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General Approach to Undecidability

Definition
Let K ,L ⊆ 4∗ be two languages. A total computable function f over
4∗ is a reduction of K to L, symbolically written as K f∠L, if for all
w ∈ 4∗, w ∈ K iff f (w) ∈ L.

Convention
Let K ,L ⊆ 4∗ be two languages. We write K∠L to express that there
exists a reduction of K to L.
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Theorem
Let K ,L ⊆ 4∗ be two languages. If K∠L and L ∈ TMΦ, then K ∈ TMΦ.

Proof:
• Let K ,L ⊆ 4∗ be two languages.
• As L ∈ TMΦ, there is a Turing machine M ∈ TMΨ satisfying

L = L(M).
• Construct a new Turing machine N ∈ TMΨ that works on every

input w ∈ 4∗ as follows:
• N computes f (w);
• N runs M on f (w);
• if M accepts, so does N.

Corollary

Let K ,L ⊆ 4∗ be two languages. If K∠L and L 6∈ TMΦ, then K 6∈ TMΦ.
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General Approach to Undecidability

Theorem

TM–EquivalenceL 6∈ TMΦ.

Theorem

Non−TM–EquivalenceL 6∈ TMΦ.

TM–Equivalence

Problem: TM–Equivalence
Question: Let M,N ∈ TMΨ. Are M and N equivalent?
Language: TM–EquivalenceL = {〈M,N〉| M,N ∈ TMΨ,L(M) = L(N)}.

Non–TM–Equivalence

Problem: Non–TM–Equivalence
Question: Let M,N ∈ TMΨ. Are M and N nonequivalent?
Language: TM–EquivalenceL = {〈M,N〉| M,N ∈ TMΨ,L(M) 6= L(N)}.

Corollary

TM–EquivalenceL 6∈ TDΦ and Non−TM–EquivalenceL 6∈ TDΦ.
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General Approach to Undecidability

Theorem
Let K ,L ⊆ 4∗ be two languages. If K∠L and L ∈ TDΦ, then K ∈ TDΦ.

Corollary

Let K ,L ⊆ 4∗ be two languages. If K∠L and L 6∈ TDΦ, then K 6∈ TDΦ.
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General Approach to Undecidability

Definition
Let π ⊆ TMΦ. Then, π said to be a property of Turing languages.

I A language L ∈ TMΦ satisfies π if L ∈ π.
II Set πL = {〈M〉|M ∈ TMΨ,L(M) ∈ π}. We say that π is decidable if

πL ∈ TDΦ; otherwise, π is undecidable.
III We say that π is trivial if π = TMΦ or π = ∅; otherwise, π is

non–trivial.

Rice’s Theorem
Every non–trivial property is undecidable.
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Computational Complexity

Definition

Let M = (MΣ,MR) be a Turing decider. The time-complexity function
of M, denoted by M time, is defined over 0N so for all n ∈ 0N, M time(n)
is the maximal number of moves M makes on an input string of length
n before halting.

Definition
I Let f and g be two functions over 0N. If there exist c,d ∈ N such

that for every n ≥ d , f (n) and g(n) are defined and f (n) ≤ cg(n),
then g is an upper bound for f , written as f = O(g).

II If f = O(g) and g is of the form nm, where m ∈ N, then g is a
polynomial bound for f .

III Let M ∈ TDΦ. M is polynomially bounded if there is a polynomial
bound for M time.
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Computational Complexity

Definition
Let P be a decidable problem. If P is decided by a polynomially
bounded Turing decider, P is tractable; otherwise, P is intractable.

Definition
I Let M be a Turing machine. M is a nondeterministic Turing

decider if M halts on every input string.
II Let M be a nondeterministic Turing decider. The timecomplexity

of M, M time, is defined over 0N so for all n ∈ 0N, M time(n) is the
maximal number of moves M makes on an input string of length
n before halting.

III M is polynomially bounded if there is a polynomial bound for
M time.
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Computational Complexity

Convention
• PΦ denotes the family of languages accepted by polynomially

bounded (deterministic) Turing deciders, and
• NPΦ denotes the family of languages accepted by polynomially

bounded nondeterministic Turing deciders.

Definition
Let 4 and ς be two alphabets, J ⊆ 4∗, and K ⊆ ς∗. Then, J is
polynomially transformable into K , symbolically J ∝ K , if there exist a
Turing decider M and a total function f from 4∗ to ς∗ so M is
polynomially bounded, L(M) = K , and x ∈ J iff f (x) ∈ K .

Definition
Let L ∈ NPΦ. If J ∝ L for every J ∈ NPΦ, then L is NP–complete.
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Computational Complexity

Definition

Let M = (MΣ,MR) be a Turing decider. A function g over 0N
represents the space complexity of M, denoted by Mspace, if
Mspace(i) equals the minimal number j ∈ 0N such that for all
x ∈ M4i , y , v ∈ Γ∗, B Msx C in M implies |yv | ≤ j .

Convention
• PSΦ denotes the family of languages accepted by polynomially

bounded (deterministic) Turing deciders, and
• NPSΦ denotes the family of languages accepted by polynomially

bounded nondeterministic Turing deciders.
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