Scattered Context Grammars: Generation of Languages in a Semi-Parallel Way

Advaced VYP Material Related to VYP03

Based on these Papers

- Meduna, A.: Coincidental Extention of Scattered Context Languages, Acta Informatica 39, 307-314, 2003
- Meduna, A. and Fernau, H.: On the Degree of Scattered Context-Sensitivity. Theoretical Computer Science 290, 2121-2124, 2003
- Meduna, A.: Descriptional Complexity of Scattered Rewriting and Multirewriting: An Overview. Journal of Automata, Languages and Combinatorics, 571-579, 2002
- Meduna, A. and Fernau, H.: A Simultaneous Reduction of Several Measures of Descriptional Complexity in Scattered Context Grammars. Information Processing Letters, 214219, 2003

Classification of Parallel Grammars

I. Totally parallel grammars, such as \angle systems, rewrite all symbols of the sentential form during a single derivation step (not discussed in this talk).
II. Partially parallel grammars rewrite some symbols while leaving the other symbols unrewritten.

- Scattered Context Grammars work in a partially parallel way.
- These grammars are central to this talk.

Scattered Context Grammars (SCGs)

Essence

- semi-parallel grammars
- application of several context-free productions during a single derivation step
- stronger than CFGs

Main Topics under Discussion

- reduction of the grammatical size
- new language operations

Concept

Concept

- sequences of context-free productions
- several nonterminals are rewritten in parallel while the rest of the sentential form remains unchanged

Definition

Scattered context grammar:

- $G=(N, T, P, S)$
- N, T, and S as in a CFG
- P is a finite set of productions of the form $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ where $A_{i} \in N$ and $x_{i} \in V^{*}$ with $V=N \cup T$

Direct derivation:

- $u_{1} A_{1} u_{2} A_{2} u_{3} \ldots u_{n} A_{n} u_{n+1} \Rightarrow u_{1} x_{1} u_{2} x_{2} u_{3} \ldots u_{n} x_{n} u_{n+1}$ if $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Generated language:

- $L(G)=\left\{w . S \Rightarrow^{*} w\right.$ and $\left.w \in T^{*}\right\}$

Example

Productions:

$$
(\mathrm{S}) \rightarrow(A A),(A, A) \rightarrow(a A, b A C),(A, A) \rightarrow(\varepsilon, \varepsilon)
$$

Derivation:

$S \Rightarrow A A \Rightarrow a A b A c \Rightarrow a a A b b A c c \Rightarrow a a b b c c$

Generated Language:

$$
\angle(G)=\left\{a b^{\prime} c: i \geq 0\right\}
$$

Language Families

Language Families

- CS - Context Sensitive Languages
- RE - Recursively Enumerable Languages
- $S C=\{L(G): G$ is a SCG $\}$
for every $n \geq 1$,
- SC(n) $=\{\angle(G): G$ is a SCG with no more than n nonterminals\}

Reduction of SCGs

- (A) reduction of the number of nonterminals
- (B) reduction of the number of context (non-context-free) productions
- (C) simultaneous reduction of (A) and (B)

Reduction (A) 1/ 2

Reduction of the Number of Nonterminals

- Theorem 1: $\boldsymbol{R E}=\boldsymbol{S C}$ (3)
- Theorem 2: $\boldsymbol{C S} \not \subset \boldsymbol{S C}(1)$
- Proof (Sketch): Let $L=\left\{a^{h}: h=2^{n}, n \geq 1\right\}$. Assume that $L=L(G)$, where $G=(\{S\},\{a\}, P, S)$ is a SCG. In G,

$$
S \Rightarrow{ }^{*} d \mathrm{~S} a a^{*} d^{\prime} d^{\prime} a^{\prime}
$$

for some $i, j \geq 0$ such that $i+j, k \geq 1$. Thus,

$$
S \Rightarrow * a^{i n} S a^{n} \Rightarrow * a^{n} a^{k} a^{n}
$$

for any $\mathrm{n} \geq 0:\left|d^{k} d^{k} a\right|=i+k+j=2^{n}$, so $2 i+2 k+2 j=2^{n+1} \ldots[1]$
for any $\mathrm{m}>\mathrm{n}:\left|a^{2 i} a^{k} a^{2 j}\right|=2 i+k+2 j=2^{m} \ldots[2]$
[1]-[2]: $(2 i+2 k+2 j)-(2 i+k+2 j)=2^{n+1}-2^{m}$, hence $k=2^{n+1}-2^{m}$
$k \geq 1$ implies $2^{n+1}>2^{m}$ implies $n+1>m$. Contradiction with $m>n$.

Reduction (A) $2 / 2$

- Corollary: SC(1) $\subset \boldsymbol{S C}(3)=\boldsymbol{R E}$
- Open Problem: $\boldsymbol{R E}=\boldsymbol{S C}(2)$?

Reduction (B)

Reduction of SCGs

- (A) reduction of the number of nonterminals
- (B) reduction of the number of context (non-context-free) productions
- (C) reduction of (A) and (B)

Reduction (B) 1/ 5

Reduction of the Number of Context Productions

- A context production means a non-context-free production $\left(A_{1}, A_{2}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $n \geq 2$
- Theorem 4: Every language in $\boldsymbol{R E}$ is generated by a scattered context grammar with only these two context productions:

$$
\begin{aligned}
(\$, 0,0, \$) & \rightarrow(\varepsilon, \$, \$, \varepsilon) \\
(\$, 1,1, \$) & \rightarrow(\varepsilon, \$, \$, \varepsilon)
\end{aligned}
$$

Reduction (B) 2/ 5

I. Left-Extended Queue Grammar

$Q=(V, T, W, F, s, R)$
R - finite set of productions of the form (a, q, z, r). Every generation of $h \in L(Q)$ has this form

$$
\# a_{0} q_{0}
$$

$\Rightarrow a_{0} \# a_{1} x_{0} q_{1}$
$\left[\left(a_{0}, q_{0}, z_{0}, q_{1}\right)\right]$
$\Rightarrow a_{0} a_{1} \# a_{2} x_{1} q_{2}$
$\left[\left(a_{1}, q_{1}, z_{1}, q_{2}\right)\right]$
$\Rightarrow a_{0} a_{1} \ldots a_{k} \# a_{k+1} x_{k} a_{k+1}$
$\Rightarrow a_{0} a_{1} \ldots a_{k} a_{k+1} \# a_{k+2} x_{k+1} y_{1} a_{k+2}$
$\left[\left(a_{k+1}, a_{k+1}, y_{1}, a_{k+2}\right)\right]$
$\Rightarrow a_{0} a_{1} \ldots a_{k} a_{k+1} \ldots a_{k+m-1} \# a_{k+m} y_{1} \ldots y_{m-1} a_{k+m}$
$\left[\left(a_{k+m 1}, a_{k+m-1}, y_{m-1}, a_{k+m}\right)\right]$
$\Rightarrow a_{0} a_{1} \ldots a_{k} a_{k+1} \ldots a_{k+m} \# y_{1} \ldots y_{m} a_{k+m+1}$
$\left[\left(a_{k+m}, a_{k+m} y_{m} a_{k+m+1}\right)\right]$
where $h=y_{1} \ldots y_{m}$ with $q_{k+m+1} \in F$

Reduction (B) 3/ 5

II. Substitutions

g. binary code of symbols from V
h : binary code of states from W

III. I ntroduction of SCG

$G=(N, T, C F \cup$ Context, S)
$\begin{aligned} \text { Context }=\{(\$, 0,0, \$) & \rightarrow(\varepsilon, \$, \$, \varepsilon), \\ (\$, 1,1, \$) & \rightarrow(\varepsilon, \$, \$, \varepsilon)\}\end{aligned}$
IV. CFused to generate $\$ g\left(a_{0} a_{1} \ldots a_{k} a_{k+1} \ldots a k_{+m}\right) y_{1} \ldots y_{m} h\left(q_{k+m} . . . a_{k+1} q_{k} . . q_{1} q_{0}\right) \$$

Reduction (B) 4/ 5

V. Context used to verify

$g\left(a_{0} a_{1} \ldots a_{k} a_{k+1} \ldots a_{k+m}\right)=h\left(q_{0} q_{1} \ldots a_{k} q_{k+1} \ldots a_{k+m}\right)$
let $g\left(a_{0} a_{1} \ldots a_{k} a_{k+1} \ldots a_{k+m}\right)=c_{0} c_{1} \ldots a_{(k+m) 2 n}$
let $h\left(q_{0} q_{1} \ldots q_{k} q_{k+1} \ldots q_{k+m}\right)=d_{0} d_{1} \ldots d_{(k+m) 2 n}$
where each $c_{j} d_{j} \in\{0,1\}$
By using ($\$, 0,0, \$$) $\rightarrow(\varepsilon, \$, \$, \varepsilon)$ and
$(\$, 1,1, \$) \rightarrow(\varepsilon, \$, \$, \varepsilon), G$ makes
$\$ c_{0} c_{1} c_{2} \ldots c_{(k+m) 2 n y 1} \cdots y_{m} d_{(k+m) 2 m} \ldots d_{2} d_{1} d_{0} \$$
$\$ c_{1} c_{2} \ldots c_{(k+m) 2 n y 1} \ldots \mathrm{y}_{m} d_{(k+m) 2 m} \ldots d_{2} d_{1} \$$
$\$ c_{2} \ldots c_{(k+m) 2 n y 1} \cdots \mathrm{y}_{m} d_{(k+m) 2 n} \cdots d_{2} \$$
$\$ y_{1} \ldots \mathrm{y}_{m}$ \$
$y_{1} \cdots y_{m}$

Reduction (B) 5/ 5

- Corollary 5: The SCGs with two context productions characterize RE.
- Open Problem: What is the power of the SCGs with a single context production?

Reduction of SCGs

Reduction of SCGs

- (A) reduction of the number of nonterminals
- (B) reduction of the number of context (non-context-free) productions
- (C) reduction of (A) and (B)

Simultaneous Reduction (A) \& (B)

Simultaneous Reduction of the Number of Nonterminals and the Number of Context Productions

- Note: Next two theorems proved in cooperation with H. Fernau (Germany).
- Theorem: Every type-0 language is generated by a SCG with no more than seven context productions and no more than five nonterminals
- Theorem: Every type-0 language is generated by a SCG with no more than six context productions and no more than six nonterminals
- Open Problem: Can we improve the above theorems?
ε-free SCGs
- ε-free SCG: each production $\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right)$ satisfies $x_{i} \neq \varepsilon$
- ε-free $S C=\{L(G): G$ is an ε-free SCG $\}$
- ε-free $\boldsymbol{S C} \subseteq \boldsymbol{C S} \subset \boldsymbol{S C}=\boldsymbol{R E}$
- Objective: Increase of ε-free $\boldsymbol{S C}$ to $\boldsymbol{R E}$ by a simple language operation over ε-free $\boldsymbol{S C}$

Coincidental Extension 1/ 6

Coincidental Extension

- For a symbol, \#, and a string, $x=a_{1} a_{2} \ldots a_{n-1} a_{n}$, any string of the form $\#^{i} a_{1} \#^{i} a_{2} \#^{\prime} \ldots \#^{i} a_{n-1} \#^{\prime} a_{n} \#^{i}$, where $i \geq 0$, is a coincidental \#-extension of x.
- A language, K, is a coincidental \#-extension of L if every string of K represents a coincidental extension of a string in L and the deletion of all \#s in K results in L, symbolically written as $L_{\#} \boldsymbol{K}$
- If $L_{\#}\langle K$ and there are an infinitely many coincidental extensions of x in K for every $x \in L$, we write $L_{\#} \boldsymbol{\Delta}_{\infty} K$

Coincidental Extension 2/ 6

Examples:

$Y=\{a b\} \cup\left\{c^{n} d^{\prime}: n \geq 0\right\}$,

$$
Y_{\#} \boldsymbol{\triangleleft}_{\infty} X, \text { so } Y_{\#} \boldsymbol{\triangleleft} X .
$$

For $A=\{\# a \not \# b \#\} \cup\left\{\not \#^{n} c^{n} \#^{n} \not{ }^{\#}: n, i \geq 0\right\}$, $Y_{\#} \boldsymbol{\triangleleft} A$ holds, but $Y_{\#} \boldsymbol{⿶}_{\infty} A$ does not hold.
 the coincidental \#-extension of any language.

Coincidental Extension 3/ 6

- Theorem: Let $K \in R E$. Then, there exists a ε-free SCG, G, such that $K{ }_{\#} \boldsymbol{\wedge}_{\infty} L(G)$.
- Proof (Sketch): Let $K \in R E$. There exists a SCG, G, such that $L=\angle(\mathrm{G})$. Construct a ε-free SCG, $G=(V, P, S,\{\#\} \cup T)$, so that $L{ }_{\#}^{\boldsymbol{4}} \boldsymbol{\triangleleft}_{\infty} L(G)$.

Homomorphism \boldsymbol{h} :

$h(\mathrm{~A})=A$ for every nonterminal A
$h(a)=a$ for every terminal a
$h(\varepsilon)=\gamma$

Coincidental Extension 4/ 6

Pconstructed by performing the next six steps:

I. add $(Z) \rightarrow(Y S \$)$ to P
II. for every $\left(A_{1}, \ldots, A_{n}\right) \rightarrow\left(x_{1}, \ldots, x_{n}\right) \in P$, add $\left(A_{1}, \ldots, A_{n}, \$\right) \rightarrow\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right), \$\right)$ to P
III. add $(Y, \$) \rightarrow(Y Y, \$)$ to P
IV. for every $a, b, c \in T$,
add $(\langle a\rangle,\langle b\rangle,\langle c\rangle, \$) \rightarrow(\langle 0 a\rangle,\langle 0 b\rangle,\langle 0 c\rangle, \S)$ to P
V. for every $a, b, c, d \in T$, add
$(Y,\langle 0 a\rangle, Y,\langle 0 b\rangle, Y,\langle 0 c\rangle, \S) \rightarrow(\#,\langle 0 a\rangle, X,\langle 0 b\rangle, Y,\langle 0 c\rangle, \S)$,
$(\langle 0 a\rangle,\langle 0 b\rangle,\langle 0 d, \S) \rightarrow(\langle 4 a\rangle,\langle 1 b\rangle,\langle 2 d, \S)$,
$(\langle 4 a\rangle, X,\langle 1 b\rangle, Y,\langle 2 c\rangle, \S) \rightarrow(\langle 4 a\rangle, \#,\langle 1 b\rangle, X,\langle 2 c\rangle, \S)$,
$(\langle 4 a\rangle,\langle 1 b\rangle,\langle 2 c\rangle,\langle d\rangle, \S) \rightarrow(a,\langle 4 b\rangle,\langle 1 c\rangle,\langle 2 d\rangle, \S)$,
$(\langle 4 a\rangle,\langle 1 b\rangle,\langle 2 d, \S) \rightarrow(a,\langle 1 b\rangle,\langle 3 c\rangle, \S)$,
$(\langle 1 a\rangle, X,\langle 3 b\rangle, Y, \S) \rightarrow(\langle 1 a\rangle, \#,\langle 3 b\rangle, \#, \S)$
to P

Coincidental Extension 5/ 6

VI. for every $a, b \in T$, add

$$
(\langle 1 a\rangle, X,\langle 3 b\rangle, \S) \rightarrow(a, \#, b, \#) \text { to } P .
$$

Ggenerates every $y \in L(G)$ in this way

$$
Z \Rightarrow \mathrm{Y} S \$ \Rightarrow^{+} \chi \$ \Rightarrow\left\llcorner\S \Rightarrow^{+}\langle\delta \Rightarrow y\right.
$$

where $v \in\left(T\{Y\}^{+}\right)^{+}\{\$\}$. In addition,

$$
v=u_{0}\left\langle 0 a_{1}\right\rangle u_{1}\left\langle 0 a_{2}\right\rangle u_{2}\left\langle 0 a_{3}\right\rangle \ldots u_{n-1}\left\langle a_{n}\right\rangle u_{n} \S
$$

if and only if $a_{1} a_{2} a_{3} \ldots a_{n} \in L(G)$

Coincidental Extension 6/ 6

In greater detail, $\left\llcorner\S \Rightarrow^{+} \not \gtrsim \Longrightarrow y\right.$ can be expressed as
$Y\left\langle 0 a_{1}\right\rangle Y\left\langle 0 a_{2}\right\rangle Y\left\langle 0 a_{3}\right\rangle \ldots Y\left\langle a_{n}\right\rangle Y^{-1} \S$
$\Rightarrow^{\prime} \not \#^{\prime}\left(0 a_{1}\right\rangle X\left\langle\left(a_{2}\right\rangle Y\left\langle 0 a_{3}\right\rangle Y\left\langle a_{4}\right\rangle \ldots Y\left\langle a_{n}\right\rangle Y^{1-1} \S\right.$
$\Rightarrow \#\left(4 a_{1}\right\rangle X\left(1 a_{2}\right\rangle Y\left(2 a_{3}\right\rangle Y\left\langle a_{4}\right\rangle \ldots Y\left\langle a_{n}\right\rangle Y^{1-1} \S$
$\Rightarrow^{\prime} \not \#^{*}\left(4 a_{1}\right\rangle \not \#^{*}\left(1 a_{2}\right\rangle X\left\langle 2 a_{3}\right\rangle Y\left\langle a_{4}\right\rangle \ldots Y\left\langle a_{n}\right\rangle Y^{\wedge-1} \S$
$\Rightarrow \#^{*} a_{1} \#\left(4 a_{2}\right\rangle X\left\langle 1 a_{3}\right\rangle Y\left(2 a_{4}\right\rangle \ldots Y\left\langle a_{n}\right\rangle r^{-1} \S$
$\Rightarrow^{i} \not \#^{\prime} a_{1} \not \#^{\prime}\left(4 a_{2}\right\rangle \#\left(1 a_{3}\right\rangle X\left\langle 2 a_{4}\right\rangle \ldots Y\left\langle a_{n}\right\rangle Y^{i+1} \S$
$\Rightarrow \# A_{1} \#^{*} a_{2} \#\left(4 a_{3}\right\rangle X\left\langle 1 a_{4}\right\rangle Y\left\langle 2 a_{5}\right\rangle \ldots Y\left\langle a_{n}\right\rangle Y^{i-1} \S$:
$\# a_{1} \not{ }^{i} a_{2} \# a_{3} \ldots\left\langle 4 a_{n-2}\right\rangle \#\left(1 a_{n-1}\right\rangle X\left(2 a_{n}\right\rangle \gamma^{i-1} \S$

- Corollary: Let $K \in R E$. Then, there exists a ε-free SCG, G, such that $K_{\#} \backslash L(G)$.

Use in Theoretical Computer Science

Use in Theoretical Computer Science

- Corollary: For every language $K \in R E$, there exists a homomorphism h and a language $H \in \varepsilon$-free $\boldsymbol{S C}$ such that $K=h(H)$.
- In a complex way, this result was proved on page 245 in [Greibach, S. A. and Hopcroft, J. E.: Scattered Context Grammars. J. Comput. Syst. Sci. 3, 232-247 (1969)]

Future I nvestigation

Future I nvestigation： \boldsymbol{k}－limited coincidental extension

－Let k be a non－negative integer．
－For a symbol，\＃，and a string，$x=a_{1} a_{2} \ldots a_{n-1} a_{n}$ ，any string of the form $\# a_{1} \#^{\prime} a_{2} \not \#^{\prime} \ldots \#^{\prime} a_{n-1} \#^{\prime} a_{n} \#^{i}$ ，where $\mathrm{k} \geq i \geq 0$ ，is a k－limited coincidental \＃－extension of x ．
－A language，K ，is a coincidental a k－limited \＃－extension of L if every string of K represents a k－limited coincidental extension of a string in L and the deletion of all \＃s in K results in L ，symbolically written as $L_{\text {だ\＃}}$ を K

Example

and $Y=\{a b\} \cup\left\{c_{n} d_{n}: n \geq 0\right\}$ ， $Y_{\text {4 } ~ \# ~} \backslash x$

Very I mportant Open Problem

I mportant Open Problem: ε-free $\boldsymbol{S C}=\boldsymbol{C S}$?

- Does there exist a non-negative integer k, such that for every $L \in C S, L_{k \geq \#}^{4} L(H)$ for some ε-free SCG, H ?
- If so, I know how to prove $\boldsymbol{\varepsilon}$-free $\boldsymbol{S C}=\boldsymbol{C S}$ © .

END

