String-Partitioning Systems and An Infinite Hierarchy

Zbyněk Křivka *
krivka@fit.vutbr.cz
Rudolf Schönecker *
schonec@fit.vutbr.cz

Abstract

This paper introduces and discusses string-partitioning systems. This formalization consists of partitioning the rewritten string into several parts, which the systems rewrite by rules that specify to which part they are applied. Based on the number of parts, the present paper establishes an infinite hierarchy of language families that coincides with the hierarchy resulting from the programmed grammars of finite index, so these systems actually represent a counterpart to these grammars. In its conclusion, this paper suggests some open problem areas.

Keywords: string-partitioning systems; programmed grammars; finite index; infinite hierarchy.

1 Introduction

As opposed to classical formal models, which are classifiable under their main properties into two groups - generative grammars or accepting automata, string-partitioning systems is a formal model, that has properties from both - it is an accepting device that uses states to control its computation.

However, M works with strings divided into several parts by a special bounder symbol, \#. During each computational step, the system rewrittes an occurrence of $\#$ with a string, possibly containing other $\# \mathrm{~s}$, and, thereby, rearrange the string division. If used in this way, starting from $\#, M$ yields a string x containg no $\#, x$ is in the language of M.

Based on this simple rewriting mechanism, we demonstrate that these automata give rise to an infinite hierarchy of language families based on the number of parts of the rewritting strings. More precisely, the systems that divide their strings into no more than n parts are less powerful than the systems that make this division up to $n+1$ parts, for all $n \geq 1$. In addition, we demonstrate that this hierarchy coincides with the hierarchy resulting from the programmed grammars of index n, for all $n \geq 1$ (see analogy with matrix grammars of finite index - page 160 in [1]). In this sense, the string-partitioning systems represent a counterpart to these grammars, which has lacked any automata counterpart of this kind so far; in this sense, the present paper fills this gap.

In its conclusion, this paper suggests some variants of string-partitioning systems to study in the future.

2 Preliminaries

This paper assumes that the reader is familiar with the formal language theory (see [2]). For a set, $Q, \operatorname{card}(Q)$ denotes the cardinality of Q. For an alphabet, V, V^{*} represents the free monoid

[^0]generated by V under the operation of concatenation. The identity of V^{*} is denoted by ε. Set $V^{+}=V^{*}-\{\varepsilon\}$; algebraically, V^{+}is thus the free semigroup generated by V under the operation of concatenation. For $w \in V^{*},|w|$ denotes the length of w, and for $W \subseteq V$, $\operatorname{occur}(w, W)$ denotes the number of occurrences of symbols from W in w and $\operatorname{sym}(w, i)$ denotes the i-th symbol of w; for instance, $\operatorname{sym}(a b c d, 3)=c$.

A context-free grammar is a quadruple, $G=(V, T, P, S)$, where V is a total alphabet, $T \subseteq V$ is an alphabet of terminals, $S \in(V-T)$ is the start symbol, and P is a finite set of rules of the form $q: A \rightarrow v$, where $A \in(V-T), v \in V^{*}$ and q is a label of this rule. If $q: A \rightarrow v \in P, x, y \in V^{*}, G$ makes a derivation step from $x A y$ to $x v y$ according to $q: A \rightarrow v$, symbolically written as $x A y \Rightarrow x v y[q: A \rightarrow v]$ or, simply, $x A y \Rightarrow x v y$. In the standard manner, we define \Rightarrow^{m}, where $m \geq 0, \Rightarrow^{+}$, and \Rightarrow^{*}. The language of $G, L(G)$, is defined as $L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}$. A language, L, is context-free if and only if $L=L(G)$, where G is a context-free grammar.

For $p \in P, r h s(p)$ and $l h s(p)$ denotes right-side and left-side handle of rule p, respectively, $\operatorname{lab}(p)$ denotes label of rule p and for set of rules $P, \operatorname{lab}(P)$ denotes set of all labels of rules from P.

A programmed grammar (see page 28 in [1]) is a quadruple, $G=(V, T, P, S)$, where V is a total alphabet, $T \subseteq V$ is an alphabet of terminals, $S \in(V-T)$ is the start symbol, and P is a finite set of rules of the form $q: A \rightarrow v, g(q)$, where $q: A \rightarrow v$ is a context free rule labeled by q and $g(q)$ is a set of rule labels associated with this rule. After an application of a rule of this form in an ordinary context way, in the next step a rule labeled by a label from $g(q)$ has to be applied. Thus G makes a derivation step, symbolically denoted by \Rightarrow, by analogy with a context-free grammar. In the standard manner, we define \Rightarrow^{m}, where $m \geq 0, \Rightarrow^{+}$, and \Rightarrow^{*}. The language of $G, L(G)$, is defined as $L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}$.

Let G be a programmed grammar, and let T, and S be its terminal alphabet, and axiom, respectively. For a derivation $D: S=w_{1} \Rightarrow w_{2} \Rightarrow \cdots \Rightarrow w_{r}=w \in T^{*}$, where $r>1$, according to G, we set $\operatorname{Ind}(D, G)=\max \left\{\operatorname{occur}\left(w_{i}, V-T\right) \mid 1 \leq i \leq r\right\}$, and, for $w \in T^{*}$, we define $\operatorname{Ind}(w, G)=\min \{\operatorname{Ind}(D, G) \mid D$ is a derivation for w in $G\}$. The index of grammar (see page 151 in [1]) G is defined as $\operatorname{Ind}(G)=\sup \{\operatorname{Ind}(w, G) \mid w \in L(G)\}$. For a language L in the family $\mathcal{L}(X)$ of languages generated by grammars of some type X, we define $\operatorname{Ind}_{X}(L)=$ $\inf \{\operatorname{Ind}(G) \mid L(G)=L, G$ is of type $X\}$. For a family $\mathcal{L}(X)$, we set $\mathcal{L}_{n}(X)=\{L \mid L \in \mathcal{L}(X)$ and $\left.\operatorname{Ind}_{X}(L) \leq n\right\}, n \geq 1$ and $\mathcal{L}_{f i n}(X)=\bigcup_{n \geq 1} L_{n}(X)$.

3 Definitions

Let I be a set of positive integers $\{1,2, \ldots, k\}$. A string-partitioning system is a quadruple $H=(Q, \Sigma, s, R)$, where Q is a finite set of states, Σ is an alphabet containing a special symbol, $\#$, called a bounder, $s \in Q$ is a start state and $R \subseteq Q \times I \times\{\#\} \times Q \times \Sigma^{*}$ is a finite relation whose members are called rules. A rule $(q, n, \#, p, x) \in R$, where $n \in I, q, p \in Q$ and $x \in \Sigma^{*}$, is written as $r: q_{n} \# \rightarrow p x$ hereafter, where r is unique label and can be omitted.

A configuration x of H is a string $x \in Q(\Sigma \cup\{\#\})^{*}$.
H makes a derivation step from $p u \# v$ to $q u x v$ by using $r: p_{n} \# \rightarrow q x$, where $\operatorname{occur}(u, \#)=$ $n-1$, symbolically written $p u \# v \Rightarrow q u x v[r]$ in H or simply $p u \# v \Rightarrow q u x v$.

Let \Rightarrow^{*} denote the transitive and reflexive closure of \Rightarrow. The language derived by $H, L(H)$, is defined as

$$
L(H)=\left\{w \mid s \# \Rightarrow^{*} q w, q \in Q, w \in(\Sigma-\{\#\})^{*}\right\}
$$

A string-partitioning system H is of index k, if for every configuration $q x, s \# \Rightarrow^{*} q x$ holds $\operatorname{occur}(x, \#) \leq k$.

Example 1. $H=(\{s, p, q, f\},\{a, b, c, \#\}, s, R)$, where R contains:

1. s $\# \rightarrow p \# \#$
2. $p_{1} \# \rightarrow q a \# b$
3. $q_{2} \# \rightarrow p \# c$
4. $p_{1} \# \rightarrow f a b$
5. $f \mathrm{i} \# \rightarrow f c$
$L(H)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$, holds that $\operatorname{Ind}(H)=2$.
Example of a derivation resulting string aaabbbccc: $s \# \Rightarrow p \# \#[1] \Rightarrow q a \# b \#[2] \Rightarrow$ $p a \# b \# c[3] \Rightarrow q a a \# b b \# c[2] \Rightarrow$ paa\#bb\#cc $[3] \Rightarrow$ faaabbb\#cc [4] \Rightarrow faaabbbccc [5].

Let $\mathcal{L}_{k}(S P S)$, and $\mathcal{L}_{k}(P, C F)$ denote the families of languages derived by string-partitioning systems, and programmed languages of index $k, k \geq 1$, based on context-free grammar, respectively.

4 Results

This section establishes an infinite hierarchy of language families resulting from the stringpartitioning systems defined in the previous section.

Lemma 1. For every $k \geq 1, \mathcal{L}_{k}(P, C F) \subseteq \mathcal{L}_{k}(S P S)$
Let $k \geq 1$. For every programmed grammar of index k, G, there is a string-partitioning system of index k, H, such that $L_{k}(G)=L_{k}(H)$.

Construction. Let $k \geq 1$ be a positive integer. Let $G=(V, T, P, S)$ is programmed grammar of index k, where $N=V-T$. Introduce the string-partitioning system of index $k, H=$ $(Q, T \cup\{\#\}, s, R)$, where $\# \notin T, s=\langle\sigma\rangle, \sigma$ is a new symbol, R and Q are constructed by performing the following steps:

1. For each $p: S \rightarrow \alpha \in P, \alpha \in V^{*}$, add $\langle\sigma\rangle_{1} \# \rightarrow\langle[p]\rangle \#$ to $R,\langle[p]\rangle$ is new state in Q
2. If $A_{1} A_{2} \ldots A_{j} \ldots A_{h} \in N^{*}, h \in\{1,2, \ldots, k\}, p: A_{j} \rightarrow x_{0} B_{1} x_{1} B_{2} x_{2} \ldots x_{n-1} B_{n} x_{n}, g(p) \in$ $P, j \in\{1,2, \ldots, h\}$ for $n \geq 0, x_{0}, x_{t} \in T^{*}, B_{t} \in N, 1 \leq t \leq n$ and $n+h-1 \leq k$, then
(a) if $g(p)=\emptyset$, then $\left\langle A_{1} A_{2} \ldots A_{j-1}[p] A_{j+1} \ldots A_{h}\right\rangle,\left\langle A_{1} A_{2} \ldots B_{1} \ldots B_{n} \ldots A_{h}\right\rangle$ are new states in Q and the rule $\left\langle A_{1} A_{2} \ldots A_{j-1}[p] A_{j+1} \ldots A_{h}\right\rangle_{j} \# \rightarrow\left\langle A_{1} A_{2} \ldots B_{1} \ldots B_{n} \ldots A_{h}\right\rangle$ $x_{0} \# x_{1} \ldots x_{n-1} \# x_{n}$ is added to R
(b) for every $q \in g(p), q: D_{d} \rightarrow \alpha, \alpha \in V^{*}$ add new states $\left\langle A_{1} A_{2} \ldots A_{j-1}[p] A_{j+1} \ldots A_{h}\right\rangle$ and $\left\langle D_{1} D_{2} \ldots[q] \ldots D_{n+h-1}\right\rangle$ to Q and add the following rule to R :
$\left\langle A_{1} A_{2} \ldots A_{j-1}[p] A_{j+1} \ldots A_{h}\right\rangle_{j} \# \rightarrow\left\langle D_{1} D_{2} \ldots[q] \ldots D_{n+h-1}\right\rangle x_{0} \# x_{1} \ldots x_{n}$, where $A_{1} \ldots A_{j-1} B_{1} \ldots B_{n} A_{j+1} \ldots A_{h}=D_{1} \ldots D_{h+n-1}, B_{1} \ldots B_{n}=D_{j} \ldots D_{j+n-1}$ for some $d \in\{1,2, \ldots, n+h-1\}$.

Basic Idea. The information necessary for the simulation is recorded inside of states. Every Q 's state label carries string of nonterminals from N^{*} where one symbol of this string is replaced by P_{G} 's rule label.

Let us have a configuration $x_{0} A_{1} x_{1} \ldots x_{h-1} A_{h} x_{h}$ in some programmed grammar $G=$ (N, T, P, S) of index k, where $x_{i} \in T^{*}$ for $0 \leq i \leq h \leq k$ and $A_{l} \in N$ for $1 \leq l \leq h$, and let $p: A_{j} \rightarrow \alpha$ is applicable in the next step to the nonterminal $A_{j}, 1 \leq j \leq h$.

Then, new configuration of equivalent string-partitioning system H is of the form $\left\langle A_{1} A_{2} \ldots A_{j-1}[p] A_{j+1} \ldots A_{h}\right\rangle x_{0} \# x_{1} \ldots x_{n-1} \# x_{h}$ and encodes simulated nonterminals in G 's sentential form and next applicable rule label.

Claim 2 If $S \Rightarrow^{m} x_{0} A_{1} x_{1} A_{2} x_{2} \ldots x_{n-1} A_{h} x_{h}$ in G, then $\langle\sigma\rangle \# \Rightarrow^{r}\left\langle A_{1} A_{2} \ldots A_{h}\right\rangle x_{0} \# x_{1} \ldots x_{h}$ $\left[q_{1} q_{2} \ldots q_{r}\right]$ in H, for $m \geq 0, r \geq 1$. For $g\left(q_{r}\right) \neq \emptyset$ exists a rule $q_{r+1}: A_{j} \rightarrow y_{0} B_{1} y_{1} \ldots y_{h-1} B_{n} y_{n}$, $n+h-1 \leq k, q_{r+1} \in g\left(q_{r}\right)$ and $A_{j}=\left[q_{r+1}\right], q_{1}, \ldots, q_{r}, q_{r+1} \in \operatorname{lab}(R)$.

Proof. This claim is established by induction on m.
Basis: Let $m=0$. For $S \Rightarrow^{0} S$ in G there exists $\langle\sigma\rangle \# \Rightarrow^{1}\langle[p]\rangle \#$ in H, where $p: S \rightarrow \alpha \in P$ and $\langle\sigma\rangle_{1} \# \Rightarrow\langle[p]\rangle \# \in R$.
Induction Hypothesis: Suppose that Claim 2 holds for all derivations of length m or less for some $m \geq 0$.
Induction Step: Consider $S \Rightarrow^{m} y\left[p_{1} p_{2} \ldots p_{m}\right]$, where $y=x_{0} A_{1} x_{1} \ldots x_{n-1} A_{h} x_{h}$ and p_{1}, \ldots, p_{m}, $p_{m+1} \in \operatorname{lab}(P)$ so that $y \Rightarrow x\left[p_{m+1}\right]$. If $m=0$, then $p_{m+1} \in\{p \mid \operatorname{lhs}(p)=S, p \in$ $\operatorname{lab}(P)\}$ otherwise $p_{m+1} \in g\left(p_{m}\right)$. For $p_{m+1}: A_{j} \rightarrow y_{0} B_{1} y_{1} \ldots y_{n-1} B_{n} y_{n}$ is x in the form: $x=x_{0} A_{1} x_{1} \ldots A_{j-1} x_{j-1} y_{0} B_{1} y_{1} \ldots y_{n-1} B_{n} y_{n} x_{j} A_{j+1} \ldots x_{h-1} A_{h} x_{h}$, for $x_{0}, \ldots, x_{h} \in T^{*}$ and $y_{0}, \ldots, y_{n} \in T^{*}$. Based on the induction hypothesis, there exists the derivation $\langle\sigma\rangle \# \Rightarrow^{r}$ $\left\langle A_{1} A_{2} \ldots A_{j-1}\left[p_{m+1}\right] A_{j+1} \ldots A_{h}\right\rangle x_{0} \# x_{1} \ldots x_{h-1} \# x_{h}\left[q_{1} q_{2} \ldots q_{r}\right] \Rightarrow$ $\left\langle A_{1} A_{2} \ldots A_{j-1} B_{1} \ldots B_{n} A_{j+1} \ldots A_{h}\right\rangle x_{0} \# \ldots \# x_{j-1} y_{0} \# \ldots \# y_{n} x_{j} \# \ldots \# x_{h}\left[q_{r+1}\right], r \geq 1, q_{i} \in$ $\operatorname{lab}(R), 1 \leq i \leq r+1$. If $g\left(p_{m+1}\right) \neq \emptyset$, then exists a rule $p_{m+2} \in g\left(p_{m+1}\right)$ and a sequence $D_{1} D_{2} \ldots D_{n+h-1}$ so that $A_{1} A_{2} \ldots A_{j-1} B_{1} \ldots B_{n} A_{j+1} \ldots A_{h}=D_{1} D_{2} \ldots D_{n+h-1}$, where for at most one $d \in\{1,2, \ldots, n+h-1\}$ is $D_{d}=\left[q_{r+2}\right], q_{r+2} \in g\left(q_{r+1}\right)$.

Claim 3 If $S \Rightarrow^{z} x$ in G, then $\langle\sigma\rangle \# \Rightarrow^{*}\langle \rangle x$ in H for some $z \geq 0, x \in T^{*}$.
Proof. Consider Claim 2 with $h=0$. At this point, if $S \Rightarrow^{z} x_{0}$, then $\langle\sigma\rangle \# \Rightarrow^{*}\langle \rangle x_{0}$ and so $x_{0}=x$.

Lemma 4. For every $k \geq 1, \mathcal{L}_{k}(S P S) \subseteq \mathcal{L}_{k}(P, C F)$
Let $k \geq 1$. For every string-partitioning system of index k, H, exists equivalent programmed grammar of index k, G, such that $L_{k}(G)=L_{k}(H)$.

Construction. Let $k \geq 1$ be a positive integer. Let $H=(Q, T \cup\{\#\}, s, R)$ is string-partitioning system of index k, where $\Sigma=T \cup\{\#\}$. Introduce the programmed grammar of index k, $G=(V, T, P, S)$, where the sets of nonterminals $N=V-T$ and rules P are constructed as follows:

1. $P=\emptyset$,
2. $S=\langle s, 1,1\rangle$,
3. $N=\{\langle p, i, h\rangle \mid p \in Q, 1 \leq i \leq k, 1 \leq h \leq k, i \leq h\} \cup\left\{\left\langle q^{\prime}, i, h\right\rangle \mid q \in Q, 1 \leq i \leq k\right.$, $1 \leq h \leq k, i \leq h\} \cup\left\{\left\langle q^{\prime \prime}, i, h\right\rangle \mid q \in Q, 1 \leq i \leq k, 1 \leq h, i \leq h \leq k\right\}$,
4. For every rule $r: p_{i} \# \rightarrow q y \in R, y=y_{0} \# y_{1} \ldots y_{m-1} \# y_{m}, y_{0}, y_{1}, y_{2} \ldots y_{m} \in T^{*}$, if $m=0$, then $h_{\max }=k$ else $h_{\max }=k-m+1$, add the following set to P :
```
\(\left\{\langle p, j, h\rangle \rightarrow\left\langle q^{\prime}, j, h+m-1\right\rangle\right.\),
    \(\left\{r^{\prime} \mid\right.\) if \(j+1=i\) then \(r^{\prime}:\langle p, i, h\rangle \rightarrow\left\langle q^{\prime \prime}, i, h+m-1\right\rangle\) else \(r^{\prime}:\langle p, j+1, h\rangle \rightarrow\)
                \(\left.\left\langle q^{\prime}, j+1, h+m-1\right\rangle\right\}\)
    \(\left.\mid 1 \leq j<i, i \leq h \leq h_{\max }\right\}\)
    \(\cup\)
\[
\begin{aligned}
& \left\{r^{\prime} \mid \text { if } i=h, \text { then } r^{\prime}:\left\langle q^{\prime \prime}, i, h+m-1\right\rangle \rightarrow y_{0}\left\langle q^{\prime}, i, h+m-1\right\rangle y_{1}\left\langle q^{\prime}, i+1, h+\right.\right. \\
& \quad m-1\rangle y_{2} \ldots y_{m-1}\left\langle q^{\prime}, i+m-1, h+m-1\right\rangle y_{m} \text { else } r^{\prime}:\langle p, i+1, h\rangle \rightarrow \\
& \left.\quad\left\langle q^{\prime}, i+1+m-1, h+m-1\right\rangle\right\}
\end{aligned}
\]
\[
\left.\mid i \leq h \leq h_{\max }\right\}
\]
\[
\cup
\]
```

(ii)
(iii) $\left\{\langle p, j, h\rangle \rightarrow\left\langle q^{\prime}, j+m-1, h+m-1\right\rangle\right.$,

$$
\begin{aligned}
& \left\{r^{\prime} \mid \text { if } j=h \text {, then } r^{\prime}:\left\langle q^{\prime \prime}, i, h+m-1\right\rangle \rightarrow y_{0}\left\langle q^{\prime}, i, h+m-1\right\rangle y_{1}\left\langle q^{\prime}, i+1,\right.\right. \\
& \\
& \quad h+m-1\rangle y_{2} \ldots y_{m-1}\left\langle q^{\prime}, i+m-1, h+m-1\right\rangle y_{m} \text { else } r^{\prime}:\langle p, j+1, h\rangle \rightarrow \\
& \left.\quad\left\langle q^{\prime}, j+1+m-1, h+m-1\right\rangle\right\}
\end{aligned}
$$

$$
\left.\mid i<j \leq h, i \leq h \leq h_{\max }\right\}
$$

$$
\cup
$$

(iv) $\left\{\left\langle q^{\prime \prime}, i, h+m-1\right\rangle \rightarrow y_{0}\left\langle q^{\prime}, i, h+m-1\right\rangle y_{1}\left\langle q^{\prime}, i+1, h+m-1\right\rangle y_{2} \ldots y_{m-1}\left\langle q^{\prime}, i+\right.\right.$ $m-1, h+m-1\rangle y_{m}$, $\left\{r^{\prime} \mid r^{\prime}:\left\langle q^{\prime}, 1, h+m-1\right\rangle \rightarrow\langle q, 1, h+m-1\rangle\right\}$ $\left.\mid i \leq h \leq h_{\max }\right\}$
(v) $\left\{\left\langle q^{\prime}, j, h+m-1\right\rangle \rightarrow\langle q, j, h+m-1\rangle\right.$, $\left\{r^{\prime} \mid\right.$ if $j<h+m-1$, then $r^{\prime}:\left\langle q^{\prime}, j+1, h+m-1\right\rangle \rightarrow\langle q, j+1, h+m-1\rangle$
else $r^{\prime}:\langle\tilde{p}, 1, h+m-1\rangle \rightarrow\left\langle\tilde{q}^{\prime}, 1, h+m-1+\tilde{m}-1\right\rangle$, where
$\tilde{p}_{i} \# \rightarrow \tilde{q} \tilde{y}_{0} \# \tilde{y}_{1} \ldots \tilde{y}_{\tilde{m}-1} \# \tilde{y}_{\tilde{m}} \in R, \tilde{y}_{0}, \tilde{y}_{1}, \ldots, \tilde{y}_{\tilde{m}} \in T^{*}$, if $\tilde{i}=1$,
then $\left.\tilde{q}^{\prime}:=\tilde{q}^{\prime \prime}\right\}$
$\left.\mid 1 \leq j \leq h+m-1, i \leq h \leq h_{\max }\right\}$.
Basic Idea. Inside of every nonterminal $\langle p, i, h\rangle$ in programmed grammar occurring in a sentential form, we record
(1) p-current state of simulated string-partitioning system (the same in first and last simulation stage);
(2) i-the position of the bounder occurrence in the sentential form
(3) h-the total number of all bounders in the simulated sentential form.

From these three pieces of information and the set $g(p)$ associated with p, we find out whether p is applicable in the next step, and if so, we simulate the step by rules introduced in $4^{\text {th }}$ step of the above construction as follows:
(a) inside of all nonterminals in the sentential form, change h to $h+m-1$, where m is the number of nonterminals occurring on the right-hand side of p, so $h+m-1$ is the number of nonterminals after the application of p (see (i) through (iii));
(b) in the nonterminals that follow the rewritten nonterminal, change their position so it corresponds to the position after the application of p (see (iii));
(c) apply p and select a rule label q from p s set of labels $g(p)$ to be applied in the next step (see (iv));
(d) some auxiliary steps in G to finish the simulation of one derivation step from stringpartitioning system H (see (v)).

Claim 5 If $\langle\sigma\rangle \# \Rightarrow^{c}\langle\vartheta\rangle y_{0} \# y_{1} \ldots y_{n-1} \# y_{n}$ in H, then $S \Rightarrow^{*} y_{0} A_{1} y_{1} \ldots y_{n-1} A_{n} y_{n}$ in G for some $c \geq 0$.

Proof. Basis: Let $c=0$. For $\langle\sigma\rangle \# \Rightarrow^{0}\langle\sigma\rangle \#$ in H there exists $S \Rightarrow^{0} S$ in G.
Induction Hypothesis: Suppose Claim 5 holds for all derivations of length c or less for some $c \geq 0$.
Induction Step: Consider $\langle\sigma\rangle \# \Rightarrow^{c}\langle\vartheta\rangle y_{0} \# y_{1} \ldots y_{h}\left[r_{1} r_{2} \ldots r_{c}\right]$ in $H, r_{t} \in \operatorname{lab}(R), 1 \leq t \leq c$ and $r_{c+1}:\langle\vartheta\rangle_{i} \# \rightarrow\langle\omega\rangle x_{0} \# x_{1} \ldots x_{m-1} \# x_{m} \in R, x_{0}, \ldots, x_{m} \in T^{*}$ so that $\langle\vartheta\rangle y_{0} \# \ldots \# y_{h} \Rightarrow$ $\langle\omega\rangle y_{0} \# y_{1} \# \ldots \# y_{i-1} x_{0} \# x_{1} \# \ldots \# x_{m} y_{i} \# y_{i+1} \# \ldots \# y_{h}\left[r_{c+1}\right]$. Based on Claim 5 there exists also a derivation $D_{1 *}: y_{0} A_{1} \ldots A_{h} y_{h} \Rightarrow^{*} y_{0} A_{1} y_{1} \ldots y_{i-1} x_{0} B_{1} x_{1} \ldots B_{m} x_{m} y_{i} A_{i+1} \ldots A_{h} y_{h}$ in G. It is shown such a derivation exists based on the construction part of the proof.
Let us have a form $y_{0} A_{1} y_{1} \ldots A_{h} y_{h}$. Rename nonterminals A_{t} to $\langle\vartheta, t, h\rangle$ for $1 \leq t \leq h$ and get a base form $y_{0}\langle\vartheta, 1, h\rangle y_{1} \ldots y_{h-1}\langle\vartheta, h, h\rangle y_{h}$ which starts the simulation of the $D_{1 *}$ derivation. This simulation must come out of continuous application of construction's $4^{\text {th }}$ item.
(4i) $\forall j: 1 \leq j<i$ apply rules of the form $\langle p, j, h\rangle \rightarrow\left\langle q^{\prime}, j, h+m-1\right\rangle$: $F_{1}=y_{0}\langle\vartheta, 1, h\rangle y_{1} \ldots y_{h-1}\langle\vartheta, h, h\rangle y_{h} \Rightarrow y_{0}\left\langle\omega^{\prime}, 1, h+m-1\right\rangle y_{1}\langle\vartheta, 2, h\rangle y_{2} \ldots y_{h-1}$ $\langle\vartheta, h, h\rangle y_{h} \Rightarrow^{i-2} y_{0}\left\langle\omega^{\prime}, 1, h+m-1\right\rangle y_{1} \ldots y_{i-2}\left\langle\omega^{\prime}, i-1, h+m-1\right\rangle y_{i-1}\langle\vartheta, i, h\rangle$ $y_{i} \ldots y_{h-1}\langle\vartheta, h, h\rangle y_{h}=F_{2}$
(4ii) apply $\langle p, i, h\rangle \rightarrow\left\langle q^{\prime \prime}, i, h+m-1\right\rangle$: $F_{2} \Rightarrow y_{0}\left\langle\omega^{\prime}, 1, h+m-1\right\rangle y_{1} \ldots y_{i-1}\left\langle\omega^{\prime \prime}, i, h+m-1\right\rangle y_{i} \ldots y_{h-1}\langle\vartheta, h, h\rangle=F_{3}$. If $i=h$, then $F_{4}:=F_{3}$ and continue with [4iv] otherwise with [4iii].
(4iii) $\forall j: i<j \leq h$ apply rules of the form $\langle p, j, h\rangle \rightarrow\left\langle q^{\prime}, j+m-1, h+m-1\right\rangle$:
$F_{3} \Rightarrow y_{0}\left\langle\omega^{\prime}, 1, h+m-1\right\rangle y_{1} \ldots y_{i-2}\left\langle\omega^{\prime}, i-1, h+m-1\right\rangle y_{i-1}\left\langle\omega^{\prime \prime}, i, h+m-1\right\rangle y_{i}$ $\left\langle\omega^{\prime}, i+m, h+m-1\right\rangle y_{i+1}\langle\vartheta, i+2, h\rangle y_{i+2} \ldots y_{h-1}\langle\vartheta, h, h\rangle y_{h} \Rightarrow^{h-i-1} y_{0}\left\langle\omega^{\prime}, 1, h+m-1\right\rangle$ $y_{1} \ldots y_{i-1}\left\langle\omega^{\prime \prime}, i, h+m-1\right\rangle y_{i+1} \ldots y_{h-1}\left\langle\omega^{\prime}, h+m-1, h+m-1\right\rangle y_{h}=F_{4}$
(4iv) apply $\left\langle q^{\prime \prime}, i, h+m-1\right\rangle \rightarrow y_{0}\left\langle q^{\prime}, i, h+m-1\right\rangle y_{1} \ldots y_{m-1}\left\langle q^{\prime}, i+m-1, h+m-1\right\rangle y_{m}$: $F_{4} \Rightarrow y_{0}\left\langle\omega^{\prime}, 1, h+m-1\right\rangle y_{1} \ldots y_{i-1} x_{0}\left\langle\omega^{\prime}, i, h+m-1\right\rangle x_{1} \ldots x_{m-1}\left\langle\omega^{\prime}, i+m-1, h+\right.$ $m-1\rangle x_{m} y_{i} \ldots y_{h-1}\left\langle\omega^{\prime}, h+m-1, h+m-1\right\rangle y_{h}=F_{5}$
(4v) $\forall j: 1 \leq j \leq h+m-1$ apply rules of the form $\left\langle q^{\prime}, j, h+m-1\right\rangle \rightarrow\langle q, j, h+m-1\rangle$: $F_{5} \Rightarrow^{h+m-1} y_{0}\langle\omega, 1, h+m-1\rangle y_{1} \ldots y_{i-1} x_{0}\langle\omega, i, h+m-1\rangle x_{1} \ldots x_{m-1}\langle\omega, i+m-1, h+$ $m-1\rangle x_{m} y_{i} \ldots y_{h-1}\langle\omega, h+m-1, h+m-1\rangle y_{h}=F_{6}$ (Final form)

Rename all nonterminals of the form $\langle\omega, t, h+m-1\rangle$ in F_{6} to A_{t} for $1 \leq t<i$, $\langle\omega, t, h+m-1\rangle$ to B_{t-i+1} for $i \leq t \leq i+m-1,\langle\omega, t, h+m-1\rangle$ to A_{t-m+1} for $i+m \leq t \leq h+m-1$. We have obtained $y_{0} A_{1} y_{1} \ldots y_{i-1} x_{0} B_{1} x_{1} \ldots B_{m} x_{m} y_{i} A_{i+1} \ldots A_{h} y_{h}$.

Claim 6 If $\langle\sigma\rangle \# \Rightarrow^{z}\langle \rangle y$ in H, then $S \Rightarrow^{*} y$ for some $z \geq 0$.
Proof. This claim follows from Claim 5 with $n=0$ and $y=y_{0}$.
Theorem 7. Infinite hierarchy $\mathcal{L}_{k}(S P S) \subset \mathcal{L}_{k+1}(S P S)$ holds for every $k \geq 1$.
Proof. $\mathcal{L}_{k}(P, C F)=\mathcal{L}_{k}(S P S)$ follows from Lemma 1 and Lemma 4. Then, Theorem 7 follows from $\mathcal{L}_{k}(P, C F)=\mathcal{L}_{k}(S P S)$ and theorem $\mathcal{L}_{k}(P, C F) \subset \mathcal{L}_{k+1}(P, C F)$, for every $k \geq 1$ which is an analogy to Theorem 3.1.7: $\mathcal{L}_{k}(M, C F) \subset \mathcal{L}_{k+1}(M, C F)$ in [1], page 161.

5 Conclusion

There was presented a basic variant of the string-partitioning system of index k as a completely new concept of rewriting mechanism. The entire system uses only special symbol (called bounder) and rewriting rules contain an index specifying which bounder in the sentential form will be rewritten. The family of languages generated by string-partitioning systems of index k was described and classified.

We would like to mention here also some other variants of the string-partitioning systems as an open field for the next investigation.

5.1 Deterministic variant

A string-partitioning system of index k is called deterministic, if for every two rules $r_{1}: p_{1} \# \rightarrow$ $q_{1} x$ and $r_{2}: p_{2 j} \# \rightarrow q_{2} y$ holds if $p_{1}=p_{2}$, then $i \neq j$. We can also mention the strict deterministic form, which suppose, that for every two rules is $p_{1} \neq p_{2}$.

5.2 Accepting variant

Let $H=(Q, \Sigma, s, R)$ be a string-partitioning system of index k. H is called accepting stringpartitioning system, if accepts given language through series of reductions. H makes a reduction step from quxv to $p u \# v$ by using r : $p_{n} \# \vdash q x$, symbolically written $q u x v \vDash p u \# v[r]$ in H or simply quxv $\vDash p u \# v$. Let \vDash^{*} denote the transition and reflexive closure of \vDash, respectively.

The language reduced by $H, L(H)$, is defined as

$$
L(H)=\left\{w \mid q w \vDash^{*} s \#, q \in Q, w \in(\Sigma-\{\#\})^{*}\right\} .
$$

Consider $M=(\{s, p, q, f\},\{a, b, c, \#\}, s, R)$ from Example 1. Example of accepting variant is given in reduction of string aaabbbccc: faaabbbccc \vDash faaabbb\#cc [5] $\vDash p a a \# b b \# c c$ [4] $\vDash q a a \# b b \# c[3] \vDash p a \# b \# c[2] \vDash q a \# b \#[3] \vDash p \# \#[2] \vDash s \#[1]$.

5.3 Parallel variant

Let I be a set of positive integers $\{1,2, \ldots, k\}$. A parallel string-partitioning system is a quintuple $H=(Q, \Sigma, s, P, R)$, where Q, Σ and s are defined in the same manner as previously, $P \subseteq I \times \Sigma^{*}$ is a finite relation containing items called simple rules, that are written in the form ${ }_{n} \#{ }_{s} \rightarrow x, n \in I, x \in \Sigma^{*}$, hereafter, $R \subseteq Q \times 2^{P} \times Q$ is a finite relation with a condition: for each rule $(p, F, q) \in R, p, q \in Q, F \in 2^{P}$ holds, that for every two simple rules $c, d \in F$, $c: i_{c} \#{ }_{s} \rightarrow x_{c}, d: i_{d} \#{ }_{s} \rightarrow x_{d}$ is $i_{c} \neq i_{d}$.

A rule $t=\left(p_{t},\left\{r_{1}, \ldots, r_{m}\right\}, q_{t}\right) \in R$ is applicable to the configuration $p x, p \in Q, x \in \Sigma^{*}$, if and only if $p=p_{t}, \operatorname{occur}(x, \#) \geq i_{j}$, for $1 \leq j \leq m$, where $r_{j}: i_{j} \#{ }_{s} \rightarrow y_{j}$.
H makes a derivation step from $p u$ to $q v$ by using $t=\left(p,\left\{r_{1}, \ldots, r_{m}\right\}, q\right)$, symbolically written $p u_{p d} \Rightarrow q v[t]$ in H, if t is applicable to the $p u$ and basic rules r_{1}, \ldots, r_{m} are applicated to u and state p is changed onto q.

Consider parallel string-partitioning system of index k as a direct analogy of basic variant of string-partitioning system of index k, then the paragraph descripting the rule-applicability has to be extended with the condition $\operatorname{occur}(x, \#)-m+\sum_{l=1}^{m} \operatorname{occur}\left(y_{l}, \#\right) \leq k$.

Let ${ }_{p d} \Rightarrow^{*}$ denote the transitive and reflexive closure of ${ }_{p d} \Rightarrow$. The language derived by H, $L\left(H,{ }_{p d} \Rightarrow\right)$, is defined as

$$
L\left(H,{ }_{p d} \Rightarrow\right)=\left\{w \mid s \#_{p d} \Rightarrow^{*} q w, q \in Q, w \in(\Sigma-\{\#\})^{*}\right\} .
$$

Acknowledgements

The authors acknowledge the support of FRVŠ MŠMT grant FR1909/2006/G1.

Bibliography

1. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory, Springer, New York, 1989.
2. A. Meduna: Automata and Languages, Theory and Applications, Springer, London, 2000.
3. T. Kasai: A Hierarchy Between Context-Free and Context-Sensitive Languages. In: Journal of Computer and System Sciences, volume 4, 1970.

[^0]: * Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Božetěchova 2, 61266 Brno, Czech Republic

