String-Partitioning Systems and An Infinite Hierarchy

Zbyněk Křivka & Rudolf Schönecker

Department of Information Systems Faculty of Information Technologies Brno University of Technology

Workshop on Formal Models, April 25 - 27, 2006

Motivation Definitions

- String partitioning system
- Finite index of used formal models
- Programmed grammars
- 3 Our Results
 - Generative power

Basic proof ideas

- Basic idea of the first proof's part
- Basic idea of the second proof's part

Appendix

- Modifications of SPS
- References

Inspiration:

- another rewriting mechanisms
- models with properties of both automata and grammars
- generative power of such devices?
- different and common properties?

String partitioning system Finite index of used formal models Programmed grammars

Definition string partitioning system and it's configuration

SPS is a quadruple $M = (Q, \Sigma, s, R)$

- Q is a finite set of states
- Σ is an alphabet, $\# \in \Sigma$ called *bounder*
- $s \in Q$ is a start state
- *R* is finite set of rules of the form:

 $p_i \# \rightarrow qx \in R$, where $p, q \in Q$, $i \in I$, $x \in \Sigma^*$.

Configuration of SPS

• is string $c \in Q\Sigma^*$

String partitioning system Finite index of used formal models Programmed grammars

Definition derivation step and derived language

Derivation step from pu # v to quxv, where

•
$$p, q \in \mathsf{Q}, u, v, x \in \Sigma^*$$

• by using
$$p_n \# \to qx \in R$$

is
$$pu \# v \Rightarrow quxv$$
 $[p_n \# \rightarrow qx]$ in M

Language derived by *M*, *L*(*M*):

•
$$L(M) = \{ w \mid s \# \Rightarrow^* qw, q \in \mathsf{Q}, w \in (\Sigma - \{\#\})^* \}$$

String partitioning system Finite index of used formal models Programmed grammars

Simple example of SPS generation of language $a^n b^n c^n$

 $M = (\{s, p, q, f\}, \{a, b, c, \#\}, s, R)$, where R contains:

 1. $s_1 \# \to p \# \#$ 4. $p_1 \# \to f ab$

 2. $p_1 \# \to q a \# b$ 5. $f_1 \# \to f c$

 3. $q_2 \# \to p \# c$

Example (derivation of string aaabbbccc)

 $s\underline{\#} \Rightarrow p\underline{\#}\#[1] \Rightarrow qa\#b\underline{\#}[2] \Rightarrow pa\underline{\#}b\#c[3] \Rightarrow qaa\#bb\underline{\#}c[2] \Rightarrow paa\underline{\#}bb\#cc[3] \Rightarrow faaabbb\underline{\#}cc[4] \Rightarrow faaabbbccc[5].$

 $L(M) = \{a^n b^n c^n | n \ge 1\}, \text{ with } Ind(M) = 2$

String partitioning system Finite index of used formal models Programmed grammars

Finite index of grammar?

- max. number of N's in sentential form w
- achievable sent. form $S \Rightarrow^* w$
- leading to string $x: w \in x, x \in \Sigma^*$
- in the most economical derivation

Finite index of SPS?

• max.number of #'s in sentential form

String partitioning system Finite index of used formal models Programmed grammars

Index of a language:

equal to index of grammar/SPS

Family of languages of finite index k

• $\mathcal{L}_k(X)$

Family of all languages of finite index

•
$$\mathcal{L}_{fin}(X) = \bigcup_{i \geq 1} \mathcal{L}_k(X)$$

String partitioning system Finite index of used formal models Programmed grammars

Programmed grammar (PG) – G = (V, T, P, S)

- V is a total alphabet
- $T \subseteq V$ is an alphabet of terminals
- $S \in (V T)$ is the start symbol
- *P* is a finite set of rules of the form $p: A \rightarrow v, g(p)$
 - $p: A \rightarrow v$ is a context free rule labeled by p
 - g(p) set of rule labels associated with rule p (following set)
 - after p-application a rule labeled by a label from g(p) has to be applied

String partitioning system Finite index of used formal models Programmed grammars

Generative power of programmed grammars

Programmed grammars:

- $\mathcal{L}(CF) \subset \mathcal{L}(PG) \subset \mathcal{L}(PG_{ac}) \subset \mathcal{L}(CS) \subset \mathcal{L}(\lambda PG_{ac}) = \mathcal{L}(RE)$
- $\mathcal{L}(CF) \subset \mathcal{L}(PG) \subset \mathcal{L}(\lambda PG) \subset \mathcal{L}(RE)$

Programmed grammars of index *k*:

- $\mathcal{L}_{fin}(PG) = \mathcal{L}_{fin}(\lambda PG) = \mathcal{L}_{fin}(PG_{ac}) = \mathcal{L}_{fin}(\lambda PG_{ac})$
- $\mathcal{L}(CF) \mathcal{L}_{fin}(PG) \neq \emptyset$ $\Rightarrow \mathcal{L}_{fin}(PG)$ is incomparable towards $\mathcal{L}(CF)$

Generative power

Generative power and infinite hierarchy of string partitioning systems of finite index

infinite hierarchy for SPS

 $\mathcal{L}_k(SPS) \subset \mathcal{L}_{k+1}(SPS)$, for all $k \geq 1$

Theorem 2

$$\mathcal{L}_k(SPS) = \mathcal{L}_k(PG)$$
, for every $k \ge 1$

Proof: 1) $\mathcal{L}_k(PG) \subseteq \mathcal{L}_k(SPS)$ 2) $\mathcal{L}_k(SPS) \subseteq \mathcal{L}_k(PG)$

Basic idea of the first proof's part Basic idea of the second proof's part

Proof (basic idea) first part: $PG_k \rightarrow SPS_k$

Conversion: $PG_k \rightarrow SPS_k$

- nonterminals represented by #s and information in state
- Each state in SPS_k (2 components) of form:

 $\langle A_1 \dots A_k, q \rangle$ $A_1, \dots, A_k \in N_{PG_k}, q \in g(p)$

- one symbol in $A_1 \dots A_k$ is marked for following rewriting
- q represents next rule to use
- bounders mark positions for former nonterminals

Basic idea of the first proof's part Basic idea of the second proof's part

Proof (demonstration) second part: $SPS_k \rightarrow PG_k$

$$SPS_2M = (\{s, p, q, f\}, \{a, b, c, \#\}, s, R):$$

How to construct PG's rule set based on SPS' rules?

basic idea will be presented ...

Basic idea of the first proof's part Basic idea of the second proof's part

Proof (demonstration) second part: $SPS_k \rightarrow PG_k$

Conversion: $SPS_k \rightarrow PG_k$

- every $A \in N$ is of form $\langle p, i, h \rangle$, $S := \langle s, 1, 1 \rangle$
- every SPS_k's rule p_i# → qy simulate by sequence of steps:

$$p # # \Rightarrow_{SPS} q a # b # \qquad [p_1 # \rightarrow q a # b]$$
a) renumbering
$$\langle p, 1, 2 \rangle \langle p, 2, 2 \rangle \Rightarrow_{PG} \langle q'', 1, 2 \rangle \langle p, 2, 2 \rangle \Rightarrow_{PG}$$
b) rewriting
$$\langle q'', 1, 2 \rangle \langle q', 2, 2 \rangle \Rightarrow_{PG} a \langle q', 1, 2 \rangle b \langle q', 2, 2 \rangle \Rightarrow_{PG}$$
c) finalization
$$a \langle q, 1, 2 \rangle b \langle q', 2, 2 \rangle \Rightarrow_{PG} a \langle q, 1, 2 \rangle b \langle q, 2, 2 \rangle$$

Modifications of SPS References

Modifications of SPS another challenges...

SPS with finite index:

- deterministic variant
- accepting variant
- parallel variant

SPS without index limitation:

- generative power
- properties

References

🛸 J. Dassow, Gh. Păun.

Regulated Rewriting in Formal Language Theory. Springer, New York, 1989.

🫸 A. Meduna.

Automata and Languages, Theory and Applications. Springer, London, 2000.

T. Kasai

A Hierarchy Between Context-Free and Context-Sensitive Languages.

Journal of Computer and System Sciences, vol. 4, 1970.