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ABSTRACT

This contribution presents reducing variant of the deep pushdown automata. Deep
pushdown automata is a new generalization of the classical pushdown automata. Basic
idea of the modification consists of allowing these automata to access more deeper parts
of pushdown and reducing strings to non-input symbols in the pushdown. It works simi-
larly to bottom-up analysis simulation of context-free grammars in the classical pushdown
automata. Further, this paper presents results of equivalence of reducing deep pushdown
automata witm-limited state grammars and infinite hierarchy of language families based
on that.

1 INTRODUCTION

Consider the standard simulation of a context-free grammar by a classical pushdown
automaton acting as a general bottom-up parser (see [4]). During every move, the parser
either shifts or reduces its pushdown depending on the top pushdown symbol, current input
symbol, and state. Shift operation takes one input symbol and moves it to the top of the
pushdown. If a reversal string on the top of the pushdown equals to any right-handed side
of a context-free production, this string is reduced to one non-input symbol.

In this paper, we discuss one variant of a slight generalization of this automaton.
Hereafter, the generalized bottom-up parser represented by pushdown automaton works
exactly the same as the above automaton except that it canredhketions of depth reo
it replaces the pushdown'’s substring witkh topmost non-input symbol in the pushdown,
for somem> 1. We call itreducing deep pushdown automatabbrev.RDPDA) and it is
a modification of the recently published generalizations of pushdown automata (see [3, 5]).

RDPDAhas no input tape because the input string is immediately part of the push-
down in the start configuration ®DPDA The pushdown bottom representeddmttom



symbol corresponds to endmarker of the input string (used in LL(K) translation, see [1]).
This minor property can be also simulated by reading the input tape from the right to the
left by shift operationsRDPDAalso do not need start pushdown symbol.

2 PRELIMINARIES

This paper assumes that the reader is familiar with the theory of automata, formal
languages, and parsing (see [1, 4]). For a®etard(Q) denotes the cardinality @. |
denotes the set of all positive integers. For an alphahet,” represents the free monoid
generated by under the operation of concatenation. The identity/ 6fis denoted by
€. SetV'™ =V* — {e}; algebraicallyV ' is thus the free semigroup generatecdvbynder
the operation of concatenation. Farc V*, |w| denotes the length ok and al ph(w)
denotes the set of symbols occurringnnForW C V, occur{w,W) denotes the number of
occurrences of symbols frod¥ in w. For everyi > 0, prefix(w;i) is w's prefix of lengthi
if |w| > i, andprefix(w,i) =wif i > |w| 4 1.

A state grammaxsee [2]) is a quintupleGG = (V,W, T,P,S), whereV is atotal al-
phabetW is a finite set obtates T CV is analphabet of terminalsSe (V —T) is thestart
symbo]andP C (W x (V —T)) x (W x V1) is a finite relation. Instead dfy, A, p,v) € P,
we write (g,A) — (p,V) € P throughout. For every € V*, setgstate$z) = {q|(q,B) —
(p,v) € P, whereB € (V —T)nalph(z),veV',q,peW}. If (g,A) — (p,v) EPXye€
V* gstategx) = 0, then G makes aderivation stepfrom (q,xAy) to (p,xvy), symboli-
cally written as(q,xAy) = (p,xvy) [(0,A) — (p,v)] in G; in addition, if n is a positive
integer satisfyingoccur(xA )V — T) < n, we say thatq,xAy) = (p,xvy) [(9,A) — (p,V)]
is n-limited, symbolically written as(g,xAy) = (p,xvy) [(q,A) — (p,v)]. Whenever
there is no danger of confusion, we simplifg, xAy) = (p,xvy) [(q,A) — (p,v)] and
(9, XAY) n= (p,xvy) [(a,A) — (p,V)] to (4,XAy) = (p,Xvy) and (d,XAy) n=> (p,Xvy), re-
spectively. In the standard manner, we extentb =™, wherem > 0; then, based oa>",
we define=" and =*. Letne | andu,mwe (W x V™). To express that every deriva-
tion step inu =M w,v = w, andv =* w is n-limited, we writev ,=" W,V h=" @,
andv ,=* winstead ofu =M w,v = w, andv =* w, respectively. Théanguage of
G, L(G), is defined a$.(G) = {we T*|(q,S) =* (p,w),q,p € W}. Furthermore, we de-
fine for everyn > 1,L(G,n) = {w € T*|(q,9) n=" (p,w),d, p € W}, andL(G,n) is called
n-limited language of GA derivation of the form(q,S) n.=* (p,w), whereq, p € W and
w e T*, represents auccessful n-limited generatiai w in G. A state grammag is of
degree rfor a positive integen if and only if L(G,n) = L(G). ST, denotes the family of
languages containing (or less)-limited languages of arbitrary state grammar. More for-
mally, for everyn > 1, setST, = {L(G,i)| G is an arbitrary state grammar<Li < n}. If
L(G,n) # L(G) for every positive integem, thenG is state grammar adffinite degreeLet
ST = Up_1 STh. Let ST, be the entire family of state languages.

CF andCS denote the families of context-free and context-sensitive languages, re-
spectively.

Kasai proved in his paper (see [2]) these crucial theorems concerning state grammars
(reformulated in the terms of this paper):

Theorem Kasai.2.ST,, = CS.




Corollary Kasai.1l. STe C ST,.

Theorem Kasai.5.For everyn > 1, ST, C STy 1.
Observe that for each > 1, ST, C ST,.1 follows from the definition of state lan-
guages.

3 DEFINITIONS

A reducing deep pushdown automataRDPDA for short, is a 6-tupleM =
(Q,Z,I',R s F), whereQ is a finite set ofstates X is aninput alphabetandl" is apush-
down alphabetl,Q,I" are pairwise disjoint (see Section 21Qr> C I', ' — X contains a
specialbottomsymbol denoted by #R C (I x Qx (I — {#}) " x Qx ([ — (ZU{#}))) U
(I x Qx (I = {#})"{#} x Qx {#}) is afinite relation s€ Qs thestart state F C Qisa
set offinal states Instead ofm,q,Vv, p,A) € R, we writeqv- mpA< Rand callgv- mpAa
rule; accordingly,R is referred to as theet of M’s rules A configuration of Mis a pair in
Qx (I —{#})*{#}. Letx denote the set of all configurationsMf Letx,y € x be two con-
figurations. M reducests pushdown (or makesraove from x to y, symbolically written
asxFy, if x=(q,uvz,y = (p,uA2, gv- mpAc R,whereAcl —> u,v,ze ',q,p€ Q,
andoccur(u,l’ — %) = m—1. To express thatl makesx F y according togv mpA
we write X F y [gvF mpA. We say thatgv+ mpAis arule of depth m accordingly,
X Ey[qv- mpA is areduction of depth mif n € | is the minimal positive integer such that
each ofM’s rules is of deptm or less, we say tha#l is of depth nsymbolically written
aspM. In the standard manner, extendo E™, respectively, fom > 0; then, based or™
define=*, and=*.

Let M be of deptn, for somen € |I. We define théanguage reduced byM, L(,M),
asL(pM) ={we Z*| (s,w#) E* (f,#) in M with f € F}.

For every everk > 1, setRDPDy = {L(iM) | iM is aRDPDA 1 <i < k}.

Example 1 Consider a RDPDAM = ({s,t,q, p, f},{a,b,c},{AB,#},R s, {f}) with

R={ sab F 1tA

tc - 2pB,
paAb + 1gA
gBc F 2pB,
pAB# + 1f# }.

With aabbcc, M makes

(s,aabbcét) F (t,aAbce) [sabF 1tA]
F (p,aAbBe#) [tcH 2pB]
F (g,AB&) [paAbt 1gA
F (p,AB#) [gBct 2pB]
E(f.#) [PAB#H 1f#]

We write (s,aabbcé) =* (f,#), and we say that the string aabbcc is successfully
reduced by RDPDA M. Observe thatM) = {a"b"c"|n > 1} € RDPDy, and M) €
CS—CF.



4 RESULTS

Lemma 1 For every n> 1 and every state grammar, G, there exists RDPDA of depth n,
nM, such that I(G,n) = L(nM).

Construction.LetG = (V,W, T,P,S) be a state grammar and> 1. SetN =V —T. Define
the homomorphisni over ({#} UV )* asf(A) = Afor everyA € {#} UN, andf (a) = € for
everya e T. Introduce theRDPDAof depthn,

nM = (Q,T,V U {#}7 R7 S, {$})7

whereQ = {s,$} U{(p,u) | p € W,u € prefix(v,n),v e N*{#}"} andR is constructed by
performing the following steps:

1. if (p,A) — (g,X) € P, and(t,S) =" (g,w) with w € T* for somep,qg,t e W, A€ N,
x € VT, then add
st 1(q,#")# toR;

2. if (p,A) — (g,x) € P, for (q,prefix(f(uxw#",n)) € Q, p,gc W, Ac N, xe VT,
uveV* |[f(ul|=m-1,mel, 1<m<n,thenadd
(q, prefix (f (uxv)#", n))x = m(p, prefix(f (u)Af(v)#",n))Ato R

3. for every(p,S) — (q,x) € P, p,ge W, xe V', (q,prefix(f (x)#",n)) € Q, add
(a, prefix(f ()#",n))x# - 1$# toR

Basic Idea.Everyn-limited derivation step irs is simulated by reversal reduction step in
nM. So, if some nonterminalth from left) is rewritten by string irG, then exactly the
same string ogM’s pushdown is replaced by the same non-input symbol in the depth of
1>i>n. ,M’s states are composed of two components: (a) origisstate and (b) string

of lengthn which remembers first nonterminals in current sentential form (completed by
# symbols from behind if needed). Wh&successfully completes the generation of a
string of terminalsy,M completes by entering the final state $ and with empty pushdown.

Lemma 2 For every n> 1 and RDPDA of depth mM, there exists state grammar, G, such
that L(M) = L(G,n).

Construction. Letn>1 and,M = (Q,T,V,R s,F) be aRDPDA Let Z and $ be two
new symbols that occur in no component®. SetN =V —T. Introduce set& =
{(a,i,>)|ge Q,1<i<n},D={(q,i,<)|ge Q,0<i<n-—1}, an alphabeW such that
card(V) = card(W), and for all 1< i < n, an alphabet); such thatcard(U;) = card(N).
Without any loss of generality, assume thaQ, and all these newly introduced sets and
alphabets are pairwise disjoint. $&t= U ;U;. Introduce a bijectiom fromV toW. For
each 1< i1 < n, introduce a bijectiofg from N to U;. Define the state grammar

G=(VuwuUU{Z},QuUCUDU{$},T,P9),

whereP is constructed by performing the following steps:



1. for everypxY#F 1f#, f c F,xeV*, Y eV, pec Q, add
(1,9 — ((p.1,>),xh(Y)) to P;

2. foreveryge Q AcN,1<i<n-1,xeVT, add
((01,),A) = ((ai +1,5), ig(A)) and
((a,1,<),i9(A)) — ({9, —1,9),A) to P;

3. if pxYFIgA € R, for somep,ge Q. Ae N,xeV* Y eV,i=1...,n, then add
((q,i,>),A) — ({(p,i —1,<),xY) and
(<q7|al>>7h(A)) - (<p7| - 1a<]>7Xh(Y)) to P’

4. foreveryge Q,AeN,Y €V, add
({(gq,0,<),A) — ({g,1,>),A) and
((0,0,<),h(Y)) — ({q,1,>),h(Y)) to P;

5. foreveryae T, add
((s,0,<),h(a)) — ($,a) to P.

Basic Idea. Gsimulates reversal effect of the application of the noe- igA € R. G scans
(left-to-right) the sentential form, counts the occurrences of nonterminals until it reaches
theith occurrence of a nonterminal. If it &, G replaces it withx which corresponds to
reducingx to A by M. G completes the simulation of the reduction of a striigy ,M so

it marks every last symbol by bijectidmand in the last step rewrites it to the terminal, to
generate. Bijectionh compensates non-existence of the final statg.in

Due to the insufficient space in this contribution, rigorous proofs are omitted.
Theorem 3 For every k> 1, RDPDy C RDPDy. 1.

Proof. Clearly,RDPDy = STk is proved by Lemma 1 and 2. So, this theorem follows from
Lemma 1, 2, and Theorem Kasai.5 from [2].
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