
Code Generation:

Declarations

Adrián Novosád

Tomáš Rohovský

1/10

• Variable declaration has two parts:

• specifier – a list of various keywords (int,

long, extern, struct and so forth)

• declarator – variable’s name, number of

stars, array specifiers, parentheses

long int *x, y;

Declarations

2/10

Symbol Table Structures
typedef struct symbol

{

 unsigned char name[SIZE]; /* Input variable name */

 unsigned char rname[SIZE]; /* Output variable name */

 struct linl *type; /* First link in declaration chain */

 struct link *etype; /* Last link in declaration chain */

 struct symbol *args; /* Funct. arg. list or variable initializer */

 struct symbol *next; /* cross link to next var. at the same nesting level */

} symbol;

typedef struct link

{

 unsigned class :1; /* DECLARATOR of SPECIFIER */

 union {

 specifier s;

 declarator d; }

 select;

 struct link *next; /* Next element of chain */

}

3/10

Symbol Table Structures
typedef struct specifier

{

 unsigned noun :3; /* CHAR INT STRUCTURE LABEL */

 unsigned sclasss :3; /* REGISTER AUTO FIXED CONST TYPEDEF */

 unsigned oclass :3; /* Ouput storage class: PUB PRI COM EXT */

 unsigned _long :1; /* 1=long 0=short */

 unsigned _unsigned :1; /* 1=unsigned 0=signed */

 union { ... } const_val;

} specifier;

typedef struct declarator

{

 int dcl_type; /* POINTER ARRAY FUNCTION */

 int num_ele; /* count of elements */

} declarator;

4/10

Symbol Table Structures: Example

long int *x, y;

5/10

Code Generation
• Into machine-independent intermediate language (C-code)

• Directed by the syntax analyzer during the parse of the

program – syntax-directed translation

• Rules are associated with actions which handle the code

generation

• Yacc and OCCS compiler-development toolkit

• Declaration processing involves two main tasks:

• assemble the linked lists that represent the types, attach

them to symbols, and put the resulting structures into

the symbol table

• generating C-code definitions for variables

6/10

Code Generation: Simple Variables
• For parsing is used Extended PA (bootom-up parsing)

• Example: long int *x, y;

Specifier processing

• new_type_spec(char *lexeme)
• create and initialize a link

• spec_cpy(link *dst, link *src)
• merge specifiers

7/10

Code Generation: Simple Variables
Example: long int *x, y;

Declarator processing

• new_symbol(char *name, int scope);
• Create a new symbol structure

• add_declarator(symbol *sym, int type);
• add a pointer-declarator link to the type chain in the

symbol that was created when the name was processed

8/10

Code Generation: Simple Variables
Example: long int *x, y;

Creating of the cross links

• Cross links join declarations for all variables

at the current scoping level

Merging of the specifier and declarator components

• add_spec_to_decl(link *spec, symbol *chain)

Putting of declarations into the symbol table

• add_symbols_to_table(symbol *sym)

Generating of declarations into the output

• generate_defs_and_free_args(symbol *sym)

9/10

10/10

Thank you for your

attention

