
OPTIMIZATION

STRATEGIES
Odaloš Matej, Bc.

Polesný Ondřej, Bc.

December 13, 2012

xodalo00@stud.fit.vutbr.cz

xpoles01@stud.fit.vutbr.cz

mailto:xodalo00@stud.fit.vutbr.cz
mailto:xpoles01@stud.fit.vutbr.cz

Introduction

• Optimizer makes a more efficient version of the

itermediate or target code

• Local optimization vs global optimization

• Optimization for speed vs optimization for size

• Parser optimizations

• Linear peephole optimizations

• Structural optimizations

2

Optimization categories

Parser optimizations

• Can be done by the parser itself

• Generate good code to begin with

3

Techniques

• Using logical lvalues rather than physical ones

• Minimizing the number of goto branches

• Instrinsic functions (i.e. math functions – sin, cos, sqrt)

Linear Peephole Optimizations

• Cannot be done by the parser itself

• Necessary to examine several blocks of code (peephole)

• Performed over small set of instructions (window)

4

Strength Reduction

• Replaces operation with a more efficient one

• Main objective is to save machine clock cycles

• 𝑥 ∗ 8 can be done with 𝑥 ≪ 3

• 𝑥/8 can be done with 𝑥 ≫ 3

• Multiplication by small numbers replaced by multiple

additions

• Multiplication by larger numbers

• 𝑡0 ∗= 9 can be replaced by 𝑡0 ∗ 8 + 𝑡0 = 𝑡0 ≪ 3 + 𝑡0

• Modification of jump or goto instructions to match

machine specific version that is more efficient

5

Constant folding and propagation

• Can be done by parser in a limited way

• 𝑥 + 2 ∗ 3 is treated like 𝑥 + 6

• 𝑎 + 1 + 3 parser independent optimizer

• Multiplication by 1, addition and subtraction of zero and

shift by zero eliminated

• 𝑦 = 5; 𝑥 = 𝑦 replaced with 𝑦 = 5; 𝑥 = 5

• Assignment of a constant is more efficient than memory to

memory copy

• Optimizer keeps track of the contents of all variables that

contain constants

• 𝑡0 = 1; 𝑡0 += 5; 𝑡1 = 𝑡𝑜 replaced with 𝑡0 = 1; 𝑡1 = 6

6

Dead Variables and Dead Code

• 𝑡0 = 1; 𝑡0 += 5; 𝑡1 = 𝑡𝑜 replaced with 𝑡0 = 1; 𝑡1 = 6

• After replacement, t0 is dead variable

• Variable considered dead from the last usage till its‘

reinitialization

• 𝑥 = 5; 𝑦 = 𝑥; 𝑥 += 1; 𝑥 = 𝑧

• Dead assignment, variable is never used or modified

• Elimination of code, that cannot be reached or does

nothing useful

• 𝑖𝑓 0 𝑑𝑜_𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔();

7

Hardware problems

• 𝑤ℎ𝑖𝑙𝑒 ∗ 𝑝𝑜𝑟𝑡

{
 ∗ 𝑝𝑜𝑟𝑡 = 1; //𝑝𝑢𝑙𝑠𝑒 𝑡ℎ𝑒 𝑙𝑜𝑤 𝑏𝑖𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑝𝑜𝑟𝑡

 ∗ 𝑝𝑜𝑟𝑡 = 0;
 𝑑𝑒𝑙𝑎𝑦 ;
}

• Keyword volatile suppresses these optimizations

8

Structural optimizations

• Series of instructions parse or syntax tree

• Parser generates intermediate language

• Intermediate code is processed by the optimizer

9

Common-Subexpression Elimination

• 𝐴 ∗ 𝐵 + 𝐴 ∗ 𝐵 – subexpression eliminated twice

• Replaced by 𝑡0 = 𝐴; 𝑡1 = 𝐵; 𝑡1 ∗= 𝑡0; 𝑡1 += 𝑡1

• Replaces the entire loop with the code that comprises the

loop body, duplicated the number of times that the loop

would execute

10

Loop Unwinding

