let G = (N, T, P, S) be a URG. Let $u, v \in (N \cup T)^*$ and $p: x \to y \in P$. Then, uxv *directly derives uyv according to p* in *G*, written as $uxv \Rightarrow uyv$ [p] or, simply, $uxv \Rightarrow uyv$.



Rule: $x \rightarrow y$

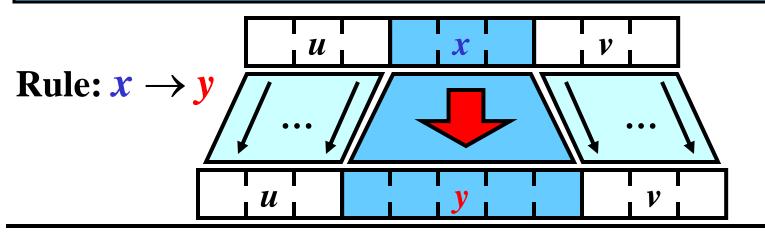
Derivation Step

Gist: A change of a string by a rule. **Definition:** Let G = (N, T, P, S) be a URG. Let $u, v \in (N \cup T)^*$ and $p: x \rightarrow y \in P$. Then, uxv *directly derives uyv according to p* in *G*, written as $uxv \Rightarrow uyv$ [p] or, simply, $uxv \Rightarrow uyv$.



Derivation Step

Gist: A change of a string by a rule. **Definition:** Let G = (N, T, P, S) be a URG. Let $u, v \in (N \cup T)^*$ and $p: x \rightarrow y \in P$. Then, uxv *directly derives uyv according to* p in G, written as $uxv \Rightarrow uyv$ [p] or, simply, $uxv \Rightarrow uyv$.



Note: \Rightarrow^n , \Rightarrow^+ , \Rightarrow^* and *L*(*G*) are defined by analogy with the corresponding definitions in terms of CFGs.

28/45

Unrestricted Grammar: Example

 $G = (N, T, P, S), \text{ where } N = \{S, A, B\}, T = \{a\}$ $P = \{1: S \rightarrow ASB, \qquad 2: S \rightarrow a, \\3: Aa \rightarrow aaA, \qquad 4: AB \rightarrow \varepsilon \}$

 $S \Rightarrow a \quad [2]$ $S \Rightarrow A \underline{SB} [1] \Rightarrow \underline{AaB} [2] \Rightarrow aa \underline{AB} [3] \Rightarrow aa [4]$ $S \Rightarrow A \underline{SB} [1] \Rightarrow AA \underline{SBB} [1] \Rightarrow A \underline{AaBB} [2] \Rightarrow$ $\underline{AaaABB} [3] \Rightarrow aa \underline{AaABB} [3] \Rightarrow$ $aaaa \underline{AABB} [3] \Rightarrow aa aa \underline{AB} [4] \Rightarrow aa aa [4]$ \vdots

Note: $L(G) = \{a^{2^n}: n \ge 0\}$

29/45

Recursively Enumerable Languages

Definition: Let *L* be a language. *L* is a *resurcively enumerable language* if there exists a Turing machine *M* that L = L(M).

Theorem: For every URG *G*, there is a TM *M* such that L(G) = L(M).

Proof: See page 714 in [Meduna: Automata and Languages]

Theorem: For every TM *M*, there is a URG *G* such that L(M) = L(G).

Proof: See page 715 in [Meduna: Automata and Languages]

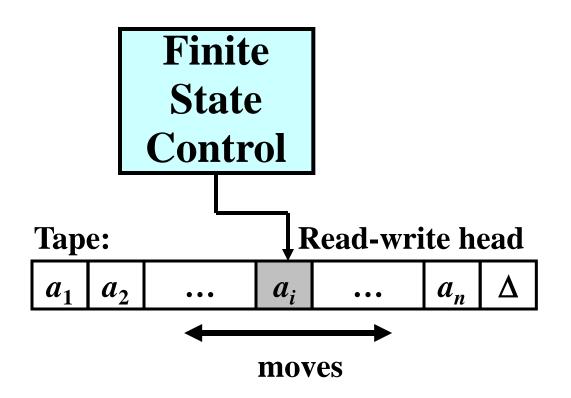
Conclusion: The fundamental models for recursively enumerable languages are

1) Unrestricted grammars 2) Turing Machines

Context-Sensitive Grammar Gist: Restriction of URG Definition: Let G = (N, T, P, S) be an unrestricted grammar. G is a context-sensitive (or length-increasing) grammar (CSG) if every rule $x \rightarrow y \in P$ satisfies $|x| \leq |y|$.

Note: \Rightarrow , \Rightarrow^n , \Rightarrow^+ , \Rightarrow^* and *L*(*G*) are defined by analogy with the definitions of the corresponding notions on URGs.

Linear Bounded Automaton Gist: A Turing machine with a Tape Bounded by the Length of the Input String.

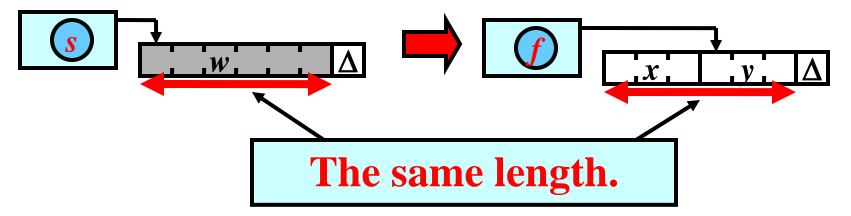


32/45

Linear Bounded Automaton: Definition Gist: With w on its tape, M's tape is restricted to |w/ squares.

Definition: *A linear bounded automaton* (LBA) is a TM that cannot extend its tape by any rule.

Accepted language: Illustration



33/45

Context-sensitive Languages

Definition: Let *L* be a language. *L* is a *context-sensitive* if there exists a context-sensitive grammar *G* that L = L(G).

Theorem: For every CSG *G*, there is an LBA *M* such that L(G) = L(M).

Proof: See page 732 in [Meduna: Automata and Languages]

Theorem: For every LBA *M*, there is a CSG *G* such that L(M) = L(G).

Proof: See page 734 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for context-sensitive languages are
1) Context-sensitive grammars
2) Linear bounded automata

34/45

Right-Linear Grammar: DefinitionGist: A CFG in which every rule has a string
of terminals followed by no more that
one nonterminal on the right-hand side.Definition: Let G = (N, T, P, S) be a CFG. G is a
right-linear grammar (RLG) if every rule $A \rightarrow x$
 $\in P$ satisfies $x \in T^* \cup T^*N$.

Example:

- G = (N, T, P, S), where $N = \{S, A\}, T = \{a, b\}$
- $P = \{1: S \rightarrow aS, 2: S \rightarrow aA, 3: A \rightarrow bA, 4: A \rightarrow b\}$
- $S \Rightarrow a\underline{A}[2] \Rightarrow ab[4]$
- $S \Rightarrow a\underline{S}[1] \Rightarrow aa\underline{A}[2] \Rightarrow aab$ [4]
- $S \Rightarrow a\underline{A}[2] \Rightarrow ab\underline{A}[3] \Rightarrow abb$ [4]

Note: $L(G) = \{a^m b^n : m, n \ge 1\}$

Grammars for Regular Languages

Theorem: For every RLG *G*, there is an FA *M* such that L(G) = L(M).

Proof: See page 575 in [Meduna: Automata and Languages]

Theorem: For every FA *M*, there is an RLG *G* such that L(M) = L(G).

Proof: See page 583 in [Meduna: Automata and Languages]

Conclusion: Grammars for regular languages are **Right-linear grammar**

Grammars: Summary

Languages	Grammar	Form of rules $x \rightarrow y$
Recursively enumerable	Unrestricted	$x \in (N \cup T)^* N(N \cup T)^*$ $y \in (N \cup T)^*$
Context- sensitive	Context- sensitive	$x \in (N \cup T)^* N (N \cup T)^*$ $y \in (N \cup T)^*, x \le y $
Context-free	Context-free	$ \begin{array}{l} x \in N \\ y \in \left(N \cup T \right)^* \end{array} $
Regular	Right-Linear	$\begin{array}{l} x \in N \\ y \in T^* \cup T^*N \end{array}$

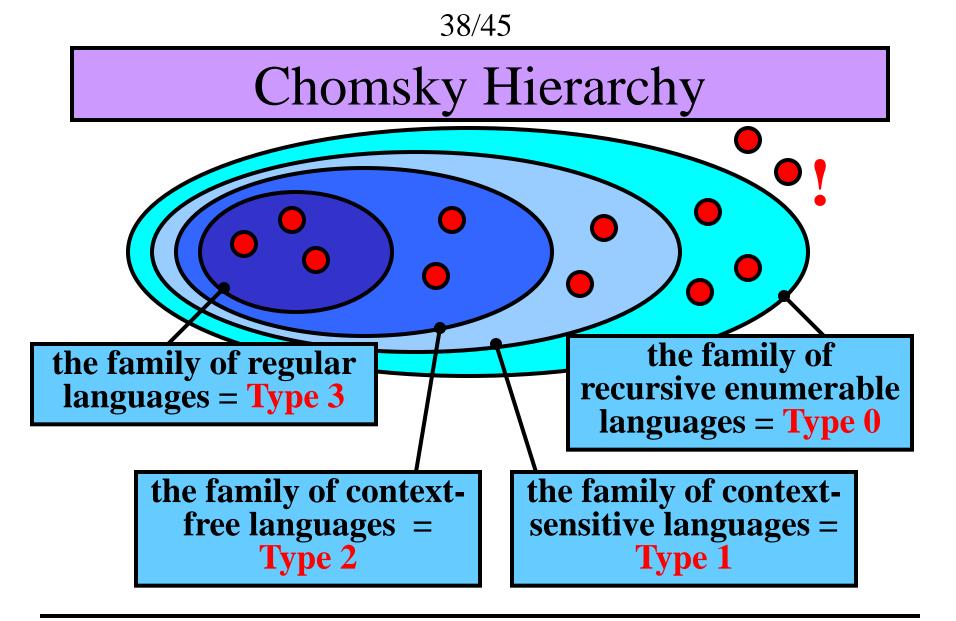
Restriction

Generalization

37/45

Automata: Summary

	Languages	Accepting Device	
Generalization	Recursively enumerable	Turing machine	
	Context- sensitive	Linear bounded automaton	Restrictior
	Context-free	Pushdown automaton	tion
	Regular	Finite automaton	



Type $3 \subset$ Type $2 \subset$ Type $1 \subset$ Type 0

Language $L_{\text{SelfAcceptance}} \frac{1}{2}$ Gist: $L_{\text{SelfAcceptance}}$ is the language over $\{0, 1\}^*$, which contain a string $\delta(M)$, if and only DTM *M* accepts $\delta(M)$.

Definition:

 $L_{\text{SelfAcceptance}} = \{ \delta(M) : M \text{ is a DTM}, \, \delta(M) \in L(M) \}$

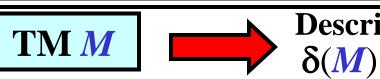
Illustration:

Language $L_{SelfAcceptance}$ 1/2Gist: $L_{SelfAcceptance}$ is the language over $\{0, 1\}^*$, which
contain a string $\delta(M)$, if and only DTM M accepts $\delta(M)$.

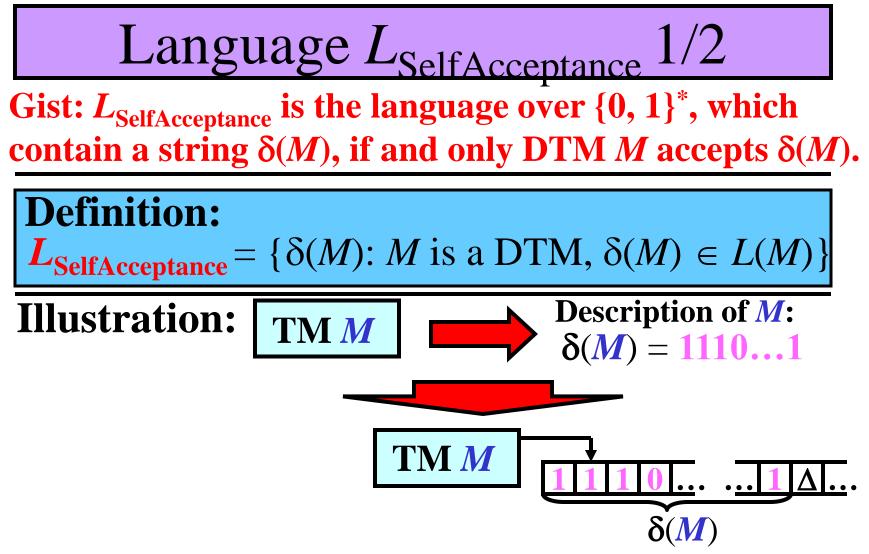
Definition:

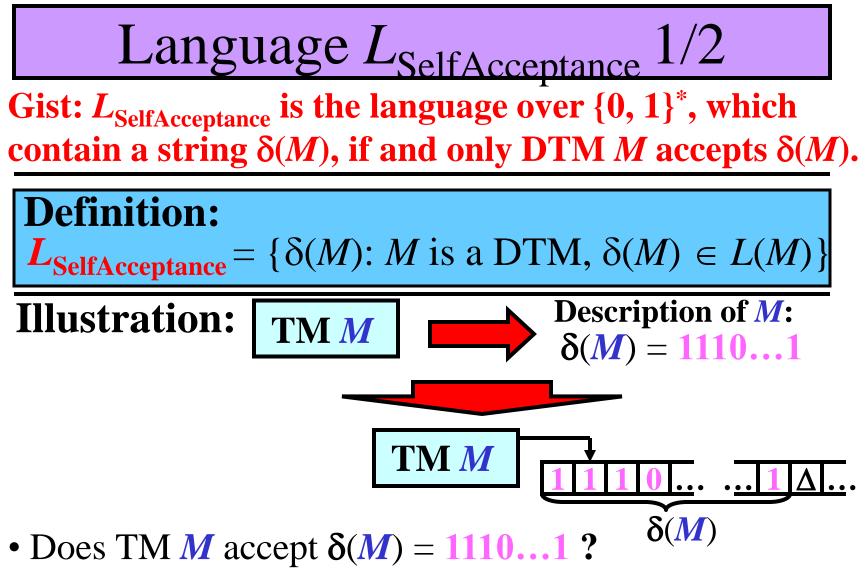
 $\boldsymbol{L}_{\text{SelfAcceptance}} = \{ \delta(M) : M \text{ is a DTM}, \, \delta(M) \in L(M) \}$

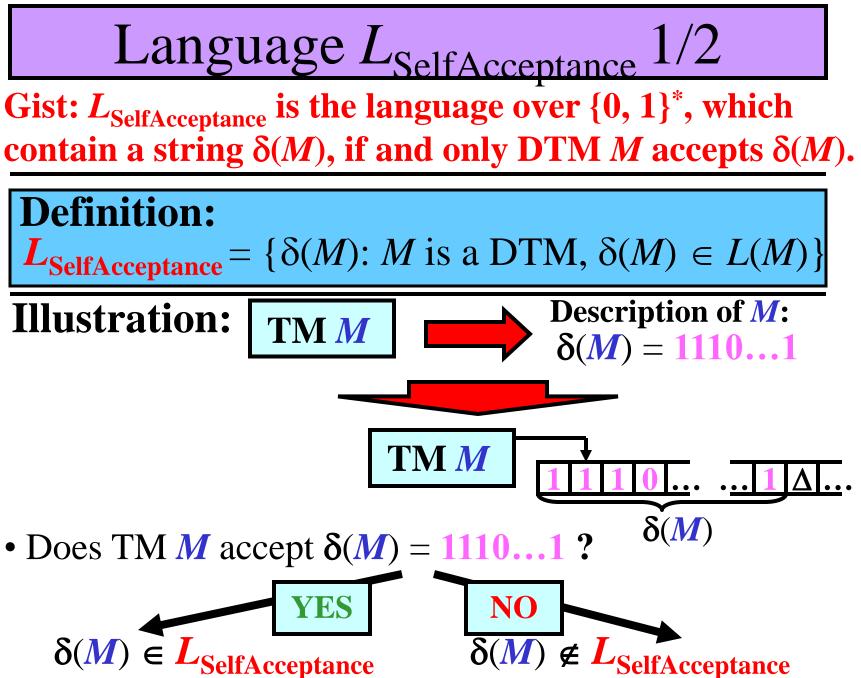
Illustration:



Description of \overline{M} : $\delta(M) = 1110...1$







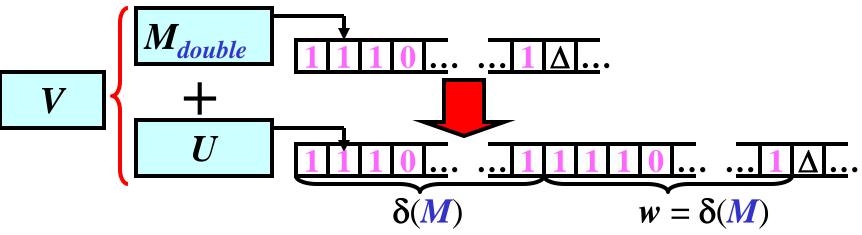
Language $L_{\text{SelfAcceptance}} 2/2$

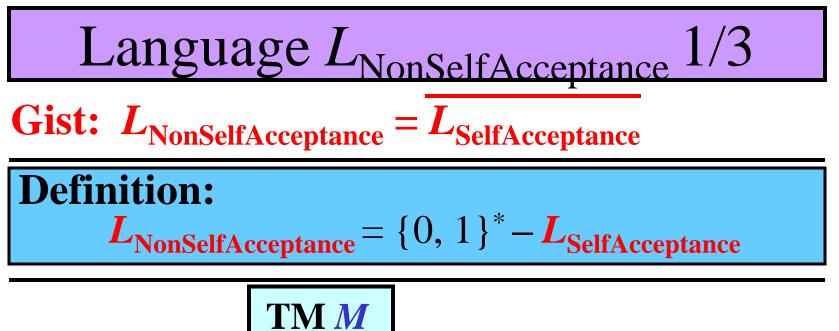
Theorem: $L_{\text{SelfAcceptance}}$ is accept by some TM.

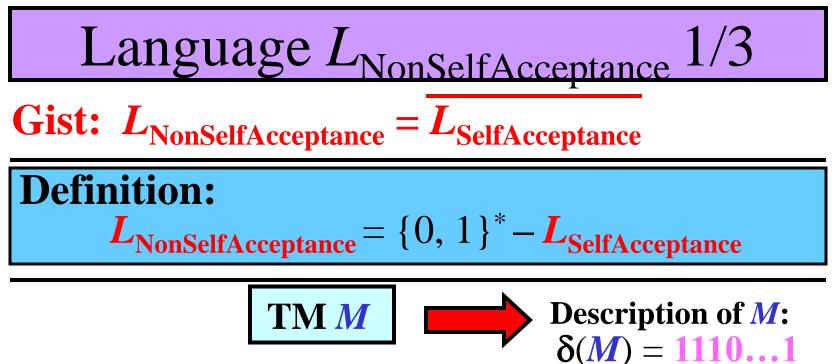
Proof (idea):

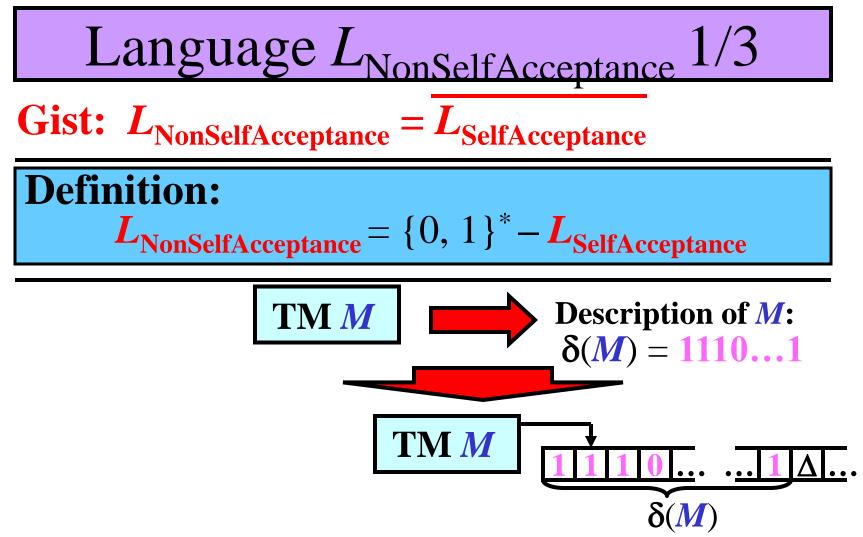
- We construct a DTM *V*, which:
- **1**) Replace an input string $w = \delta(M)$ with $\delta(M)\delta(M)$
- 2) Simulate an activity of a universal TM U
- Then, $L(V) = L_{\text{SelfAcceptance}}$, thus theorem holds.

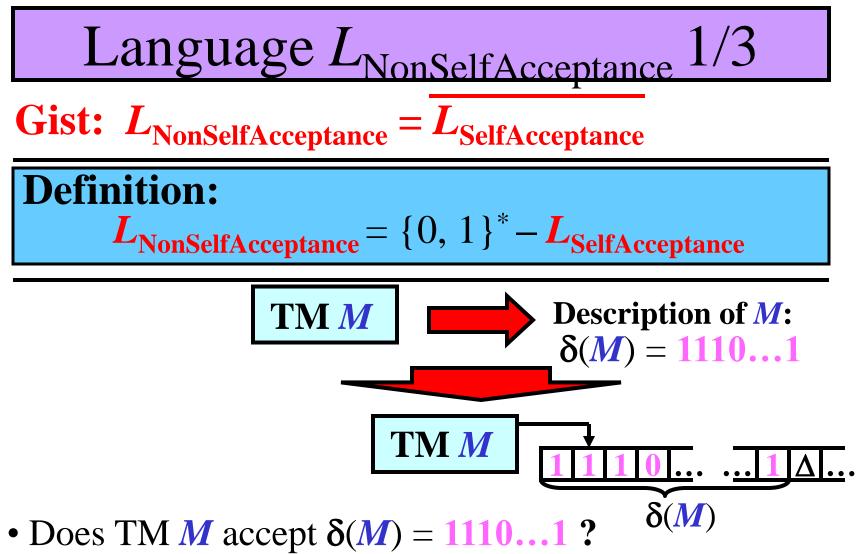
Illustration:

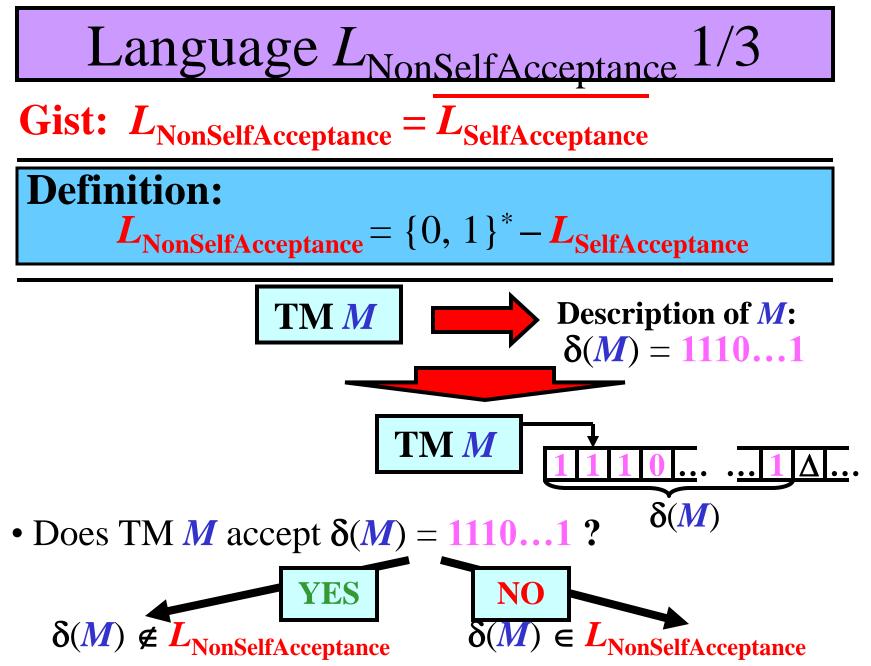












Theorem: $L_{\text{NonSelfAcceptance}}$ is accept by <u>no</u> TM.

- **Proof** (by contradiction):
- Assume that $L_{\text{NonSelfAcceptance}}$ is accepted by a TM. Consider this infinite table:

1	M_i	$m_i = \delta(M_i)$	SelfAcceptance(M _i)
<u>s</u>	M_1	111001001001101	Yes
	M_2^{\dagger}	11101010111100101	No
	M_3	1110010001010001001001	Yes
	•		•
4	•	•	•

Note:

• SelfAcceptance (M_i) = Yes if $m_i \in L(M_i)$ No if $m_i \notin L(M_i)$

Language $L_{\text{NonSelfAcceptance}} 3/3$

- Notice: $L_{\text{NonSelfAcceptance}} = \{ m_i : m_i \notin L(M_i), i = 1, ... \}$
- Let $L(M_k) = L_{\text{NonSelfAcceptance}}$

Language $L_{\text{NonSelfAcceptance}} 3/3$

- Notice: $L_{\text{NonSelfAcceptance}} = \{ m_i : m_i \notin L(M_i), i = 1, ... \}$
- Let $L(M_k) = L_{\text{NonSelfAcceptance}}$
- SelfAcceptance(M_k) = No implies
 - $\begin{array}{l} m_k \notin L(M_k) \text{ implies} \\ m_k \in L_{\text{NonSelfAcceptance}} \text{ implies} \\ m_k \in L(M_k) \end{array}$

Language $L_{\text{NonSelfAcceptance}}$ 3/3

- Notice: $L_{\text{NonSelfAcceptance}} = \{ \mathbf{m}_i : \mathbf{m}_i \notin L(\mathbf{M}_i), i = 1, ... \}$
- Let $L(M_k) = L_{\text{NonSelfAcceptance}}$
- SelfAcceptance(M_k) = No implies

 $m_{k} \notin L(M_{k}) \text{ implies}$ $m_{k} \in L_{\text{NonSelfAcceptance}} \text{ implies}$ $m_{k} \in L(M_{k})$ contradiction

Language $L_{\text{NonSelfAcceptance}}$ 3/3

- Notice: $L_{\text{NonSelfAcceptance}} = \{ \boldsymbol{m}_i : \boldsymbol{m}_i \notin L(\boldsymbol{M}_i), i = 1, ... \}$
- Let $L(M_k) = L_{\text{NonSelfAcceptance}}$
- SelfAcceptance(M_k) = No implies
 - $m_{k} \notin L(M_{k}) \text{ implies}$ $m_{k} \in L_{\text{NonSelfAcceptance}} \text{ implies}$ $m_{k} \in L(M_{k})$ contradiction
- SelfAcceptance (M_k) = Yes implies $m_k \in L(M_k)$ implies $m_k \notin L_{NonSelfAcceptance}$ implies $m_k \notin L(M_k)$

Language $L_{\text{NonSelfAcceptance}} \frac{3/3}{3}$ • Notice: $L_{\text{NonSelfAcceptance}} = \{m_i : m_i \notin L(M_i), i = 1, ...\}$

- Let $L(M_k) = L_{\text{NonSelfAcceptance}}$
- SelfAcceptance $(M_k) = No$ implies
 - $m_{k} \notin L(M_{k}) \text{ implies}$ $m_{k} \in L_{\text{NonSelfAcceptance}} \text{ implies}$ $m_{k} \in L(M_{k})$ contradiction
- SelfAcceptance $(M_k) =$ Yes implies $m_k \in L(M_k) \text{ implies}$ $m_k \notin L_{\text{NonSelfAcceptance}} \text{ implies}$ $m_k \notin L(M_k)$ contradiction

• Notice: $L_{\text{NonSelfAcceptance}} = \{m_i : m_i \notin L(M_i), i = 1, ...\}$

- Let $L(M_k) = L_{\text{NonSelfAcceptance}}$
- SelfAcceptance $(M_k) = No$ implies
 - $m_{k} \notin L(M_{k}) \text{ implies}$ $m_{k} \in L_{\text{NonSelfAcceptance}} \text{ implies}$ $m_{k} \in L(M_{k})$ contradiction
- SelfAcceptance $(M_k) =$ Yes implies $m_{k} \in L(M_{k}) \text{ implies}$ $m_{k} \notin L_{\text{NonSelfAcceptance}} \text{ implies}$ $m_{k} \notin L(M_{k})$ contradiction

• $L_{\text{NonSelfAcceptance}}$ is accepted by **no** TM M_k

Recursive Language

Gist: Recursive Language accepts TM that always halt

Definition: Let *L* be a language. If L = L(M), where *M* is DTM that always halts, then *L* is a *recursive language*.

Theorem: The family of recursive languages is closed under complement.

Proof: See page 693 in [Meduna: Automata and Languages]

Theorem: The family of recursively enumerable languages is <u>not</u> closed under complement.

Proof: See the $L_{\text{SelfAcceptance}}$

