
Foundations of Data-Flow Analysis
and

Constant Propagation

VYPe

Jan Chaloupka (xchalo08), David Chaloupka (xchalo09)

December 4, 2012

1 / 15

Content

• Data-Flow Analysis

• Constant Propagation

2 / 15

What is Data-Flow Analysis?

I Data flow analysis (DFA) is a special form of static analysis
I General steps:

1. Transform program into a Control flow graph (CFG)
2. Choose a property to inspect, eg. live variables, available

expressions, constants.
(property defines flow functions as in ”flow of information”)

3. Repeatedly apply flow functions to the CFG until a solution is
found (maximum fix-point)

3 / 15

Basic Blocks & Control flow graph

I Basic block (BB) is a sequence of statements that is executed
as a whole (atomically)

I Always entered via first statement (noone jumps inside the BB)
I The whole BB is executed (contains no jump instruction)
I Atomic execution of the BB ends by last statement (may be

a jump, label etc.)

I Control flow graph (CFG) is a directed graph
I Equivalent to the original program
I nodes ≈ BBs
I edges ≈ transfers of control (eg. jumps) between BBs

4 / 15

Sample program (spoiler: available expressions)

int a[10];

int b[10];

...

for(int i = 0 ; i < 10 ; i++) {

if (i % 2 == 0)

sum1 += a[i] * b[i]; // indexed access

else

sum2 += a[i] + b[i]; // indexed access

if (a[i] > b[i]) // indexed access, again

i++;

}

5 / 15

Available expressions: redundancies elimination

...

if i < 10 goto B3

T1 = 4*i

T2 = a[T1]

T1 = 4*i

T1 = 4*i

T1 = 4*i

T2 = a[T1]

T1 = 4*i

B1

B2

B3

...

B9

i = 0

T2 = a[T1]

if i % 2 = = 0 goto B4

B4 B5

T3 = b[T1]

B6

sum 1 = T2*T3

goto B6

T3 = b[T1]

sum 2 = T2*T3

T1 = 4*i

T2 = b[T1]

if T1 > T2 goto B7

i = i + 1

goto B2

i = i + 1

B7

B8

...

if i < 10 goto B3

T1 = 4*i

T2 = a[T1]

T1 = 4*i

T2 = a[T1]

B1

B2

B3

...

B9

i = 0

if i % 2 = = 0 goto B4

B4 B5

T3 = b[T1]

B6

sum 1 = T2*T3

goto B6

T3 = b[T1]

sum 2 = T2*T3

if T1 > T2 goto B7

i = i + 1

goto B2

i = i + 1

B7

B8

6 / 15

How to find available expressions (or other things)?

I A generic mathematical framework exists (magic with lattices)
I How it works

I Pick a property (eg. available expressions, live variables)
I Define flow functions

(how to combine information from adjacent BBs)
I Attach an input and output set Inb,Outb to every basic block

(set of available expressions, set of live variables etc.)
I Repeatedly recompute Inb,Outb sets of all BBs

In

O ut

I Fix-point is found, we are done

7 / 15

Content

• Data-Flow Analysis

• Constant Propagation

8 / 15

Constant propagation

If on every path leading to the point p the expression ends with the
same value, we can replace that value with a constant.

a = 2

b = 3

a = 1

b = 4

a = 1

c = 2

b = c*c

v = a + b

p

9 / 15

Constant propagation (example)

if (i > 3) {

a = 2;

b = 6;

} else {

a = 4;

b = 4;

}

c = b + a;

if (i > 3) {

a = 2;

b = 6;

} else {

a = 4;

b = 4;

}

c = 8;

a = 2

b = 6

a = 4

b = 4

c = a + b

d = 2

i > 3 else

a = 2

b = 6

a = 4

b = 4

c = 8

d = 2

i > 3 else

10 / 15

Constant Propagation

I Need for generalization of flow functions (change of variables
not known in advance, e.g. user input)

I Special lattice

I If given variable can have more values ⇒ join ⇒ go down in
lattice

? = don’t know

x = not a constant

0 1 2 -2 -1

11 / 15

Constant propagation example

a = 2

b = 6

a = 4

b = 4

c = a + b

d = 2

i > 3 else

(a,b,c,d)

(?,?,?,2)

(4,?,?,2)

(4,4,?,2)

(2,?,?,2)

(2,6,?,2)

(x,x,8,2)

12 / 15

Constant propagation example

a = 2

b = 6

a = 4

b = 4

c = 8

d = 2

i > 3 else

(a,b,c,d)

(?,?,?,2)

(4,?,?,2)

(4,4,?,2)

(2,?,?,2)

(2,6,?,2)

(x,x,8,2)

13 / 15

The best solution

I To get the best solution we need to compute flow functions
for all paths in the program (MOP = meet over paths)

I In case of loop there are infinitely many paths ⇒ not
computable

I Instead we compute with edges between BBs
(MFP = maximum fixpoint)

14 / 15

References

T. Vojnar, L. Holik Formal Analysis and Verification, lecture
10. 2011/2012.

15 / 15

