# Indexing Transducer For Spoken Term Detection 

Lucas Ondel

December 11, 2012
(1) Theoretical background

- Semirings
- Weighted Finite-State Transducer
(2) Indexing algorithm
- Preprocessing
- Factor generation
- Factor merging
- Factor disambiguation
- Optimization
- Global index and search


## Definition

A monoid is a 3 -tuple $(\mathbb{K}, \otimes, \overline{1})$ where $\otimes$ is a closed associative binary operator on the set $\mathbb{K}$, and $\overline{1}$ is the identity element. A monoid is commutative if $\otimes$ is commutative.

## Definition

A semiring is a 5 -tuple $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1})$, where $(\mathbb{K}, \oplus, \overline{0})$ is a commutative monoid, $(\mathbb{K}, \otimes, \overline{1})$ is a monoid, $\otimes$ distributes over $\oplus$ and $\overline{0}$ is an annihilator for $\otimes$.

## Definition

The log semiring :

$$
\mathcal{L}=\left(\mathbb{R} \cup\{-\infty,+\infty\}, \oplus_{\log },+,+\infty, 0\right)
$$

Where

$$
\forall a, b \in \mathbb{R} \cup\{-\infty,+\infty\}, a \oplus \log b=-\log \left(e^{-a}+e^{-b}\right)
$$

And by conventions : $e^{-\infty}=0$ and $-\log (0)=+\infty$.

## Definition

The tropical semiring :

$$
\mathcal{T}=(\mathbb{R} \cup\{-\infty,+\infty\}, \min ,+,+\infty, 0)
$$

Where the min operation is defined as

$$
\begin{equation*}
\forall a, b \in \mathbb{R} \cup\{-\infty,+\infty\}, \min (a, b)=a \Longleftrightarrow a \leq b \tag{1}
\end{equation*}
$$

## Definition

The product semiring of two semirings $\mathcal{A}=\left(\mathbb{A}, \oplus_{\mathbb{A}}, \otimes_{\mathbb{A}}, \overline{0}_{\mathbb{A}}, \overline{1}_{\mathbb{A}}\right)$ and $\mathcal{B}=\left(\mathbb{B}, \oplus_{\mathbb{B}}, \otimes_{\mathbb{B}}, \overline{0}_{\mathbb{B}}, \overline{1}_{\mathbb{B}}\right)$ is defined as

$$
\mathcal{A} \times \mathcal{B}=\left(\mathbb{A} \times \mathbb{B}, \oplus_{\times}, \otimes_{\times}, \overline{0}_{\mathbb{A}} \times \overline{0}_{\mathbb{B}}, \overline{1}_{\mathbb{A}} \times \overline{1}_{\mathbb{B}}\right)
$$

Where $\oplus_{x}$ and $\otimes_{x}$ are component-wise operator, e.g.
$\forall a_{1}, a_{2} \in \mathbb{A}, \forall b_{1}, b_{2} \in \mathbb{B},\left(a_{1}, b_{1}\right) \otimes_{\times}\left(a_{2}, b_{2}\right)=\left(a_{1} \otimes_{\mathbb{A}} a_{2}, b_{1} \otimes_{\mathbb{B}} b_{2}\right)$

## Definition

The lexicographic semiring of two semirings
$\mathcal{A}=\left(\mathbb{A}, \oplus_{\mathbb{A}}, \otimes_{\mathbb{A}}, \overline{0}_{\mathbb{A}}, \overline{1}_{\mathbb{A}}\right)$ and $\mathcal{B}=\left(\mathbb{B}, \oplus_{\mathbb{B}}, \otimes_{\mathbb{B}}, \overline{0}_{\mathbb{B}}, \overline{1}_{\mathbb{B}}\right)$ is defined as

$$
\mathcal{A} * \mathcal{B}=\left(\mathbb{A} \times \mathbb{B}, \oplus_{*}, \otimes_{*}, \overline{0}_{\mathbb{A}} \times \overline{0}_{\mathbb{B}}, \overline{1}_{\mathbb{A}} \times \overline{1}_{\mathbb{B}}\right)
$$

Where $\otimes_{*}$ is a component-wise operator and $\oplus_{*}$ is a lexicographic priority operator $\forall a_{1}, a_{2} \in \mathbb{A}, \forall b_{1}, b_{2} \in \mathbb{B}$,

$$
\left(a_{1}, b_{1}\right) \oplus_{*}\left(a_{2}, b_{2}\right)= \begin{cases}\left(a_{1}, b_{1} \oplus_{\mathbb{B}} b_{2}\right) & a_{1}=a_{2} \\ \left(a_{1}, b_{1}\right) & a_{1}=a_{1} \oplus_{\mathbb{A}} a_{2} \neq a_{2} \\ \left(a_{2}, b_{2}\right) & a_{1} \neq a_{1} \oplus_{\mathbb{A}} a_{2}=a_{2}\end{cases}
$$

## Definition

A weighted finite-state automata $A$ over a semiring $\mathbb{K}$ is an 7 -tuple $A=(\Sigma, \mathrm{Q}, \mathrm{I}, \mathrm{F}, \mathrm{E}, \lambda, \rho)$

Where

- $\Sigma$ is the finite input alphabet
- Q is the finite set of states
- $\mathrm{I} \subseteq \mathrm{Q}$ is the set of initial states
- $\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states
- $\mathrm{E} \subseteq \mathrm{Q} \times(\Sigma \cup\{\epsilon\}) \times \mathbb{K} \times \mathrm{Q}$ is the finite set of arcs
- $\lambda: \mathrm{I} \rightarrow \mathbb{K}$ is the initial weight function
- $\rho: \mathrm{F} \rightarrow \mathbb{K}$ is the final weight function


## Definition

A weighted finite-state transducer $T$ over a semiring $\mathbb{K}$ is an 8 -tuple $T=(\Sigma, \Delta, \mathrm{Q}, \mathrm{I}, \mathrm{F}, \mathrm{E}, \lambda, \rho)$

Where

- $\Sigma$ is the finite input alphabet
- $\Delta$ is the finite output alphabet
- Q is the finite set of states
- $\mathrm{I} \subseteq \mathrm{Q}$ is the set of initial states
- $\mathrm{F} \subseteq \mathrm{Q}$ is the set of final states
- $\mathrm{E} \subseteq \mathrm{Q} \times(\Sigma \cup\{\epsilon\}) \times(\Delta \cup\{\epsilon\}) \times \mathbb{K} \times \mathrm{Q}$ is the finite set of arcs
- $\lambda: \mathrm{I} \rightarrow \mathbb{K}$ is the initial weight function
- $\rho: \mathrm{F} \rightarrow \mathbb{K}$ is the final weight function

Given an arc $e \in E$, we note

- i[e] its input label
- o[e] its output label
- w[e] its weight
- $p[e]$ its previous state
- $n[e]$ its next state

A path $\pi=e_{1} e_{2} \ldots e_{k}, \pi \in E^{*}$ where $n\left[e_{i-1}\right]=p\left[e_{i}\right] i=2, \ldots, k$ By generalization of the previous notation,

- $n[\pi]=n\left[e_{k}\right]$
- $p[\pi]=p\left[e_{1}\right]$
- $i[\pi]=i\left[e_{1}\right] \ldots i\left[e_{k}\right]$
- $o[\pi]=o\left[e_{1}\right] \ldots o\left[e_{k}\right]$
- $w[\pi]=w\left[e_{1}\right] \otimes \ldots \otimes w\left[e_{k}\right]$

The weight of a set of path $\Pi$ is defined as

$$
w\left[\prod\right]=\bigoplus_{\pi \in \prod} w[\pi]
$$

and the weight of the set of successful path of the string pair $(x, y) \in \Sigma^{*} \times \Delta^{*}$ is given by

$$
[T](x, y)=\bigoplus_{\pi \in \prod(I, x, y, F)} \lambda(p[\pi]) \otimes w[\pi] \otimes \rho(n[\pi])
$$

The shortest distance from the initial states $\mathrm{I}_{i}$ to a state $q$ denoted by $\alpha_{i}[q]$ is given by

$$
\alpha_{i}[q]=\bigoplus_{\pi \in \prod\left(\mathrm{I}_{\mathrm{i}}, q\right)}\left(\lambda_{i}(p[\pi]) \otimes w[\pi]\right)
$$

In a similar way, the reverse shortest distance from a state $q$ to the final states $\mathrm{F}_{i}$ denoted by $\beta_{i}[q]$ is given by

$$
\beta_{i}[q]=\bigoplus_{\pi \in \prod\left(q, \mathrm{~F}_{\mathrm{i}}\right)} w[\pi] \otimes\left(\rho_{i}(n[\pi])\right.
$$

Thus, we can write the weight of a pair-factor as

$$
w(x, y)=\bigoplus_{i[\pi]=x, o[\pi]=y, \pi \in \Pi} \alpha_{i}[p[\pi]]+w[\pi]+\beta_{i}[n[\pi]]
$$

Some useful algorithms on weighted finite-state transducers :

- $\epsilon$-removal: produces an equivalent transducer with no $\epsilon$-transitions
- determinization: produces an equivalent deterministic transducer (if the input transducer is determinizable)
- minimization: transform a deterministic transducer into an equivalent miniminal deterministic transducer
- pushing: allows to distribute the weight along a path without changing the global weight of this path

We assume a set of automata $A_{i}$ over the log-semiring. As an example we suppose a set of two automata $A_{1}, A_{2}$ with timing list $t_{1}=t_{2}=[0,1,2,3]$. For simplicity, $A_{1}$ and $A_{2}$ are over the real semiring.


## Preprocessing :

## - Weight-Pushing



## Preprocessing :

- Clustering



## Factor generation :

- Map each arc weight

$$
w \in \mathcal{L} \rightarrow(w, \overline{1}, \overline{1}) \in \mathcal{L} \times \mathcal{T} \times \mathcal{T}^{\prime}
$$



## Factor generation :

- Create a unique initial state $q_{l} \notin \mathrm{Q}_{i}$
- $\forall q \in Q_{i}$ create a new $\operatorname{arc}\left(q_{l}, \epsilon, \epsilon,\left(\alpha_{i}[q], t_{i}[q], \overline{1}\right), q\right)$



## Factor generation :

- Create a unique initial state $q_{l} \notin \mathrm{Q}_{i}$
- $\forall q \in \mathrm{Q}_{i}$ create a new $\operatorname{arc}\left(q_{I}, \epsilon, \epsilon,\left(\alpha_{i}[q], t_{i}[q], \overline{1}\right), q\right)$

0


## Factor generation :

- Create a unique initial state $q_{l} \notin \mathrm{Q}_{i}$
- $\forall q \in \mathrm{Q}_{i}$ create a new $\operatorname{arc}\left(q_{I}, \epsilon, \epsilon,\left(\alpha_{i}[q], t_{i}[q], \overline{1}\right), q\right)$



## Factor generation :

- Create a unique initial state $q_{l} \notin \mathrm{Q}_{i}$
- $\forall q \in \mathrm{Q}_{i}$ create a new $\operatorname{arc}\left(q_{I}, \epsilon, \epsilon,\left(\alpha_{i}[q], t_{i}[q], \overline{1}\right), q\right)$



## Factor generation :

- Create a unique initial state $q_{l} \notin \mathrm{Q}_{i}$
- $\forall q \in \mathrm{Q}_{i}$ create a new $\operatorname{arc}\left(q_{I}, \epsilon, \epsilon,\left(\alpha_{i}[q], t_{i}[q], \overline{1}\right), q\right)$



## Factor generation :

- Create a unique initial state $q_{l} \notin \mathrm{Q}_{i}$
- $\forall q \in \mathrm{Q}_{i}$ create a new $\operatorname{arc}\left(q_{I}, \epsilon, \epsilon,\left(\alpha_{i}[q], t_{i}[q], \overline{1}\right), q\right)$



## Factor generation :

- Create a unique final state $q_{F} \notin \mathrm{~F}$
- $\forall q \in Q_{i}$ create a new $\operatorname{arc}\left(q, \epsilon, i,\left(\beta_{i}[q], \overline{1}, t_{i}[q]\right), q_{F}\right)$



## Factor generation :

- Create a unique final state $q_{F} \notin \mathrm{~F}$
- $\forall q \in Q_{i}$ create a new $\operatorname{arc}\left(q, \epsilon, i,\left(\beta_{i}[q], \overline{1}, t_{i}[q]\right), q_{F}\right)$



## Factor generation :

- Create a unique final state $q_{F} \notin \mathrm{~F}$
- $\forall q \in Q_{i}$ create a new $\operatorname{arc}\left(q, \epsilon, i,\left(\beta_{i}[q], \overline{1}, t_{i}[q]\right), q_{F}\right)$



## Factor generation :

- Create a unique final state $q_{F} \notin \mathrm{~F}$
- $\forall q \in Q_{i}$ create a new $\operatorname{arc}\left(q, \epsilon, i,\left(\beta_{i}[q], \overline{1}, t_{i}[q]\right), q_{F}\right)$



## Factor generation :

- Create a unique final state $q_{F} \notin \mathrm{~F}$
- $\forall q \in Q_{i}$ create a new $\operatorname{arc}\left(q, \epsilon, i,\left(\beta_{i}[q], \overline{1}, t_{i}[q]\right), q_{F}\right)$



## Factor generation :

- Create a unique final state $q_{F} \notin \mathrm{~F}$
- $\forall q \in Q_{i}$ create a new $\operatorname{arc}\left(q, \epsilon, i,\left(\beta_{i}[q], \overline{1}, t_{i}[q]\right), q_{F}\right)$



## Factor merging:

- We merge the path carrying the same factor-pair by viewing the result of the factor generation as an acceptor and applying weighted $\epsilon$-removal, determinization and minimization
- Then, we map each arc weight

$$
\left(w_{1}, w_{2}, w_{3}\right) \in \mathcal{L} \times \mathcal{T} \times \mathcal{T}^{\prime} \rightarrow\left(w_{1}, w_{2}, w_{3}\right) \in \mathcal{T} * \mathcal{T} * \mathcal{T}
$$



## Factor disambiguation:

- Remove cluster identifiers
- Add disambiguation symbol on the final arcs



## Factor disambiguation:

- Remove cluster identifiers
- Add disambiguation symbol on the final arcs



## Factor disambiguation:

- Remove cluster identifiers
- Add disambiguation symbol on the final arcs



## Optimization:

- By viewing the previous transducer as an acceptor, we optimize it by applying determinization and minimization.
- It yields the final partial index transducer derived from $A_{1}$.


The global index is built by

- taking the union of all partial index transducers $T_{i}$ :

$$
U=\bigcup T_{i}, i=1, \ldots, n
$$

- applying weighted e-removal, determinization and minimization.
- removing disambiguation symbols


The search of a factor in this index is done in three steps:

- Convert the query string of the user in a weighted automaton X
- Composing $X$ with the index $T$
- Removing the $\epsilon$-transition and sorting with the "shortest-path" algorithm.

References:

- Speech Recognition With Weighted Finite-State Transducers, Mehryar Mohri, Fernando Pereira, Michael Riley.
- General Indexation of Weighted-Automata - Application to Spoken Utterance Retrieval, Cyril Allauzen, Mehryar Mohri, Murat Saraclar.
- Lattice Indexing for Spoken Term Detection, Dogan Can, Murat Saraclar.

