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Turing machines

Turing machines are a 6-tuple:

M = (Q,Σ, Γ,R, s,F )

where

Q is a finite set of states

Σ is a tape alphabet, such that Σ ∩ Q = ∅
Γ is an input alphabet, such that 4 ∈ Γ and Σ ⊆ Γ

R is a finite set of rules of the form qX ` pYt where
p, q ∈ Q
X ,Y ∈ Γ
t ∈ {→,←, ↓}

s ∈ Q is the start state.

F ⊆ Q is a set of of final states
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But I undestood none of this. . .

A Turing machine

is essentially a very simple computer.

has a potentially infinite tape with symbols on it.

has a tape head that reads and writes symbols on the tape
and can move left, right or stay put.

has finite state control that tells the tape head what to do.

A non-returning Turing machine

is the same thing as the Turing machine, except the tape head
can’t move left.
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So what difference does it make?

The NRTM has almost no memory.

Almost?

If the tape head writes something onto the tape and stays put, it
will read the self-written symbol in the next step.
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Finite Automaton

Finite automata are a 5-tuple:

M = (Q,Σ,R, s,F )

where

Q is a finite set of states

Σ is an input alphabet
R is a finite set of rules of the form pa→ q where

p, q ∈ Q
a ∈ Σ ∪ {ε}

s ∈ Q is the start state

F ⊆ Q is a set of final states
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Tell me more!

Finite automata

are something like computers as well, but not as powerful as
Turing machines.

have an input tape like the Turing machine.

have a tape head like the Turing machine, but they can’t
move left and they can’t write anything onto the tape.
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Why are we talking about these then?

Because NRTMs are equivalent to finite automata, thus they are
transformable between each other.

So how do we transform them?

We take the NRTM apart and then build a FA out of the parts.
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What tools are we going to need?

A lhs() function that can take out the qX from the qX ` pYt
rule of the NRTM.

A rhs() function that can take out the pYt from the
qX ` pYt rule of the NRTM.

An alph() function that can split various strings into symbols.
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Any preparations?

Two sets that split the rules of the NRTM:
Rmove which contains the rules that move the tape head to the
right.
Rstay which contains the rules that do not move the tape head.

Two auxiliary sets: A and B.
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The Algorithm - Inputs and outputs

Input: A non-returning Turing machine
Mt = (Qt ,Σt , Γt ,Rt , st ,Ft)

Output: A finite automaton Mk = (Qk ,Σk ,Rk , sk ,Fk), such
that L(Mt) = L(Mk)

Idea: Using lhs(), rhs() and alph() regroup and rebuild the
states and rules of the NRTM so that they form a FA that
simulates the NRTM and all of it’s properties.

Information about which symbol is under the tape head at a
given moment is stored in the names of states of the FA.

Moves on the tape and operations with the symbols on the
tape are simulated via transitions between various states of
the FA.
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The Algorithm - Set initializations

Qk := {sk}; Σk := Σt ;Rk := {};Fk := {};A := {};B := {};
Note that we made the starting state for the new FA
beforehand.
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The Algorithm - State constructions

We need to construct source and destination states for every
rule of our NRTM.

for each r ∈ Rt do begin
Qk := Qk ∪ {lhs(r)} ∪ {rhs(r)};

end;

But since the NRTM retains the tape and it’s properties from
the original TM we need some extra states as well.

for each r ∈ Rt do begin
if r ∈ Rmove then
Qk := Qk ∪ {qa : q ∈ Qt , q ∈ alph(rhs(r)), a = 4};

end;
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The Algorithm - Rule constructions

Since the NRTM can start with any symbol under the tape
head, we need a new starting state and rules that get us from
the starting state to the various states that represent possible
starting symbols on the tape.

Rk := Rk ∪ {pa→ q : p ∈ Qk , p = sk , q ∈ Qk , st ∈
alph(q), a = ε};
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The Algorithm - Rule constructions

The NRTM retains the ability to write onto the tape, which is
a problem if it stays on the same symbol afterwards. This can
affect the course of the computation process done by the
NRTM and has to be simulated by the FA. We simulate it by
reading nothing at all, but making a transition to another
state.

for each r ∈ Rstay do begin
A := A ∪ {t : t ∈ Rt , lhs(t) = rhs(r)};

end;

for each r ∈ A do begin
Rk := Rk ∪ {pa→ q : p ∈ Qk , p = lhs(r), q ∈ Qk , q =

rhs(r), a = ε};
end;
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The Algorithm - More rule constructions!

The moving transitions that the NRTM makes are divided
into two transitions in the FA. The read and write part. . .

for each r ∈ Rt do begin
Rk := Rk ∪ {pa→ q : p ∈ Qk , p = lhs(r), q ∈ Qk , q =

rhs(r), a ∈ alph(lhs(r)), a ∈ Σk};
end;
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The Algorithm - Even more rule constructions!

. . . and the move part.

for each r ∈ Rt do begin

B := {qX ` pYt : qX ` pYt ∈ Rt , q ∈ Qt , q ∈ alph(rhs(r))};

for each t ∈ A do begin
Rk := Rk ∪ {pa→ q : p ∈ Qk , p = rhs(r), q ∈

Qk , q = lhs(t), a = ε};
end;

end;
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The Algorithm - And finally the final states.

Quite simply, we take the states that are derived from the final
states in the NRTM and make them the final states of the FA.

for each q ∈ Ft do begin
Fk := Fk ∪ {p : p ∈ Qk , q ∈ alph(p)}; end;
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Applications!

Anyone got any ideas?
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