Contexts of parsing decisions

Ondřej Navrátil

FIT BUT

7. prosince 2012

Outline

1 Left context

2 DR-automata

3 Summary

4 Right Context

5 LR-regular

Left context

Definition, attributes

- Bound to a state
- Describes all possible stack configurations in that state

■ Set of all strings of symbols $(N \cup T)$ that lead to that state
■ Usually infinite, but regular
■ Contexts are disjoint across states
■ We omit the state information

Left context - Example

```
Example CFG \(G=\left(N, T, P, S^{\prime}\right)\)
    - \(N=\left\{S^{\prime}, S, A, B\right\}\)
    - \(T=\{a, b\}\)
    - \(P=\left\{S^{\prime} \rightarrow S, S \rightarrow A S B \mid A B, A \rightarrow a, B \rightarrow b\right\}\)
    - \(L(G)=a^{n} b^{n}\)
```


Grammar for left contexts

Grammar for left contexts
$G=\left(N=\left\{P_{0.7}\right\}, T=\{S, A, B, a, b\}, P, S\right)$

Grammar for left contexts
$G=\left(N=\left\{P_{0 . .7}\right\}, T=\{S, A, B, a, b\}, P, S\right)$

- $P_{0} \rightarrow \epsilon$

Grammar for left contexts
$G=\left(N=\left\{P_{0 . .7}\right\}, T=\{S, A, B, a, b\}, P, S\right)$

- $P_{0} \rightarrow \epsilon$
- $P_{1} \rightarrow P_{0} S$

Grammar for left contexts

$$
\begin{aligned}
G & =\left(N=\left\{P_{0 . .7}\right\}, T=\{S, A, B, a, b\}, P, S\right) \\
& P_{0} \rightarrow \epsilon \\
\square & P_{1} \rightarrow P_{0} S \\
\square & P_{2} \rightarrow P_{0} a \\
& P_{2} \rightarrow P_{3} a
\end{aligned}
$$

Grammar for left contexts

$$
\begin{array}{rlrl}
G & =\left(N=\left\{P_{0.7}\right\}, T=\{S, A, B, a, b\},\right. & P, S) \\
& ■ P_{0} \rightarrow \epsilon & & P_{3} \rightarrow P_{3} A \\
& \square P_{1} \rightarrow P_{0} S & & P_{4} \rightarrow P_{3} b \mid P_{5} b \\
& \square P_{2} \rightarrow P_{0} a & & P_{5} \rightarrow P_{3} S \\
& P_{2} \rightarrow P_{3} a & & P_{6} \rightarrow P_{5} B \\
& P_{3} \rightarrow P_{0} A & & P_{7} \rightarrow P_{3} B
\end{array}
$$

Automaton for left contexts

Automaton for left contexts
Same structure, final state $=$ state we want the context for .

Automaton for left contexts

Same structure, final state $=$ state we want the context for .

DR-automata

Gist

■ We keep states-track on the stack in every step

- We need the state only while reducing to determine the final state

■ The β-table is potentionally large and is used only after a reduce
■ Let's dismiss both table and trace and determine state from stack

DR-automata

Gist

■ We keep states-track on the stack in every step

- We need the state only while reducing to determine the final state

■ The β-table is potentionally large and is used only after a reduce
■ Let's dismiss both table and trace and determine state from stack
[A b]

DR-automata

Gist

■ We keep states-track on the stack in every step

- We need the state only while reducing to determine the final state

■ The β-table is potentionally large and is used only after a reduce
■ Let's dismiss both table and trace and determine state from stack
[A b] $\Rightarrow S 4$;

DR-automata

Gist

■ We keep states-track on the stack in every step

- We need the state only while reducing to determine the final state

■ The β-table is potentionally large and is used only after a reduce
■ Let's dismiss both table and trace and determine state from stack
$[\mathrm{A} \quad \mathrm{b}] \Rightarrow \mathrm{S} 4 ;[\mathrm{A} \quad \mathrm{a}]$

DR-automata

Gist

■ We keep states-track on the stack in every step

- We need the state only while reducing to determine the final state

■ The β-table is potentionally large and is used only after a reduce
■ Let's dismiss both table and trace and determine state from stack
$[A \quad b] \Rightarrow S 4 ;[A \quad a] \Rightarrow S 2 ;$

DR-automata

Gist

■ We keep states-track on the stack in every step

- We need the state only while reducing to determine the final state

■ The β-table is potentionally large and is used only after a reduce
■ Let's dismiss both table and trace and determine state from stack
$[A \quad b] \Rightarrow S 4 ;[A \quad a] \Rightarrow S 2 ;[A B]$

DR-automata

Gist

■ We keep states-track on the stack in every step

- We need the state only while reducing to determine the final state

■ The β-table is potentionally large and is used only after a reduce
■ Let's dismiss both table and trace and determine state from stack
$[A \quad b] \Rightarrow S 4 ; \quad[A \quad a] \Rightarrow S 2 ; \quad[A B] \Rightarrow S 5 ;$

Simple approach - problems

- The whole stack is searched, which can be very expensive
- Searching the stack from the top is much more convenient

Simple approach - problems

- The whole stack is searched, which can be very expensive
- Searching the stack from the top is much more convenient

DR-state

- A set of pairs $S_{A}: S_{B}$ with the meaning that a transition $S_{A} \rightarrow S_{B}$ is possible by some set of symbols
- Through transitions by stack items, we will try to reduce the set so that only one state appears on the right side $=$ the top state

Simple approach - problems

- The whole stack is searched, which can be very expensive
- Searching the stack from the top is much more convenient

DR-state

- A set of pairs $S_{A}: S_{B}$ with the meaning that a transition $S_{A} \rightarrow S_{B}$ is possible by some set of symbols
- Through transitions by stack items, we will try to reduce the set so that only one state appears on the right side $=$ the top state

Summary

DR-automaton

- From initial state, $|(N \cup T)|$ arrows fan out, but the latter states have significantly less amount of transitions
- Is created on the basis of the LR-automaton states and transitions
- Is generally smaller (in memory) but slower (in performence) then GOTO table

DR-parsing

- Is generally a bit slower (in performance), but smaller (in memory) then LR
- Doesn't need the states to be tracked on the stack
- Uses a DR-automaton instead of a GOTO table to determine final state after reduction

Right Context

Definition, attributes

- Set of terminal strings that can appear in the input
- Bound to items
- No longer regular, rather context-free
- Dot right context $F_{1}\{I\}$ vs. item right context $D_{1}\{I\}$
- $S \rightarrow a B b$
- $S \rightarrow a C c$
- $B, C \rightarrow \epsilon$
- $F_{x}\{B \rightarrow \circ\}=\{b\}$
- $F_{x}\{C \rightarrow 0\}=\{c\}$

Computing right contexts

- Item RC
- $F_{x}\{A \rightarrow o \alpha\} \rightarrow \gamma F_{x}\{X \rightarrow \beta \circ A \gamma\}$
- $F_{x}\{A \rightarrow \alpha t \circ \beta\} \rightarrow F_{y}\{A \rightarrow \alpha \circ t \beta\}$
- Dot RC
- $D_{x}\{A \rightarrow \alpha \circ \beta\} \rightarrow \beta F_{x}\{A \rightarrow \alpha \circ \beta\}$

Right context - example

- $F_{s 0}\left\{S^{\prime} \rightarrow o S\right\}=\epsilon$

Right context - example

- $F_{s 0}\left\{S^{\prime} \rightarrow O S\right\}=\epsilon$
- $F_{S 0}\{S \rightarrow \circ A S B\}=F_{S 0}\left\{S^{\prime} \rightarrow \circ S\right\}$
- $F_{s o}\{S \rightarrow \circ A B\}=F_{s o}\left\{S^{\prime} \rightarrow \circ S\right\}$
- $F_{s 0}\{A \rightarrow o a\}=B F_{s 0}\{S \rightarrow o A B\}$
- $F_{s 0}\{A \rightarrow \mathrm{oa}\}=S B F_{s 0}\{S \rightarrow \circ A S B\}$

Right context - example

- $F_{s 0}\left\{S^{\prime} \rightarrow O S\right\}=\epsilon$
- $F_{S 0}\{S \rightarrow \circ A S B\}=F_{S o}\left\{S^{\prime} \rightarrow \circ S\right\}$
- $F_{s o}\{S \rightarrow o A B\}=F_{s 0}\left\{S^{\prime} \rightarrow O S\right\}$
- $F_{s 0}\{A \rightarrow o a\}=B F_{s 0}\{S \rightarrow o A B\}$
- $F_{s o}\{A \rightarrow \mathrm{oa}\}=S B F_{s 0}\{S \rightarrow \circ A S B\}$
- $F_{S_{1}}\left\{S^{\prime} \rightarrow S \circ\right\}=F_{S 0}\left\{S^{\prime} \rightarrow \circ S\right\}$
- $F_{S 2}\{A \rightarrow a \circ\}=F_{S 0}\{A \rightarrow \circ A\}$

Right context - example

- $F_{S 0}\left\{S^{\prime} \rightarrow o S\right\}=\epsilon$
- $F_{S 0}\{S \rightarrow \circ A S B\}=F_{S o}\left\{S^{\prime} \rightarrow \circ S\right\}$
- $F_{s o}\{S \rightarrow \circ A B\}=F_{s 0}\left\{S^{\prime} \rightarrow \circ S\right\}$
- $F_{s 0}\{A \rightarrow o a\}=B F_{s 0}\{S \rightarrow o A B\}$
- $F_{s o}\{A \rightarrow 0 a\}=S B F_{s 0}\{S \rightarrow O A S B\}$
- $F_{S_{1}}\left\{S^{\prime} \rightarrow S \circ\right\}=F_{S 0}\left\{S^{\prime} \rightarrow \circ S\right\}$
- $F_{S 2}\{A \rightarrow a \circ\}=F_{S 0}\{A \rightarrow \circ A\}$
- $D_{s o}\left\{S^{\prime} \rightarrow 0 S\right\}=S F_{S 0}\left\{S^{\prime} \rightarrow \circ S\right\}$
- $D_{S 0}\{S \rightarrow \circ A S B\}=A S B F_{S 0}\{S \rightarrow \circ A S B\}$

LR-Regular parsing

Right contexts

■ Right contexts $=$ super look-ahead

- May be helpful when dealing with inadequate states
- However, intersection of CFG's is undecidable
- Checking the rest of the input against CFG makes no sense

LR-Regular parsing

Right contexts

■ Right contexts $=$ super look-ahead

- May be helpful when dealing with inadequate states
- However, intersection of CFG's is undecidable

■ Checking the rest of the input against CFG makes no sense

LR-Regular

■ Uses regular envelopes of the right contexts

- Approximation " from above"

■ For non-terminals only
■ Many heuristics and techniques possible, result is not guaranteed

Thank you for your attention. Questions?

