
Motivation
Definitions

Our Results
Basic proof ideas

Appendix

String-Partitioning Systems and
An Infinite Hierarchy

Zbyněk Křivka & Rudolf Schönecker

Department of Information Systems
Faculty of Information Technologies

Brno University of Technology

Workshop on Formal Models, April 25 - 27, 2006

1 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

Outline

1 Motivation
2 Definitions

String partitioning system
Finite index of used formal
models
Programmed grammars

3 Our Results
Generative power

4 Basic proof ideas
Basic idea of the first
proof’s part
Basic idea of the second
proof’s part

5 Appendix
Modifications of SPS
References

2 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

Motivation
inspiration and special characteristics

Inspiration :

another rewriting mechanisms

models with properties of both automata and grammars

generative power of such devices?

different and common properties?

3 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

String partitioning system
Finite index of used formal models
Programmed grammars

Definition
string partitioning system and it’s configuration

SPS is a quadruple M = (Q, Σ, s, R)

Q is a finite set of states

Σ is an alphabet, # ∈ Σ called bounder

s ∈ Q is a start state

R is finite set of rules of the form:
pi# → qx ∈ R, where p, q ∈ Q, i ∈ I, x ∈ Σ∗.

Configuration of SPS

is string c ∈ QΣ∗

4 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

String partitioning system
Finite index of used formal models
Programmed grammars

Definition
derivation step and derived language

Derivation step from pu#v to quxv , where

p, q ∈ Q, u, v , x ∈ Σ∗

occur(u, #) = n − 1

by using pn# → qx ∈ R

is pu#v ⇒ quxv [pn# → qx ] in M

Language derived by M, L(M):

L(M) = {w | s# ⇒∗ qw , q ∈ Q, w ∈ (Σ − {#})∗}

5 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

String partitioning system
Finite index of used formal models
Programmed grammars

Simple example of SPS
generation of language anbncn

M = ({s, p, q, f}, {a, b, c, #}, s, R), where R contains:

1. s1# → p ## 4. p1# → f ab
2. p1# → q a#b 5. f1# → f c
3. q2# → p #c

Example (derivation of string aaabbbccc)

s# ⇒ p##[1] ⇒ qa#b# [2] ⇒ pa#b#c [3] ⇒
qaa#bb#c [2] ⇒ paa#bb#cc [3] ⇒ faaabbb#cc [4] ⇒
faaabbbccc [5].

L(M) = {anbncn |n ≥ 1}, with Ind(M) = 2
6 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

String partitioning system
Finite index of used formal models
Programmed grammars

Definition
finite index of used formal models

Finite index of grammar ?

max. number of N ’s in sentential form w

achievable sent. form - S ⇒∗ w

leading to string x : w ∈ x , x ∈ Σ∗

in the most economical derivation

Finite index of SPS ?

max.number of #’s in sentential form

7 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

String partitioning system
Finite index of used formal models
Programmed grammars

Definition
finite index of used formal models

Index of a language:

equal to index of grammar/SPS

Family of languages of finite index k

Lk (X )

Family of all languages of finite index

Lfin(X ) =
⋃

i≥1
Lk (X )

8 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

String partitioning system
Finite index of used formal models
Programmed grammars

Definition
programmed grammars

Programmed grammar (PG) – G = (V , T , P, S)

V is a total alphabet

T ⊆ V is an alphabet of terminals

S ∈ (V − T ) is the start symbol

P is a finite set of rules of the form p : A → v , g(p)

p : A → v is a context free rule labeled by p
g(p) - set of rule labels associated with rule p (following set)
after p-application a rule labeled by a label from g(p)
has to be applied

9 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

String partitioning system
Finite index of used formal models
Programmed grammars

Generative power
of programmed grammars

Programmed grammars:

L(CF ) ⊂ L(PG) ⊂ L(PGac) ⊂ L(CS) ⊂ L(λPGac) = L(RE)

L(CF ) ⊂ L(PG) ⊂ L(λPG) ⊂ L(RE)

Programmed grammars of index k :

Lfin(PG) = Lfin(λPG) = Lfin(PGac) = Lfin(λPGac)

L(CF ) − Lfin(PG) 6= ∅
⇒ Lfin(PG) is incomparable towards L(CF )

10 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

Generative power

Generative power and infinite hierarchy
of string partitioning systems of finite index

i n f i n i t e h i e r a r c h y f o r S P S

Lk (SPS) ⊂ Lk+1(SPS), for all k ≥ 1

1 Lk (PG) ⊂ Lk+1(PG), for all k ≥ 1 (Gh. Păun, 1980)
2 Lk (SPS) = Lk (PG)

T h e o r e m 2

Lk (SPS) = Lk (PG), for every k ≥ 1

Proof: 1) Lk (PG) ⊆ Lk (SPS) 2) Lk (SPS) ⊆ Lk (PG)

11 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

Basic idea of the first proof’s part
Basic idea of the second proof’s part

Proof (basic idea)
first part: PGk → SPSk

Conversion: PGk → SPSk

nonterminals represented by #s and information in state
Each state in SPSk (2 components) of form:

〈A1 . . . Ak , q〉
A1, . . . , Ak ∈ NPGk

, q ∈ g(p)

one symbol in A1 . . . Ak is marked for following rewriting
q represents next rule to use
bounders mark positions for former nonterminals

x0Ax1Bx2

m
〈AB, q〉x0#x1#x2 12 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

Basic idea of the first proof’s part
Basic idea of the second proof’s part

Proof (demonstration)
second part: SPSk → PGk

SPS2M = ({s, p, q, f}, {a, b, c, #}, s, R):

s p q

f

1##

1a#b

2#c1ab

1c

1 s1# → p ##

2 p1# → q a#b
3 q2# → p #c
4 p1# → f ab
5 f1# → f c

How to construct PG’s rule set based on SPS’ rules?
basic idea will be presented..

13 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

Basic idea of the first proof’s part
Basic idea of the second proof’s part

Proof (demonstration)
second part: SPSk → PGk

Conversion: SPSk → PGk

1 every A ∈ N is of form 〈p, i , h〉, S := 〈s, 1, 1〉

2 every SPSk ’s rule pi# → qy simulate by sequence of
steps:

p ## ⇒SPS q a#b# [p1# → q a#b]

m

a) renumbering

b) rewriting

c) finalization

〈p, 1, 2〉〈p, 2, 2〉 ⇒PG 〈q′′, 1, 2〉〈p, 2, 2〉 ⇒PG

〈q′′, 1, 2〉〈q′, 2, 2〉 ⇒PG a〈q′, 1, 2〉b〈q′, 2, 2〉 ⇒PG

a〈q, 1, 2〉b〈q′, 2, 2〉 ⇒PG a〈q, 1, 2〉b〈q, 2, 2〉

14 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

Modifications of SPS
References

Modifications of SPS
another challenges...

SPS with finite index:

deterministic variant

accepting variant

parallel variant

SPS without index limitation:

generative power

properties

15 / 16

Křivka, Schönecker SPS & Infinite Hierarchy



Motivation
Definitions

Our Results
Basic proof ideas

Appendix

Modifications of SPS
References

References...

J. Dassow, Gh. Păun.
Regulated Rewriting in Formal Language Theory.
Springer, New York, 1989.

A. Meduna.
Automata and Languages, Theory and Applications.
Springer, London, 2000.

T. Kasai
A Hierarchy Between Context-Free and Context-Sensitive
Languages.
Journal of Computer and System Sciences, vol. 4, 1970.

16 / 16

Křivka, Schönecker SPS & Infinite Hierarchy


