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ABSTRACT

This contribution presents reducing variant of the deep pushdown automata. Deep
pushdown automata is a new generalization of the classical pushdown automata. Basic
idea of the modification consists of allowing these automata to access more deeper parts
of pushdown and reducing strings to non-input symbols in the pushdown. It works simi-
larly to bottom-up analysis simulation of context-free grammars in the classical pushdown
automata. Further, this paper presents results of equivalence of reducing deep pushdown
automata withn-limited state grammars and infinite hierarchy of language families based
on that.

1 INTRODUCTION

Consider the standard simulation of a context-free grammar by a classical pushdown
automaton acting as a general bottom-up parser (see [4]). During every move, the parser
either shifts or reduces its pushdown depending on the top pushdown symbol, current input
symbol, and state. Shift operation takes one input symbol and moves it to the top of the
pushdown. If a reversal string on the top of the pushdown equals to any right-handed side
of a context-free production, this string is reduced to one non-input symbol.

In this paper, we discuss one variant of a slight generalization of this automaton.
Hereafter, the generalized bottom-up parser represented by pushdown automaton works
exactly the same as the above automaton except that it can makereductions of depth mso
it replaces the pushdown’s substring withmth topmost non-input symbol in the pushdown,
for somem≥ 1. We call itreducing deep pushdown automaton(abbrev.RDPDA) and it is
a modification of the recently published generalizations of pushdown automata (see [3, 5]).

RDPDAhas no input tape because the input string is immediately part of the push-
down in the start configuration ofRDPDA. The pushdown bottom represented bybottom



symbol corresponds to endmarker of the input string (used in LL(k) translation, see [1]).
This minor property can be also simulated by reading the input tape from the right to the
left by shift operations.RDPDAalso do not need start pushdown symbol.

2 PRELIMINARIES

This paper assumes that the reader is familiar with the theory of automata, formal
languages, and parsing (see [1, 4]). For a set,Q, card(Q) denotes the cardinality ofQ. I
denotes the set of all positive integers. For an alphabet,V, V∗ represents the free monoid
generated byV under the operation of concatenation. The identity ofV∗ is denoted by
ε. SetV+ = V∗−{ε}; algebraically,V+ is thus the free semigroup generated byV under
the operation of concatenation. Forw ∈ V∗, |w| denotes the length ofw and alph(w)
denotes the set of symbols occurring inw. ForW⊆V, occur(w,W) denotes the number of
occurrences of symbols fromW in w. For everyi ≥ 0, prefix(w, i) is w’s prefix of lengthi
if |w| ≥ i, andprefix(w, i) = w if i ≥ |w|+1.

A state grammar(see [2]) is a quintuple,G = (V,W,T,P,S), whereV is a total al-
phabet, W is a finite set ofstates, T ⊆V is analphabet of terminals, S∈ (V−T) is thestart
symbol, andP⊆ (W× (V−T))× (W×V+) is a finite relation. Instead of(q,A, p,v) ∈ P,
we write (q,A) → (p,v) ∈ P throughout. For everyz∈ V∗, setGstates(z) = {q|(q,B) →
(p,v) ∈ P, whereB∈ (V−T)∩alph(z),v∈ V+,q, p∈W}. If (q,A) → (p,v) ∈ P,x,y∈
V∗,Gstates(x) = /0, then G makes aderivation stepfrom (q,xAy) to (p,xvy), symboli-
cally written as(q,xAy) ⇒ (p,xvy) [(q,A) → (p,v)] in G; in addition, if n is a positive
integer satisfyingoccur(xA,V−T) ≤ n, we say that(q,xAy) ⇒ (p,xvy) [(q,A) → (p,v)]
is n-limited, symbolically written as(q,xAy) n⇒ (p,xvy) [(q,A) → (p,v)]. Whenever
there is no danger of confusion, we simplify(q,xAy) ⇒ (p,xvy) [(q,A) → (p,v)] and
(q,xAy) n⇒ (p,xvy) [(q,A) → (p,v)] to (q,xAy) ⇒ (p,xvy) and(q,xAy) n⇒ (p,xvy), re-
spectively. In the standard manner, we extend⇒ to⇒m, wherem≥ 0; then, based on⇒m,
we define⇒+ and⇒∗. Let n ∈ I andυ,ϖ ∈ (W×V+). To express that every deriva-
tion step inυ ⇒m ϖ,υ ⇒+ ϖ, andυ ⇒∗ ϖ is n-limited, we writeυ n⇒m ϖ,υ n⇒+ ϖ,
andυ n⇒∗ ϖ instead ofυ ⇒m ϖ,υ ⇒+ ϖ, andυ ⇒∗ ϖ, respectively. Thelanguage of
G, L(G), is defined asL(G) = {w∈ T∗|(q,S) ⇒∗ (p,w),q, p∈W}. Furthermore, we de-
fine for everyn≥ 1,L(G,n) = {w∈ T∗|(q,S) n⇒∗ (p,w),q, p∈W}, andL(G,n) is called
n-limited language of G. A derivation of the form(q,S) n⇒∗ (p,w), whereq, p∈W and
w∈ T∗, represents asuccessful n-limited generationof w in G. A state grammarG is of
degree nfor a positive integern if and only if L(G,n) = L(G). STn denotes the family of
languages containing (n or less)-limited languages of arbitrary state grammar. More for-
mally, for everyn≥ 1, setSTn = {L(G, i)| G is an arbitrary state grammar, 1≤ i ≤ n}. If
L(G,n) 6= L(G) for every positive integern, thenG is state grammar ofinfinite degree. Let
ST∞ =

S∞
n=1STn. Let STω be the entire family of state languages.

CF andCS denote the families of context-free and context-sensitive languages, re-
spectively.

Kasai proved in his paper (see [2]) these crucial theorems concerning state grammars
(reformulated in the terms of this paper):

Theorem Kasai.2.STω = CS.



Corollary Kasai.1. ST∞ ⊂ STω.

Theorem Kasai.5.For everyn≥ 1, STn ⊂ STn+1.
Observe that for eachn≥ 1, STn ⊆ STn+1 follows from the definition of state lan-

guages.

3 DEFINITIONS

A reducing deep pushdown automaton, a RDPDA for short, is a 6-tuple,M =
(Q,Σ,Γ,R,s,F), whereQ is a finite set ofstates, Σ is an input alphabet, andΓ is apush-
down alphabet, I ,Q,Γ are pairwise disjoint (see Section 2 forI ), Σ ⊆ Γ, Γ−Σ contains a
specialbottomsymbol denoted by #,R⊆ (I ×Q× (Γ−{#})+×Q× (Γ− (Σ∪{#})))∪
(I ×Q× (Γ−{#})∗{#}×Q×{#}) is afinite relation, s∈Q is thestart state, F ⊆Q is a
set offinal states. Instead of(m,q,v, p,A) ∈R, we writeqv`mpA∈Rand callqv`mpAa
rule; accordingly,R is referred to as theset of M’s rules. A configuration of Mis a pair in
Q×(Γ−{#})∗{#}. Let χ denote the set of all configurations ofM. Letx,y∈ χ be two con-
figurations. M reducesits pushdown (or makes amove) from x to y, symbolically written
asx � y, if x = (q,uvz),y = (p,uAz), qv`mpA∈R, whereA∈ Γ−Σ,u,v,z∈ Γ∗,q, p∈Q,
and occur(u,Γ− Σ) = m− 1. To express thatM makesx � y according toqv ` mpA,
we write x � y [qv ` mpA]. We say thatqv ` mpA is a rule of depth m; accordingly,
x � y [qv`mpA] is areduction of depth m. If n∈ I is the minimal positive integer such that
each ofM’s rules is of depthn or less, we say thatM is of depth n, symbolically written
asnM. In the standard manner, extend� to �m, respectively, form≥ 0; then, based on�m

define�+, and�∗.
Let M be of depthn, for somen∈ I . We define thelanguage reduced bynM, L(nM),

asL(nM) = {w∈ Σ∗| (s,w#) �∗ ( f ,#) in nM with f ∈ F}.
For every everyk≥ 1, setRDPDk = {L(iM) | iM is aRDPDA, 1≤ i ≤ k}.

Example 1 Consider a RDPDA,2M = ({s, t,q, p, f},{a,b,c},{A,B,#},R,s,{ f}) with

R= { sab ` 1tA,
tc ` 2pB,

paAb ` 1qA,
qBc ` 2pB,

pAB# ` 1 f # }.

With aabbcc, M makes

(s,aabbcc#) � (t,aAbcc#) [sab` 1tA]
� (p,aAbBc#) [tc` 2pB]
� (q,ABc#) [paAb` 1qA]
� (p,AB#) [qBc` 2pB]
� ( f ,#) [pAB#` 1 f #]

We write(s,aabbcc#) �∗ ( f ,#), and we say that the string aabbcc is successfully
reduced by RDPDA M. Observe that L(M) = {anbncn|n ≥ 1} ∈ RDPD2, and L(M) ∈
CS−CF.



4 RESULTS

Lemma 1 For every n≥ 1 and every state grammar, G, there exists RDPDA of depth n,
nM, such that L(G,n) = L(nM).

Construction.Let G= (V,W,T,P,S) be a state grammar andn≥ 1. SetN =V−T. Define
the homomorphismf over({#}∪V)∗ as f (A) = A for everyA∈ {#}∪N, and f (a) = ε for
everya∈ T. Introduce theRDPDAof depthn,

nM = (Q,T,V ∪{#},R,s,{$}),

whereQ = {s,$}∪{〈p,u〉 | p∈W,u∈ prefix(v,n),v∈ N∗{#}n} andR is constructed by
performing the following steps:

1. if (p,A)→ (q,x)∈P, and(t,S) n⇒+ (q,w) with w∈ T∗ for somep,q, t ∈W, A∈N,
x∈V+, then add

s#` 1〈q,#n〉# toR;

2. if (p,A) → (q,x) ∈ P, for 〈q,prefix( f (uxv)#n,n)〉 ∈ Q, p,q ∈W, A ∈ N, x ∈ V+,
u,v∈V∗, | f (u)|= m−1, m∈ I , 1≤m≤ n, then add

〈q,prefix( f (uxv)#n,n)〉x`m〈p,prefix( f (u)A f(v)#n,n)〉A to R

3. for every(p,S)→ (q,x) ∈ P, p,q∈W, x∈V+, 〈q,prefix( f (x)#n,n)〉 ∈Q, add
〈q,prefix( f (x)#n,n)〉x#` 1$# toR

Basic Idea.Everyn-limited derivation step inG is simulated by reversal reduction step in
nM. So, if some nonterminal (ith from left) is rewritten by string inG, then exactly the
same string onnM’s pushdown is replaced by the same non-input symbol in the depth ofi,
1≥ i ≥ n. nM’s states are composed of two components: (a) originalG’s state and (b) string
of lengthn which remembers firstn nonterminals in current sentential form (completed by
# symbols from behind if needed). WhenG successfully completes the generation of a
string of terminals,nM completes by entering the final state $ and with empty pushdown.

Lemma 2 For every n≥ 1 and RDPDA of depth n,nM, there exists state grammar, G, such
that L(nM) = L(G,n).

Construction. Let n≥ 1 andnM = (Q,T,V,R,s,F) be aRDPDA. Let Z and $ be two
new symbols that occur in no component ofnM. SetN = V − T. Introduce setsC =
{〈q, i,.〉|q ∈ Q,1≤ i ≤ n},D = {〈q, i,/〉|q ∈ Q,0≤ i ≤ n−1}, an alphabetW such that
card(V) = card(W), and for all 1≤ i ≤ n, an alphabetUi such thatcard(Ui) = card(N).
Without any loss of generality, assume thatV,Q, and all these newly introduced sets and
alphabets are pairwise disjoint. SetU = ∪n

i=1Ui . Introduce a bijectionh from V to W. For
each 1≤ i ≤ n, introduce a bijectionig from N to Ui . Define the state grammar

G = (V ∪W∪U ∪{Z},Q∪C∪D∪{$},T,P,S),

whereP is constructed by performing the following steps:



1. for everypxY#` 1 f #, f ∈ F , x∈V∗, Y ∈V, p∈Q, add
( f ,S)→ (〈p,1,.〉,xh(Y)) to P;

2. for everyq∈Q,A∈ N,1≤ i ≤ n−1,x∈V+, add
(〈q, i,.〉,A)→ (〈q, i +1,.〉, ig(A)) and
(〈q, i,/〉, ig(A))→ (〈q, i−1,/〉,A) to P;

3. if pxY` iqA∈ R, for somep,q∈Q,A∈ N,x∈V∗,Y ∈V, i = 1, . . . ,n, then add
(〈q, i,.〉,A)→ (〈p, i−1,/〉,xY) and
(〈q, i,.〉,h(A))→ (〈p, i−1,/〉,xh(Y)) to P;

4. for everyq∈Q, A∈ N, Y ∈V, add
(〈q,0,/〉,A)→ (〈q,1,.〉,A) and
(〈q,0,/〉,h(Y))→ (〈q,1,.〉,h(Y)) to P;

5. for everya∈ T, add
(〈s,0,/〉,h(a))→ ($,a) to P.

Basic Idea. Gsimulates reversal effect of the application of the rulepx` iqA∈R. G scans
(left-to-right) the sentential form, counts the occurrences of nonterminals until it reaches
the ith occurrence of a nonterminal. If it isA, G replaces it withx which corresponds to
reducingx to A by nM. G completes the simulation of the reduction of a stringx by nM so
it marks every last symbol by bijectionh and in the last step rewrites it to the terminal, to
generatex. Bijectionh compensates non-existence of the final state inG.

Due to the insufficient space in this contribution, rigorous proofs are omitted.

Theorem 3 For every k≥ 1, RDPDk ⊂ RDPDk+1.

Proof. Clearly,RDPDk = STk is proved by Lemma 1 and 2. So, this theorem follows from
Lemma 1, 2, and Theorem Kasai.5 from [2].
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